1
|
Turco F, Garavaglia M, Van Houdt R, Hill P, Rawson FJ, Kovacs K. Synthetic Biology Toolbox, Including a Single-Plasmid CRISPR-Cas9 System to Biologically Engineer the Electrogenic, Metal-Resistant Bacterium Cupriavidus metallidurans CH34. ACS Synth Biol 2022; 11:3617-3628. [PMID: 36278822 PMCID: PMC9680026 DOI: 10.1021/acssynbio.2c00130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cupriavidus metallidurans CH34 exhibits extraordinary metabolic versatility, including chemolithoautotrophic growth; degradation of BTEX (benzene, toluene, ethylbenzene, xylene); high resistance to numerous metals; biomineralization of gold, platinum, silver, and uranium; and accumulation of polyhydroxybutyrate (PHB). These qualities make it a valuable host for biotechnological applications such as bioremediation, bioprocessing, and the generation of bioelectricity in microbial fuel cells (MFCs). However, the lack of genetic tools for strain development and studying its fundamental physiology represents a bottleneck to boosting its commercial applications. In this study, inducible and constitutive promoter libraries were built and characterized, providing the first comprehensive list of biological parts that can be used to regulate protein expression and optimize the CRISPR-Cas9 genome editing tools for this host. A single-plasmid CRISPR-Cas9 system that can be delivered by both conjugation and electroporation was developed, and its efficiency was demonstrated by successfully targeting the pyrE locus. The CRISPR-Cas9 system was next used to target candidate genes encoding type IV pili, hypothesized by us to be involved in extracellular electron transfer (EET) in this organism. Single and double deletion strains (ΔpilA, ΔpilE, and ΔpilAE) were successfully generated. Additionally, the CRISPR-Cas9 tool was validated for constructing genomic insertions (ΔpilAE::gfp and ΔpilAE::λPrgfp). Finally, as type IV pili are believed to play an important role in extracellular electron transfer to solid surfaces, C. metallidurans CH34 ΔpilAE was further studied by means of cyclic voltammetry using disposable screen-printed carbon electrodes. Under these conditions, we demonstrated that C. metallidurans CH34 could generate extracellular currents; however, no difference in the intensity of the current peaks was found in the ΔpilAE double deletion strain when compared to the wild type. This finding suggests that the deleted type IV pili candidate genes are not involved in extracellular electron transfer under these conditions. Nevertheless, these experiments revealed the presence of different redox centers likely to be involved in both mediated electron transfer (MET) and direct electron transfer (DET), the first interpretation of extracellular electron transfer mechanisms in C. metallidurans CH34.
Collapse
Affiliation(s)
- Federico Turco
- School of Pharmacy,
Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Marco Garavaglia
- BBSRC/EPSRC Synthetic Biology Research
Centre, School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Phil Hill
- School
of Biosciences, The University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - Frankie J. Rawson
- Bioelectronics Laboratory, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katalin Kovacs
- Division of Molecular Therapeutics and Formulations,
School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom,
| |
Collapse
|
2
|
Wang Y, Yu Z, Ding P, Lu J, Klümper U, Murray AK, Gaze WH, Guo J. Non-antibiotic pharmaceuticals promote conjugative plasmid transfer at a community-wide level. MICROBIOME 2022; 10:124. [PMID: 35953866 PMCID: PMC9373378 DOI: 10.1186/s40168-022-01314-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Horizontal gene transfer (HGT) plays a critical role in the spread of antibiotic resistance and the evolutionary shaping of bacterial communities. Conjugation is the most well characterized pathway for the spread of antibiotic resistance, compared to transformation and transduction. While antibiotics have been found to induce HGT, it remains unknown whether non-antibiotic pharmaceuticals can facilitate conjugation at a microbial community-wide level. RESULTS In this study, we demonstrate that several commonly consumed non-antibiotic pharmaceuticals (including carbamazepine, ibuprofen, naproxen and propranolol), at environmentally relevant concentrations (0.5 mg/L), can promote the conjugative transfer of IncP1-α plasmid-borne antibiotic resistance across entire microbial communities. The over-generation of reactive oxygen species in response to these non-antibiotic pharmaceuticals may contribute to the enhanced conjugation ratios. Cell sorting and 16S rRNA gene amplicon sequencing analyses indicated that non-antibiotic pharmaceuticals modulate transconjugant microbial communities at both phylum and genus levels. Moreover, microbial uptake ability of the IncP1-α plasmid was also upregulated under non-antibiotic pharmaceutical exposure. Several opportunistic pathogens, such as Acinetobacter and Legionella, were more likely to acquire the plasmid conferring multidrug resistance. CONCLUSIONS Considering the high possibility of co-occurrence of pathogenic bacteria, conjugative IncP1-α plasmids and non-antibiotic pharmaceuticals in various environments (e.g., activated sludge systems), our findings illustrate the potential risk associated with increased dissemination of antibiotic resistance promoted by non-antibiotic pharmaceuticals in complex environmental settings. Video abstract.
