1
|
Abbas SEM, Maged G, Wang H, Lotfy A. Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy. Cells 2025; 14:149. [PMID: 39936941 PMCID: PMC11817150 DOI: 10.3390/cells14030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Cell microencapsulation is one of the most studied strategies to overcome the challenges associated with the implementation of mesenchymal stem/stromal cells (MSCs) in vivo. This approach isolates/shields donor MSCs from the host immune system using a semipermeable membrane that allows for the diffusion of gases, nutrients, and therapeutics, but not host immune cells. As a result, microencapsulated MSCs survive and engraft better after infusion, and they can be delivered specifically to the targeted site. Additionally, microencapsulation enables the co-culture of MSCs with different types of cells in a three-dimensional (3D) environment, allowing for better cellular interaction. Alginate, collagen, and cellulose are the most popular materials, and air jet extrusion, microfluidics, and emulsion are the most used techniques for MSC cell encapsulation in the literature. These materials and techniques differ in the size range of the resultant microcapsules and their compatibility with the applied materials. This review discusses various materials and techniques used for the microencapsulation of MSCs. We also shed light on the recent findings in this field, the advantages and drawbacks of using encapsulated MSCs, and the in vivo translation of the microencapsulated MSCs in cell therapy.
Collapse
Affiliation(s)
| | - Ghada Maged
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Gwon K, Dharmesh E, Nguyen KM, Schornack AMR, de Hoyos-Vega JM, Ceylan H, Stybayeva G, Peterson QP, Revzin A. Designing magnetic microcapsules for cultivation and differentiation of stem cell spheroids. MICROSYSTEMS & NANOENGINEERING 2024; 10:127. [PMID: 39261472 PMCID: PMC11390961 DOI: 10.1038/s41378-024-00747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
Human pluripotent stem cells (hPSCs) represent an excellent cell source for regenerative medicine and tissue engineering applications. However, there remains a need for robust and scalable differentiation of stem cells into functional adult tissues. In this paper, we sought to address this challenge by developing magnetic microcapsules carrying hPSC spheroids. A co-axial flow-focusing microfluidic device was employed to encapsulate stem cells in core-shell microcapsules that also contained iron oxide magnetic nanoparticles (MNPs). These microcapsules exhibited excellent response to an external magnetic field and could be held at a specific location. As a demonstration of utility, magnetic microcapsules were used for differentiating hPSC spheroids as suspension cultures in a stirred bioreactor. Compared to standard suspension cultures, magnetic microcapsules allowed for more efficient media change and produced improved differentiation outcomes. In the future, magnetic microcapsules may enable better and more scalable differentiation of hPSCs into adult cell types and may offer benefits for cell transplantation.
Collapse
Affiliation(s)
- Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Ether Dharmesh
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Kianna M Nguyen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Jose M de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hakan Ceylan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Marrero - Berrios I, Salter SE, Hirday R, Rabolli CP, Tan A, Hung CT, Schloss RS, Yarmush ML. In vitro inflammatory multi-cellular model of osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100432. [PMID: 38288345 PMCID: PMC10823137 DOI: 10.1016/j.ocarto.2023.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Objective Osteoarthritis (OA) is a chronic joint disease, with limited treatment options, characterized by inflammation and matrix degradation, and resulting in severe pain or disability. Progressive inflammatory interaction among key cell types, including chondrocytes and macrophages, leads to a cascade of intra- and inter-cellular events which culminate in OA induction. In order to investigate these interactions, we developed a multi-cellular in vitro OA model, to characterize OA progression, and identify and evaluate potential OA therapeutics in response to mediators representing graded levels of inflammatory severity. Methods We compared macrophages, chondrocytes and their co-culture responses to "low" Interleukin-1 (IL-1) or "high" IL-1/tumor necrosis factor (IL-1/TNF) levels of inflammation. We also investigated response changes following the administration of dexamethasone (DEX) or mesenchymal stromal cell (MSC) treatment via a combination of gene expression and secretory changes, reflecting not only inflammation, but also chondrocyte function. Results Inflamed chondrocytes presented an osteoarthritic-like phenotype characterized by high gene expression of pro-inflammatory cytokines and chemokines, up-regulation of ECM degrading proteases, and down-regulation of chondrogenic genes. Our results indicate that while MSC treatment attenuates macrophage inflammation directly, it does not reduce chondrocyte inflammatory responses, unless macrophages are present as well. DEX however, can directly attenuate chondrocyte inflammation. Conclusions Our results highlight the importance of considering multi-cellular interactions when studying complex systems such as the articular joint. In addition, our approach, using a panel of both inflammatory and chondrocyte functional genes, provides a more comprehensive approach to investigate disease biomarkers, and responses to treatment.
