1
|
Shchipunov Y. Biomimetic Sol-Gel Chemistry to Tailor Structure, Properties, and Functionality of Bionanocomposites by Biopolymers and Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 17:224. [PMID: 38204077 PMCID: PMC10779932 DOI: 10.3390/ma17010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Biosilica, synthesized annually only by diatoms, is almost 1000 times more abundant than industrial silica. Biosilicification occurs at a high rate, although the concentration of silicic acid in natural waters is ~100 μM. It occurs in neutral aqueous solutions, at ambient temperature, and under the control of proteins that determine the formation of hierarchically organized structures. Using diatoms as an example, the fundamental differences between biosilicification and traditional sol-gel technology, which is performed with the addition of acid/alkali, organic solvents and heating, have been identified. The conditions are harsh for the biomaterial, as they cause protein denaturation and cell death. Numerous attempts are being made to bring sol-gel technology closer to biomineralization processes. Biomimetic synthesis must be conducted at physiological pH, room temperature, and without the addition of organic solvents. To date, significant progress has been made in approaching these requirements. The review presents a critical analysis of the approaches proposed to date for the silicification of biomacromolecules and cells, the formation of bionanocomposites with controlled structure, porosity, and functionality determined by the biomaterial. They demonstrated the broad capabilities and prospects of biomimetic methods for creating optical and photonic materials, adsorbents, catalysts and biocatalysts, sensors and biosensors, and biomaterials for biomedicine.
Collapse
Affiliation(s)
- Yury Shchipunov
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
2
|
Kamanina OA, Saverina EA, Rybochkin PV, Arlyapov VA, Vereshchagin AN, Ananikov VP. Preparation of Hybrid Sol-Gel Materials Based on Living Cells of Microorganisms and Their Application in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1086. [PMID: 35407203 PMCID: PMC9000353 DOI: 10.3390/nano12071086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Microorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization. This review focuses on the synthesis and application of hybrid sol-gel materials obtained by encapsulation of microorganism cells in an inorganic matrix based on silicon, aluminum, and transition metals. The type of immobilized cells, precursors used, types of nanomaterials obtained, and their practical applications were analyzed in detail. In addition, techniques for increasing the microorganism effective time of functioning and the possibility of using sol-gel hybrid materials in catalysis are discussed.
Collapse
Affiliation(s)
- Olga A. Kamanina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Evgeniya A. Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Pavel V. Rybochkin
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | - Vyacheslav A. Arlyapov
- Tula State University, Lenin pr. 92, 300012 Tula, Russia; (O.A.K.); (E.A.S.); (P.V.R.); (V.A.A.)
| | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
Digital Proxy of a Bio-Reactor (DIYBOT) combines sensor data and data analytics to improve greywater treatment and wastewater management systems. Sci Rep 2020; 10:8015. [PMID: 32415099 PMCID: PMC7229150 DOI: 10.1038/s41598-020-64789-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/14/2020] [Indexed: 02/01/2023] Open
Abstract
Technologies to treat wastewater in decentralized systems are critical for sustainable development. Bioreactors are suitable for low-energy removal of inorganic and organic compounds, particularly for non-potable applications where a small footprint is required. One of the main problems associated with bioreactor use is sporadic spikes of chemical toxins, including nanoparticles. Here, we describe the development of DIYBOT (Digital Proxy of a Bio-Reactor), which enables remote monitoring of bioreactors and uses the data to inform decisions related to systems management. To test DIYBOT, a household-scale membrane aerated bioreactor with real-time water quality sensors was used to treat household greywater simulant. After reaching steady-state, silver nanoparticles (AgNP) representative of the mixture found in laundry wastewater were injected into the system to represent a chemical contamination. Measurements of carbon metabolism, effluent water quality, biofilm sloughing rate, and microbial diversity were characterized after nanoparticle exposure. Real-time sensor data were analyzed to reconstruct phase-space dynamics and extrapolate a phenomenological digital proxy to evaluate system performance. The management implication of the stable-focus dynamics, reconstructed from observed data, is that the bioreactor self-corrects in response to contamination spikes at AgNP levels below 2.0 mg/L. DIYBOT may help reduce the frequency of human-in-the-loop corrective management actions for wastewater processing.