Collapse
Affiliation(s)
- Yue Wang
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pengbo Ding
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, Penryn, TR10 9FE, UK
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment & Sustainability Institute, Penryn Campus, Penryn, TR10 9FE, UK
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Heterologous expression of proteorhodopsin enhances H2 production in Escherichia coli when endogenous Hyd-4 is overexpressed. J Biotechnol 2015; 206:52-7. [PMID: 25913175 DOI: 10.1016/j.jbiotec.2015.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 11/23/2022]
Abstract
Proteorhodopsin (PR) is a light harvesting protein widely distributed among bacterioplankton that plays an integral energetic role in a new pathway of marine light capture. The conversion of light into chemical energy in non-chlorophyll-based bacterial systems could contribute to overcoming thermodynamic and metabolic constraints in biofuels production. In an attempt to improve biohydrogen production yields, H2 evolution catalyzed by endogenous hydrogenases, Hyd-3 and/or Hyd-4, was measured when recombinant proteorhodopsin (PR) was concomitantly expressed in Escherichia coli cells. Higher amounts of H2 were obtained with recombinant cells in a light and chromophore dependent manner. This effect was only observed when HyfR, the specific transcriptional activator of the hyf operon encoding Hyd-4 was overexpressed in E. coli, suggesting that an excess of protons generated by PR activity could increase hydrogen production by Hyd-4 but not by Hyd-3. Although many of the subunits of Hyd-3 and Hyd-4 are very similar, Hyd-4 possesses three additional proton-translocating NADH-ubiquinone oxidoreductase subunits, suggesting that it is dependent upon ΔμH(+). Altogether, these results suggest that protons generated by proteorhodopsin in the periplasm can only enhance hydrogen production by hydrogenases with associated proton translocating subunits.
Collapse
|
4
|
Bellanger X, Guilloteau H, Bonot S, Merlin C. Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:872-82. [PMID: 25000583 DOI: 10.1016/j.scitotenv.2014.06.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 05/26/2023]
Abstract
Plasmid-based dissemination of antibiotic resistance genes in environmental microbial communities is a matter of concern for public health, but it remains difficult to study for methodological reasons. In this study, we used the broad host range plasmid pB10 to compare and to point out the main drawbacks of the three different approaches currently used to evaluate plasmid transfer in natural communities. Culture-based selection of transconjugants appeared to be compromised by high prevalence of antibiotic resistances among natural communities, unless high loads of initial pB10-donor inocula were used. Fluorescence-based detection of transconjugants reached a dead-end consequently to the narrow host range of bacteria expressing fluorescent proteins from a genetically modified pB10 plasmid, in addition to the relatively high background level of fluorescence exhibited by some environmental matrices. The molecular-based approach was the only one to provide a mean to detect rare plasmid transfer events following a low but realistic initial pB10-donor inoculation. Whatever the method, culture-based or molecular-based, the detection of successful transfer events in a given environmental matrix seemed to be linked to the initial stability of the donor inoculum. Depending on the matrix considered, eukaryotic predation plays a significant role in either limiting or promoting the plasmid transfer events.
Collapse
Affiliation(s)
- Xavier Bellanger
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Hélène Guilloteau
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Sébastien Bonot
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Christophe Merlin
- Université de Lorraine and CNRS, LCPME, UMR 7564, 15 Avenue du Charmois, F-54500 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
5
|
Han SJ, Cho S, Lowehhaupt K, Park SY, Sim SJ, Kim YG. Recombinant tagging system using ribosomal frameshifting to monitor protein expression. Biotechnol Bioeng 2012; 110:898-904. [PMID: 23042497 DOI: 10.1002/bit.24740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/27/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023]
Abstract
For rapid and accurate quantitation of recombinant proteins during expression and after purification, we introduce a new tagging strategy that expresses both target proteins and limitedly tagged target proteins together in a single cell at a constant ratio by utilizing cis-elements of programmed -1 ribosomal frameshifting (-1RFS) as an embedded device. -1RFS is an alternative reading mechanism that effectively controls protein expression by many viruses. When a target gene is fused to the enhanced green fluorescent protein (EGFP) gene with a -1RFS element implanted between them, the unfused target and the target-GFP fusion proteins are expressed at a fixed ratio. The expression ratio between these two protein products is adjustable simply by changing -1RFS signals. This limited-tagging system would be valuable for the real-time monitoring of protein expression when optimizing expression condition for a new protein, and in monitoring large-scale bioprocesses without a large metabolic burden on host cells. Furthermore, this strategy allows for the direct measurement of the quantity of a protein on a chip surface and easy application to proteomewide study of gene products.
Collapse
Affiliation(s)
- Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
6
|
Biondo R, da Silva FA, Vicente EJ, Souza Sarkis JE, Schenberg ACG. Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8325-8332. [PMID: 22794785 DOI: 10.1021/es3006207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work describes the effects of the cell surface display of a synthetic phytochelatin in the highly metal tolerant bacterium Cupriavidus metallidurans CH34. The EC20sp synthetic phytochelatin gene was fused between the coding sequences of the signal peptide (SS) and of the autotransporter β-domain of the Neisseria gonorrhoeae IgA protease precursor (IgAβ), which successfully targeted the hybrid protein toward the C. metallidurans outer membrane. The expression of the SS-EC20sp-IgAβ gene fusion was driven by a modified version of the Bacillus subtilis mrgA promoter showing high level basal gene expression that is further enhanced by metal presence in C. metallidurans. The recombinant strain showed increased ability to immobilize Pb(2+), Zn(2+), Cu(2+), Cd(2+), Mn(2+), and Ni(2+) ions from the external medium when compared to the control strain. To ensure plasmid stability and biological containment, the MOB region of the plasmid was replaced by the E. coli hok/sok coding sequence.
Collapse
Affiliation(s)
- Ronaldo Biondo
- Centro de Pesquisas em Biotecnologia, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Cidade Universitária, 05508-900 - São Paulo, SP, Brasil.
| | | | | | | | | |
Collapse
|