Collapse
Affiliation(s)
| | - S. Elina Salter
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rishabh Hirday
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Charles P. Rabolli
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Andrea Tan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rene S. Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Martin L. Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Zhang R, Wang J, Deng Q, Xiao X, Zeng X, Lai B, Li G, Ma Y, Ruan J, Han I, Zeng YS, Ding Y. Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord. Neurospine 2023; 20:1358-1379. [PMID: 38171303 PMCID: PMC10762392 DOI: 10.14245/ns.2346824.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). METHODS Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. RESULTS The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1β) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. CONCLUSION These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI.
Collapse
Affiliation(s)
- Rongyi Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pain Management, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junhua Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingwen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingru Xiao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Biqin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yuanhuan Ma
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingwen Ruan
- Department of Acupuncture, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Inbo Han
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
5
|
Kabat M, Bobkov I, Grumet M. A rapid and sensitive method to measure numbers of live cells in alginate capsules following depolymerization with ethylenediaminetetraacetic acid. Biotechniques 2023; 74:179-185. [PMID: 37129002 DOI: 10.2144/btn-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Cell encapsulation in alginate prevents migration and extends cell survival in vivo while allowing the secretion of factors across semipermeable capsules. Confocal microscopy is used to measure numbers of cells/capsule, but is time-consuming and limited to capsule diameters <0.4 mm for accurate counting. A rapid, accurate and inexpensive method for measuring the number of cells per capsule by using 50 mM ethylenediaminetetraacetic acid to collapse capsules into a single plane was developed. This assay was used to accurately count the number of live cells/capsule for capsules crosslinked with 50 mM BaCl2 with diameters up to 0.8 mm. This assay is ideal for counting cells/capsule during optimization to scale up the production of encapsulated cells, and for determining dosing in translational studies.
Collapse
Affiliation(s)
- Maciej Kabat
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Ivan Bobkov
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Martin Grumet
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Allison Rd, Piscataway, NJ 08854, USA
- Rutgers Stem Cell Research Center, 604 Allison Rd Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Kumar S, Kabat M, Basak S, Babiarz J, Berthiaume F, Grumet M. Anti-Inflammatory Effects of Encapsulated Human Mesenchymal Stromal/Stem Cells and a Method to Scale-Up Cell Encapsulation. Biomolecules 2022; 12:biom12121803. [PMID: 36551231 PMCID: PMC9775968 DOI: 10.3390/biom12121803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) promote recovery in a wide range of animal models of injury and disease. They can act in vivo by differentiating and integrating into tissues, secreting factors that promote cell growth and control inflammation, and interacting directly with host effector cells. We focus here on MSC secreted factors by encapsulating the cells in alginate microspheres, which restrict cells from migrating out while allowing diffusion of factors including cytokines across the capsules. One week after intrathecal lumbar injection of human bone marrow MSC encapsulated in alginate (eMSC), rat IL-10 expression was upregulated in distant rat spinal cord injury sites. Detection of human IL-10 protein in rostrally derived cerebrospinal fluid (CSF) indicated distribution of this human MSC-secreted cytokine throughout rat spinal cord CSF. Intraperitoneal (IP) injection of eMSC in a rat model for endotoxemia reduced serum levels of inflammatory cytokines within 5 h. Detection of human IL-6 in sera after injection of human eMSC indicates rapid systemic distribution of this human MSC-secreted cytokine. Despite proof of concept for eMSC in various disorders using animal models, translation of encapsulation technology has not been feasible primarily because methods for scale-up are not available. To scale-up production of eMSC, we developed a rapid, semi-continuous, capsule collection system coupled to an electrosprayer. This system can produce doses of encapsulated cells sufficient for use in clinical translation.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Maciej Kabat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sayantani Basak
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanne Babiarz
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Martin Grumet
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-917-597-2597; Fax: +1-732-445-2063
| |
Collapse
|
7
|
Grumet M, Sherman J, Dorf BS. Efficacy of MSC in Patients with Severe COVID-19: Analysis of the Literature and a Case Study. Stem Cells Transl Med 2022; 11:1103-1112. [PMID: 36181766 PMCID: PMC9672850 DOI: 10.1093/stcltm/szac067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/23/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with severe COVID-19 experience cytokine storm, an uncontrolled upregulation of pro-inflammatory cytokines, which if unresolved leads to acute respiratory distress syndrome (ARDS), organ damage, and death. Treatments with mesenchymal stromal cells (MSC) [Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019-1024] appear to be effective in reducing morbidity and mortality. MSC respond to pro-inflammatory cytokines by releasing anti-inflammatory factors and mobilizing immune cells. We analyzed 82 COVID-19 clinical trials registered at ClinicalTrials.gov to determine MSC dosing, routes of administration, and outcome measures. Nearly all trials described the use of intravenous delivery with most doses ranging between 50 and 125 million MSC/treatment, which overlaps with a minimal effective dose range that we described previously. We also searched the literature to analyze clinical trial reports that used MSC to treat COVID-19. MSC were found to improve survival and oxygenation, increase discharge from intensive care units and hospitals, and reduce levels of pro-inflammatory markers. We report on a 91-year-old man with severe COVID-19 who responded rapidly to MSC treatment with transient reductions in several pro-inflammatory markers and delayed improvement in oxygenation. The results suggest that frequent monitoring of pro-inflammatory markers for severe COVID-19 will provide improved treatment guidelines by determining relationships between cytokine storms and ARDS. We propose that markers for cytokine storm are leading indicators for ARDS and that measurement of cytokines will indicate earlier treatment with MSC than is performed now for ARDS in severe COVID-19.