Collapse
|
4
|
Dinamarca MA, Eyzaguirre J, Baeza P, Aballay P, Canales C, Ojeda J. A new functional biofilm biocatalyst for the simultaneous removal of dibenzothiophene and quinoline using Rhodococcus rhodochrous and curli amyloid overproducer mutants derived from Cobetia sp. strain MM1IDA2H-1. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 20:e00286. [PMID: 30386734 PMCID: PMC6205334 DOI: 10.1016/j.btre.2018.e00286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
Biocatalyst systems based on biofilms were developed to remove nitrogen and sulfur-containing heterocyclic hydrocarbons using Cobetia sp. strain MM1IDA2H-1 and Rhodococcus rhodochrous. The curli overproducers mutants CM1 and CM4 were derived from Cobetia sp. strain and used to build monostrain biofilms to remove quinoline; and together with R. rhodochrous to simultaneously remove quinoline and dibenzothiophene using mixed biofilms. The quinoline removal using biofilms were 96% and 97% using CM1 or CM4 curli overproducers respectively, whereas bacterial suspensions assays yielded 19% and 24% with the same strains. At the other hand, the simultaneous removal of quinoline and dibenzothiophene using mixed biofilms were respectively 50% and 58% using strains R. rhodochrous with CM1 and 75% and 50% using R. rhodochrous with CM4. Results show that biofilms were more efficient than bacterial suspension assays and that in mixed biofilms the shared surface area by two or more bacteria could affect the final yield.
Collapse
Affiliation(s)
- M Alejandro Dinamarca
- Centro de Microbio-Innovación (CMBi) Universidad de Valparaíso, Casilla, 5001, Valparaíso, Chile
| | - Johana Eyzaguirre
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Casilla 4059, Valparaíso, Chile
| | - Patricio Baeza
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Casilla 4059, Valparaíso, Chile
| | - Paulina Aballay
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso Casilla 4059, Valparaíso, Chile
| | - Christian Canales
- Laboratorio de Ingeniería en Biotecnología, Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Campus Las Tres Pascualas, Concepción, Lientur, 1457, Chile
| | - Juan Ojeda
- Escuela de Nutrición, Facultad de Farmacia, Universidad de Valparaíso, Casilla, 5001, Valparaíso, Chile
| |
Collapse
|
5
|
Kuncová G, Ishizaki T, Solovyev A, Trögl J, Ripp S. The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber. MATERIALS 2016; 9:ma9060467. [PMID: 28773598 PMCID: PMC5456779 DOI: 10.3390/ma9060467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022]
Abstract
Living cells of the lux-based bioluminescent bioreporter Pseudomonas putida TVA8 were encapsulated in a silica hydrogel attached to the distal wider end of a tapered quartz fiber. Bioluminescence of immobilized cells was induced with toluene at high (26.5 mg/L) and low (5.3 mg/L) concentrations. Initial bioluminescence maxima were achieved after >12 h. One week after immobilization, a biofilm-like layer of cells had formed on the surface of the silica gel. This resulted in shorter response times and more intensive bioluminescence maxima that appeared as rapidly as 2 h after toluene induction. Considerable second bioluminescence maxima were observed after inductions with 26.5 mg toluene/L. The second and third week after immobilization the biosensor repetitively and semiquantitatively detected toluene in buffered medium. Due to silica gel dissolution and biofilm detachment, the bioluminescent signal was decreasing 20-32 days after immobilization and completely extinguished after 32 days. The reproducible formation of a surface cell layer on the wider end of the tapered optical fiber can be translated to various whole cell bioluminescent biosensor devices and may serve as a platform for in-situ sensors.
Collapse
Affiliation(s)
- Gabriela Kuncová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16500 Praha 6, Czech Republic.
| | - Takayuki Ishizaki
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16500 Praha 6, Czech Republic.
| | - Andrey Solovyev
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16500 Praha 6, Czech Republic.
| | - Josef Trögl
- Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Králova Výšina 3132/7, 40096 Ústí nad Labem, Czech Republic.
| | - Steven Ripp
- Center for Environmental Biotechnology, The University of Tennessee, 676 Dabney Hall, Knoxville, TN 37996, USA.
| |
Collapse
|
6
|
Vanegas DC, Clark G, Cannon AE, Roux S, Chaturvedi P, McLamore ES. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosens Bioelectron 2015; 74:37-44. [PMID: 26094038 DOI: 10.1016/j.bios.2015.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/09/2015] [Accepted: 05/09/2015] [Indexed: 01/28/2023]
Abstract
The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment.