Collapse
Affiliation(s)
- Martin Grumet
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Jason Sherman
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Barry S Dorf
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, USA.,Department of Medicine, North Shore University Hospital, 300 Community Dr, Manhasset, NY, USA
| |
Collapse
|
8
|
Jarrah R, Sammak SE, Onyedimma C, Ghaith AK, Moinuddin F, Bhandarkar AR, Siddiqui A, Madigan N, Bydon M. The Role of Alginate Hydrogels as a Potential Treatment Modality for Spinal Cord Injury: A Comprehensive Review of the Literature. Neurospine 2022; 19:272-280. [PMID: 35793929 PMCID: PMC9260541 DOI: 10.14245/ns.2244186.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
Objective To comprehensively characterize the utilization of alginate hydrogels as an alternative treatment modality for spinal cord injury (SCI).
Methods An extensive review of the published literature on studies using alginate hydrogels to treat SCI was performed. The review of the literature was performed using electronic databases such as PubMed, EMBASE, and OVID MEDLINE electronic databases. The keywords used were “alginate,” “spinal cord injury,” “biomaterial,” and “hydrogel.”
Results In the literature, we identified a total of 555 rat models that were treated with alginate scaffolds for regenerative biomarkers. Alginate hydrogels were found to be efficient and promising substrates for tissue engineering, drug delivery, neural regeneration, and cellbased therapies for SCI repair. With its ability to act as a pro-regenerative and antidegenerative agent, the alginate hydrogel has the potential to improve clinical outcomes.
Conclusion The emerging developments of alginate hydrogels as treatment modalities may support current and future tissue regenerative strategies for SCI.
Collapse
Affiliation(s)
- Ryan Jarrah
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Sally El Sammak
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Chiduziem Onyedimma
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Abdul Karim Ghaith
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - F.M. Moinuddin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Archis R. Bhandarkar
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Ahad Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Mohamad Bydon
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Neuro-informatics Laboratory, Mayo Clinic, Rochester, MN, USA
- Corresponding Author Mohamad Bydon Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Li M, Jiang Y, Hou Q, Zhao Y, Zhong L, Fu X. Potential pre-activation strategies for improving therapeutic efficacy of mesenchymal stem cells: current status and future prospects. Stem Cell Res Ther 2022; 13:146. [PMID: 35379361 PMCID: PMC8981790 DOI: 10.1186/s13287-022-02822-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodulatory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investigated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC therapeutic functions to serve patients better.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| | - Yufeng Jiang
- Wound Repairing Department, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China.
| |
Collapse
|
10
|
McKinney JM, Pucha KA, Doan TN, Wang L, Weinstock LD, Tignor BT, Fowle KL, Levit RD, Wood LB, Willett NJ. Sodium alginate microencapsulation of human mesenchymal stromal cells modulates paracrine signaling response and enhances efficacy for treatment of established osteoarthritis. Acta Biomater 2022; 141:315-332. [PMID: 34979327 PMCID: PMC11898789 DOI: 10.1016/j.actbio.2021.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1β. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1β while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1β, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.
Collapse
Affiliation(s)
- Jay M McKinney
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Krishna A Pucha
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Thanh N Doan
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA
| | - Lanfang Wang
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Laura D Weinstock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Benjamin T Tignor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Kelsey L Fowle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Rebecca D Levit
- Department of Medicine, Division of Cardiology, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA.
| | - Nick J Willett
- Research Division, VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University, 49 Jesse Hill Jr Dr SE, Atlanta, GA 30303, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
11
|
Yang Y, Chu C, Xiao W, Liu L, Man Y, Lin J, Qu Y. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater 2022; 17. [PMID: 35168224 DOI: 10.1088/1748-605x/ac5572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023]
Abstract
The usage of bone substitute granule materials has improved the clinical results of alveolar bone deficiencies treatment and thus broadened applications in implant dentistry. However, because of the complicated mechanisms controlling the foreign body response, no perfect solution can avoid the fibrotic encapsulation of materials till now, which may impair the results of bone regeneration, even cause the implant materials rejection. Recently, the concept of 'osteoimmunology' has been stressed. The outcomes of bone regeneration are proved to be related to the bio-physicochemical properties of biomaterials, which allow them to regulate the biological behaviours of both innate and adaptive immune cells. With the development of single cell transcriptome, the truly heterogeneity of osteo-immune cells has been clarifying, which is helpful to overcome the limitations of traditional M1/M2 macrophage nomenclature and drive the advancements of particulate biomaterials applications. This review aims at introducing the mechanisms of optimal osseointegration regulated by immune systems and provides feasible strategies for the design of next generation 'osteoimmune-smart' particulate bone substitute materials in dental clinic.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
12
|
Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies. Acta Biomater 2021; 133:114-125. [PMID: 33857693 DOI: 10.1016/j.actbio.2021.03.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) have gained immense attention over the past two decades due to their multipotent differentiation potential and pro-regenerative and immunomodulatory cytokine secretory profiles. Their ability to modulate the host immune system and promote tolerance has prompted several allogeneic and autologous hMSC-based clinical trials for the treatment of graft-versus-host disease and several other immune-induced disorders. However, clinical success beyond safety is still controversial and highly variable, with inconclusive therapeutic benefits and little mechanistic explanation. This clinical variability has been broadly attributed to inconsistent MSC sourcing, phenotypic characterization, variable potency, and non-standard isolation protocols, leading to functional heterogeneity among administered MSCs. Homogeneous MSC populations are proposed to yield more predictable, reliable biological responses and clinically meaningful properties relevant to cell-based therapies. Limited comparisons of heterogeneous MSCs with homogenous MSCs are reported. This review addresses this gap in the literature with a critical analysis of strategies aimed at decreasing MSC heterogeneity concerning their reported immunomodulatory profiles. STATEMENT OF SIGNIFICANCE: This review collates, summarizes, and critically analyzes published strategies that seek to improve homogeneity in immunomodulatory functioning MSC populations intended as cell therapies to treat immune-based disorders, such as graft-vs-host-disease. No such review for MSC therapies, immunomodulatory profiles and cell heterogeneity analysis is published. Since MSCs represent the most clinically studied experimental cell therapy platform globally for which there remains no US domestic marketing approval, insights into MSC challenges in therapeutic product development are imperative to providing solutions for immunomodulatory variabilities.
Collapse
|
13
|
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133:4-16. [PMID: 33775905 PMCID: PMC8464623 DOI: 10.1016/j.actbio.2021.03.038] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are a highly heterogeneous and plastic population of cells that are crucial for tissue repair and regeneration. This has made macrophages a particularly attractive target for biomaterial-directed regenerative medicine strategies. However, macrophages also contribute to adverse inflammatory and fibrotic responses to implanted biomaterials, typically related to the foreign body response (FBR). The traditional model in the field asserts that the M2 macrophage phenotype is pro-regenerative and associated with positive wound healing outcomes, whereas the M1 phenotype is pro-inflammatory and associated with pathogenesis. However, recent studies indicate that both M1 and M2 macrophages play different, but equally vital, roles in promoting tissue repair. Furthermore, recent technological developments such as single-cell RNA sequencing have allowed for unprecedented insights into the heterogeneity within the myeloid compartment, related to activation state, niche, and ontogenetic origin. A better understanding of the phenotypic and functional characteristics of macrophages critical to tissue repair and FBR processes will allow for rational design of biomaterials to promote biomaterial-tissue integration and regeneration. In this review, we discuss the role of temporal and ontogenetic macrophage heterogeneity on tissue repair processes and the FBR and the potential implications for biomaterial-directed regenerative medicine applications. STATEMENT OF SIGNIFICANCE: This review outlines the contributions of different macrophage phenotypes to different phases of wound healing and angiogenesis. Pathological outcomes, such as chronic inflammation, fibrosis, and the foreign body response, related to disruption of the macrophage inflammation-resolution process are also discussed. We summarize recent insights into the vast heterogeneity of myeloid cells related to their niche, especially the biomaterial microenvironment, and ontogenetic origin. Additionally, we present a discussion on novel tools that allow for resolution of cellular heterogeneity at the single-cell level and how these can be used to build a better understanding of macrophage heterogeneity in the biomaterial immune microenvironment to better inform immunomodulatory biomaterial design.
Collapse
Affiliation(s)
- Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
14
|
Strategies to Potentiate Paracrine Therapeutic Efficacy of Mesenchymal Stem Cells in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22073397. [PMID: 33806241 PMCID: PMC8037333 DOI: 10.3390/ijms22073397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering.