Collapse
Affiliation(s)
- Diana C Vanegas
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, USA; Food Engineering Department, Universidad del Valle, Cali, Colombia
| | - Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, USA
| | - Ashley E Cannon
- Department of Molecular Biosciences, University of Texas, Austin, USA
| | - Stanley Roux
- Department of Molecular Biosciences, University of Texas, Austin, USA
| | - Prachee Chaturvedi
- Department of Mechanical Engineering, University of Colorado, Denver, USA
| | - Eric S McLamore
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, USA.
| |
Collapse
|
7
|
Johnston R, Rogelj S, Harper JC, Tartis M. Sol-Generating Chemical Vapor into Liquid (SG-CViL) Deposition- A Facile Method for Encapsulation of Diverse Cell Types in Silica Matrices. J Mater Chem B 2015; 3:1032-1041. [PMID: 25688296 DOI: 10.1039/c4tb01349b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex-vivo environments necessitates development of bio-nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. The ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell-silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.
Collapse
Affiliation(s)
- Robert Johnston
- Materials Engineering Department, New Mexico Institute of Mining and Technology Socorro NM, 87801
| | - Snezna Rogelj
- Biology Department, New Mexico Institute of Mining and Technology Socorro NM, 87801
| | - Jason C Harper
- Bioenergy & Biodefense Technologies Department, Sandia National Laboratories, Albuquerque New Mexico, 87185
| | - Michaelann Tartis
- Materials Engineering Department, New Mexico Institute of Mining and Technology Socorro NM, 87801 ; Chemical Engineering Department, New Mexico Institute of Mining and Technology Socorro NM, 87801
| |
Collapse
|
8
|
Jaroch DB, Lu J, Madangopal R, Stull ND, Stensberg M, Shi J, Kahn JL, Herrera-Perez R, Zeitchek M, Sturgis J, Robinson JP, Yoder MC, Porterfield DM, Mirmira RG, Rickus JL. Mouse and human islets survive and function after coating by biosilicification. Am J Physiol Endocrinol Metab 2013; 305:E1230-40. [PMID: 24002572 PMCID: PMC3840215 DOI: 10.1152/ajpendo.00081.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9-15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice.
Collapse
Affiliation(s)
- David B Jaroch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A silica-dextran nanocomposite as a novel matrix for immobilization of horseradish peroxidase, and its application to sensing hydrogen peroxide. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Han M, Guo P, Wang X, Tu W, Bao J, Dai Z. Mesoporous SiO2–(l)-lysine hybrid nanodisks: direct electron transfer of superoxide dismutase, sensitive detection of superoxide anions and its application in living cell monitoring. RSC Adv 2013. [DOI: 10.1039/c3ra42403k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Huang Z, McLamore ES, Chuang HS, Zhang W, Wereley S, Leon JLC, Banks MK. Shear-induced detachment of biofilms from hollow fiber silicone membranes. Biotechnol Bioeng 2012; 110:525-34. [PMID: 22886926 DOI: 10.1002/bit.24631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022]
Abstract
A suite of techniques was utilized to evaluate the correlation between biofilm physiology, fluid-induced shear stress, and detachment in hollow fiber membrane aerated bioreactors. Two monoculture species biofilms were grown on silicone fibers in a hollow fiber membrane aerated bioreactors (HfMBR) to assess detachment under laminar fluid flow conditions. Both physiology (biofilm thickness and roughness) and nutrient mass transport data indicated the presence of a steady state mature biofilm after 3 weeks of development. Surface shear stress proved to be an important parameter for predicting passive detachment for the two biofilms. The average shear stress at the surface of Nitrosomonas europaea biofilms (54.5 ± 3.2 mPa) was approximately 20% higher than for Pseudomonas aeruginosa biofilms (45.8 ± 7.7 mPa), resulting in higher biomass detachment. No significant difference in shear stress was measured between immature and mature biofilms of the same species. There was a significant difference in detached biomass for immature vs. mature biofilms in both species. However, there was no difference in detachment rate between the two species.
Collapse
Affiliation(s)
- Z Huang
- School of Civil Engineering, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN 47907, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Staying alive: new perspectives on cell immobilization for biosensing purposes. Anal Bioanal Chem 2011; 402:1785-97. [PMID: 21922308 DOI: 10.1007/s00216-011-5364-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/10/2011] [Accepted: 08/24/2011] [Indexed: 01/09/2023]
|