Collapse
|
15
|
Kabat M, Bobkov I, Kumar S, Grumet M. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl Med 2019; 9:17-27. [PMID: 31804767 PMCID: PMC6954709 DOI: 10.1002/sctm.19-0202] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
The number of clinical trials using mesenchymal stem cells (MSCs) has increased since 2008, but this trend slowed in the past several years and dropped precipitously in 2018. Previous reports have analyzed MSC clinical trials by disease, phase, cell source, country of origin, and trial initiation date, all of which can be downloaded directly from http://clinicaltrials.gov. We have extended analyses to a larger group of 914 MSC trials reported through 2018. To search for potential factors that may influence the design of new trials, we extracted data on routes of administration and dosing from individual http://clinicaltrials.gov records as this information cannot be downloaded directly from the database. Intravenous (IV) injection is the most common, least invasive and most reproducible method, accounting for 43% of all trials. The median dose for IV delivery is 100 million MSCs/patient/dose. Analysis of all trials using IV injection that reported positive outcomes indicated minimal effective doses (MEDs) ranging from 70 to 190 million MSCs/patient/dose in 14/16 trials with the other two trials administering much higher doses of at least 900 million cells. Dose‐response data showing differential efficacy for improved outcomes were reported in only four trials, which indicated a narrower MED range of 100‐150 million MSCs/patient with lower and higher IV doses being less effective. The results suggest that it may be critical to determine MEDs in early trials before proceeding with large clinical trials.
Collapse
Affiliation(s)
- Maciej Kabat
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Ivan Bobkov
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin Grumet
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
16
|
Chen Y, Shu Z, Qian K, Wang J, Zhu H. Harnessing the Properties of Biomaterial to Enhance the Immunomodulation of Mesenchymal Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:492-499. [PMID: 31436142 DOI: 10.1089/ten.teb.2019.0131] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) have great therapeutic potential for tissue engineering and regenerative medicine due to their multipotency and paracrine functions. However, shortly after in vivo implantation, MSCs tend to migrate to the lungs and undergo apoptosis, which impairs their clinical efficacy. In addition, the ex vivo two-dimensional expansion of MSCs results in changes in their immunophenotype and functional activities compared to those in vivo. The use of biomaterials to culture and deliver MSCs has the potential to overcome these limitations. MSC-biomaterial constructs retain MSCs in situ and prolong their survival, while the MSCs ameliorate the foreign body reaction and fibrosis caused by the biomaterial. Biomaterial scaffolds can both preserve the tissue architecture and provide a three-dimensional biomimetic milieu for embedded MSCs, which enhance their paracrine functions, including their immunomodulatory potential. The dimensionality, physical characteristics, topographical cues, biochemistry, and microstructure can enhance the immunomodulatory potential of MSCs. Here, we review the link between the properties of biomaterial and the immunomodulatory potential of MSCs. Impact Statement Regeneration of cells, tissues, and whole organs is challenging. Mesenchymal stem cells (MSCs) have therapeutic potential in tissue engineering and regenerative medicine due to their paracrine functions, including immunomodulatory activity. The dimensionality, physical characteristics, topographical cues, biochemistry, and microstructure of biomaterial can be harnessed to enhance the immunomodulatory potential of MSCs for tissue engineering, which will increase their clinical efficacy, particularly for immune-related diseases.
Collapse
Affiliation(s)
- Yin Chen
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhanhao Shu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kejia Qian
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiaxiong Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Davis MS, Marrero-Berrios I, Perez I, Rabolli CP, Radhakrishnan P, Manchikalapati D, Schianodicola J, Kamath H, Schloss RS, Yarmush J. Alginate encapsulation for bupivacaine delivery and mesenchymal stromal cell immunomodulatory cotherapy. J Inflamm Res 2019; 12:87-97. [PMID: 30881083 PMCID: PMC6419600 DOI: 10.2147/jir.s192749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Mesenchymal stromal cells (MSCs) are used to treat various inflammatory conditions. In parallel, to mitigate pain associated with inflammation, analgesics or opioids are prescribed, often with significant side effects. Local anesthetics (LAs) offer a promising alternative to these medications. However, their short duration and negative effects on anti-inflammatory MSCs have limited their therapeutic effectiveness. To mitigate these negative effects and to move toward developing a cotherapy, we engineered a sustained release bupivacaine alginate-liposomal construct that enables up to 4 days of LA release. By encapsulating MSC in alginate (eMSC), we demonstrate that we can further increase drug concentration to clinically relevant levels, without compromising eMSC viability or anti-inflammatory function. MATERIALS AND METHODS MSCs were freely cultured or encapsulated in alginate microspheres ± TNFα/IFN-γ and were left untreated or dosed with bolus, liposomal, or construct bupivacaine. After 24, 48, and 96 hours, the profiles were assessed to quantify secretory function associated with LA-MSC interactions. To approximate LA exposure over time, a MATLAB model was generated. RESULTS eMSCs secrete similar levels of IL-6 and prostaglandin E2 (PGE2) regardless of LA modality, whereas free MSCs secrete larger amounts of IL-6 and lower amounts of anti-inflammatory PGE2. Modeling the system indicated that higher doses of LA can be used in conjunction with eMSC while retaining eMSC viability and function. In general, eMSC treated with higher doses of LA secreted similar or higher levels of immunomodulatory cytokines. CONCLUSION eMSCs, but not free MSC, are protected from LA, regardless of LA modality. Increasing the LA concentration may promote longer and stronger pain mitigation while the protected eMSCs secrete similar, if not higher, immunomodulatory cytokine levels. Therefore, we have developed an approach, using eMSC and the LA construct that can potentially be used to reduce pain as well as improve MSC anti-inflammatory function.
Collapse
Affiliation(s)
- Mollie S Davis
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA,
| | | | - Isabel Perez
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA,
| | - Charles P Rabolli
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA,
| | | | | | | | | | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA,
| | - Joel Yarmush
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, NY, USA
| |
Collapse
|
18
|
Ren H, Chen X, Tian M, Zhou J, Ouyang H, Zhang Z. Regulation of Inflammatory Cytokines for Spinal Cord Injury Repair Through Local Delivery of Therapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800529. [PMID: 30479916 PMCID: PMC6247077 DOI: 10.1002/advs.201800529] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Indexed: 05/29/2023]
Abstract
The balance of inflammation is critical to the repair of spinal cord injury (SCI), which is one of the most devastating traumas in human beings. Inflammatory cytokines, the direct mediators of local inflammation, have differential influences on the repair of the injured spinal cord. Some inflammatory cytokines are demonstrated beneficial to spinal cord repair in SCI models, while some detrimental. Various animal researches have revealed that local delivery of therapeutic agents efficiently regulates inflammatory cytokines and promotes repair from SCI. Quite a few clinical studies have also shown the promotion of repair from SCI through regulation of inflammatory cytokines. However, local delivery of a single agent affects only a part of the inflammatory cytokines that need to be regulated. Meanwhile, different individuals have differential profiles of inflammatory cytokines. Therefore, future studies may aim to develop personalized strategies of locally delivered therapeutic agent cocktails for effective and precise regulation of inflammation, and substantial functional recovery from SCI.
Collapse
Affiliation(s)
- Hao Ren
- The Third Affiliated Hospital of Guangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Zhiyong Zhang
- Translational Research Center for Regenerative Medicine and 3D Printing TechnologiesGuangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| |
Collapse
|
19
|
Davis MS, Marrero-Berrios I, Perez I, Maguire T, Radhakrishnan P, Manchikalapati D, SchianodiCola J, Kamath H, Schloss RS, Yarmush J. Alginate-liposomal construct for bupivacaine delivery and MSC function regulation. Drug Deliv Transl Res 2018; 8:226-238. [PMID: 29204926 PMCID: PMC6218803 DOI: 10.1007/s13346-017-0454-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cell (MSC) therapies have become potential treatment options for multiple ailments and traumatic injuries. In the clinical setting, MSC are likely to be co-administered with local anesthetics (LA) which have been shown to have dose- and potency-dependent detrimental effects on the viability and function of cells. We previously developed and characterized a sustained-release LA delivery formulation comprised of alginate-encapsulated liposomal bupivacaine. The current studies were designed to evaluate the effect of this formulation on the secretion of three key MSC regulatory molecules, interleukin 6 (IL-6), prostaglandin E2 (PGE2), and transforming growth factor-beta 1 (TGF-β1). MSCs were treated with several bupivacaine formulations-bolus, liposome, or alginate-liposome construct (engineered construct)-in the presence or absence of inflammatory stimulus to stimulate an injured tissue environment. Our results indicated that compared to bolus or liposomal bupivacaine, the engineered construct preserved or promoted MSC anti-inflammatory PGE2 secretion; however, the engineered construct did not increase TGF-β1 secretion. Bupivacaine release profile analyses indicated that mode of drug delivery controlled the LA concentration over time and pathway analysis identified several shared and cytokine-specific molecular mediators for IL-6, PGE2, and TGF-β1 which could explain differential MSC secretion responses in the presence of bupivacaine. Collectively, these studies support the potential utility of alginate-encapsulated LA constructs for anti-inflammatory cell therapy co-administration and indicate that mode of local anesthetic delivery can significantly alter MSC secretome function.
Collapse
Affiliation(s)
- Mollie S Davis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08805, USA
| | - Ileana Marrero-Berrios
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08805, USA
| | - Isabel Perez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08805, USA
| | - Timothy Maguire
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08805, USA
| | | | | | | | | | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08805, USA.
| | - Joel Yarmush
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, NY, USA
| |
Collapse
|
20
|
Green DW, Watson GS, Watson JA, Lee JM, Jung HS. Use of Tethered Hydrogel Microcoatings for Mesenchymal Stem Cell Equilibrium, Differentiation, and Self-Organization into Microtissues. ACTA ACUST UNITED AC 2017; 1:e1700116. [PMID: 32646160 DOI: 10.1002/adbi.201700116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/08/2017] [Indexed: 01/29/2023]
Abstract
Therapeutic adult mesenchymal stem cells (MSCs) lose multipotency and multilineage specialization in culture and after transplantation due to the absence of complex biological architecture. Here, it is shown that a transient ultrathin covering of permeable biomaterial can be differentially formulated to either preserve multipotency or induce multidifferentiation. Accordingly, populations of single, spherical MSCs in suspended media with high selectivity and specificity can be coated. Assembly of single, double, and triple hydrogel layers at MSC membranes is initiated by first attaching MSC-specific immunoglobulins onto CD90 or Stro-1 receptors and UEA-1 and soybean lectins. A secondary biotinylated immunoglobulin is targeted for avidin binding, which becomes an attractor for biotinylated alginate or hyaluronate, which are subsequently stiffened and gelled, in situ around the entire cell surface. Alginate microcoatings permeated with mobile BMP-2-induced osteospecialized tissue, vascular endothelial growth factor (VEGF) induced microcapillary formation, while microcoatings, with selected basement membrane proteins, preserve the multipotent phenotype of MSCs, for continuing rounds of culture and directed specialization. Furthermore, forced packing of microcoated MSC populations creates prototypical tissue compartments: the coating partially simulating the extracellular matrix structures. Remarkably, microcoated MSC clusters show a tremendous simulation of a common embryological tissue transformation into the epithelium. Thus, confinement of free morphology exerts another control on tissue specialization and formation.
Collapse
Affiliation(s)
- David W Green
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.,Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, SAR
| | - Gregory S Watson
- School of Science and Engineering, University of the Sunshine Coast, Hervey Bay, QLD, 4655, Australia
| | - Jolanta A Watson
- School of Science and Engineering, University of the Sunshine Coast, Hervey Bay, QLD, 4655, Australia
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.,Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, SAR
| |
Collapse
|
21
|
Lopez-Mendez TB, Santos-Vizcaino E, Blanco FJ, Pedraz JL, Hernandez RM, Orive G. Improved control over MSCs behavior within 3D matrices by using different cell loads in both in vitro and in vivo environments. Int J Pharm 2017; 533:62-72. [DOI: 10.1016/j.ijpharm.2017.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
|
22
|
Kim JH, Kim JY, Mun CH, Suh M, Lee JE. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats. Exp Neurobiol 2017; 26:278-286. [PMID: 29093636 PMCID: PMC5661060 DOI: 10.5607/en.2017.26.5.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 12/26/2022] Open
Abstract
Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.
Collapse
Affiliation(s)
- Jae Hwan Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.,Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Young Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon 16419, Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.,BK21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
23
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
24
|
Stucky EC, Erndt-Marino J, Schloss RS, Yarmush ML, Shreiber DI. Prostaglandin E 2 Produced by Alginate-Encapsulated Mesenchymal Stromal Cells Modulates the Astrocyte Inflammatory Response. NANO LIFE 2017; 7:1750005. [PMID: 29682085 PMCID: PMC5903452 DOI: 10.1142/s1793984417500052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astroglia are well known for their role in propagating secondary injury following brain trauma. Modulation of this injury cascade, including inflammation, is essential to repair and recovery. Mesenchymal stromal cells (MSCs) have been demonstrated as trophic mediators in several models of secondary CNS injury, however, there has been varied success with the use of direct implantation due to a failure to persist at the injury site. To achieve sustained therapeutic benefit, we have encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate neuro-inflammation. In this study, astroglial cultures were administered lipopolysaccharide (LPS) to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. Cultures were assayed for the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) produced by astroglia, MSC-produced prostaglandin E2, and expression of neurotrophin-associated genes. We found that encapsulated MSCs significantly reduced TNF-α produced by LPS-stimulated astrocytes, more effectively than monolayer MSCs, and this enhanced benefit commences earlier than that of monolayer MSCs. Furthermore, in support of previous findings, encapsulated MSCs constitutively produced high levels of PGE2, while monolayer MSCs required the presence of inflammatory stimuli to induce PGE2 production. The early, constitutive presence of PGE2 significantly reduced astrocyte-produced TNF-α, while delayed administration had no effect. Finally, MSC-produced PGE2 was not only capable of modulating inflammation, but appears to have an additional role in stimulating astrocyte neurotrophin production. Overall, these results support the enhanced benefit of encapsulated MSC treatment, both in modulating the inflammatory response and providing neuroprotection.
Collapse
Affiliation(s)
- Elizabeth C Stucky
- Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Joshua Erndt-Marino
- Department of Biomedical Engineering, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
25
|
Faulknor RA, Olekson MA, Ekwueme EC, Krzyszczyk P, Freeman JW, Berthiaume F. Hypoxia Impairs Mesenchymal Stromal Cell-Induced Macrophage M1 to M2 Transition. TECHNOLOGY 2017; 5:81-86. [PMID: 29552603 PMCID: PMC5854485 DOI: 10.1142/s2339547817500042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The transition of macrophages from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype is crucial for the progression of normal wound healing. Persistent M1 macrophages within the injury site may lead to an uncontrolled macrophage-mediated inflammatory response and ultimately a failure of the wound healing cascade, leading to chronic wounds. Mesenchymal stromal cells (MSCs) have been widely reported to promote M1 to M2 macrophage transition; however, it is unclear whether MSCs can drive this transition in the hypoxic environment typically observed in chronic wounds. Here we report on the effect of hypoxia (1% O2) on MSCs' ability to transition macrophages from the M1 to the M2 phenotype. While hypoxia had no effect on MSC secretion, it inhibited MSC-induced M1 to M2 macrophage transition, and suppressed macrophage expression and production of the anti-inflammatory mediator interleukin-10 (IL-10). These results suggest that hypoxic environments may impede the therapeutic effects of MSCs.
Collapse
Affiliation(s)
- Renea A. Faulknor
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Melissa A. Olekson
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Emmanuel C. Ekwueme
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Paulina Krzyszczyk
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Joseph W. Freeman
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
- Correspondence should be addressed to F.B. ()
| |
Collapse
|
26
|
Huang H, Yu Y, Hu Y, He X, Usta OB, Yarmush ML. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. LAB ON A CHIP 2017; 17:1913-1932. [PMID: 28509918 PMCID: PMC5548188 DOI: 10.1039/c7lc00262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel microcapsules provide miniaturized and biocompatible niches for three-dimensional (3D) in vitro cell culture. They can be easily generated by droplet-based microfluidics with tunable size, morphology, and biochemical properties. Therefore, microfluidic generation and manipulation of cell-laden microcapsules can be used for 3D cell culture to mimic the in vivo environment towards applications in tissue engineering and high throughput drug screening. In this review of recent advances mainly since 2010, we will first introduce general characteristics of droplet-based microfluidic devices for cell encapsulation with an emphasis on the fluid dynamics of droplet breakup and internal mixing as they directly influence microcapsule's size and structure. We will then discuss two on-chip manipulation strategies: sorting and extraction from oil into aqueous phase, which can be integrated into droplet-based microfluidics and significantly improve the qualities of cell-laden hydrogel microcapsules. Finally, we will review various applications of hydrogel microencapsulation for 3D in vitro culture on cell growth and proliferation, stem cell differentiation, tissue development, and co-culture of different types of cells.
Collapse
Affiliation(s)
- Haishui Huang
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yin Yu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Yong Hu
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University,
Columbus, USA
| | - O. Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
| | - Martin L. Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital,
Harvard Medical School and Shriners Hospitals for Children, Boston, Massachusetts
02114, United States
- Department of Biomedical Engineering, Rutgers University,
Piscataway, New Jersey 08854, United States
| |
Collapse
|
27
|
Menon R, Krzyszczyk P, Berthiaume F. PRO-RESOLUTION POTENCY OF RESOLVINS D1, D2 AND E1 ON NEUTROPHIL MIGRATION AND IN DERMAL WOUND HEALING. ACTA ACUST UNITED AC 2017; 7. [PMID: 29552232 DOI: 10.1142/s1793984417500027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An exuberant inflammatory response may exacerbate the primary tissue damage caused by injuries to the skin due to burns, surgery, excessive pressure, and other etiologies, thus increasing the time to heal. We hypothesized that application of factors that decrease inflammation would allow the skin to more quickly restore its barrier function, and promote the return to homeostasis. Resolvins are endogenous, pro-resolving lipid mediators derived from omega-3 fatty acids that serve to inhibit neutrophil migration and enhance macrophage phagocytosis, thus promoting the resolution of inflammation and the beginning of the proliferative phase of wound healing. Resolvins are derived either from docosahexaenoic (D-series) or eicosapentaenoic (E-series) acid. Herein, we compare the effects of resolvins D1 (RvD1), D2 (RvD2) and E1 (RvE1) on their abilities to inhibit neutrophil migration in vitro and to promote wound healing in vivo. In Transwell experiments, all resolvins inhibited neutrophil migration, with RvE1 being the most effective at a 2000nM concentration. In an in vivo murine excisional wound (1cm × 1cm) healing model, topically applied resolvins accelerated wound closure. RvE1-treated wounds healed by 19.4 ± 1.5 days post-wounding, which was significantly shorter than the RvD2-treated and RvD1-treated groups (p<0.05), which closed by an average of 22.8 ± 1.8 and 24.4 ± 2.2 days, respectively. Furthermore, all resolvin-treated groups healed faster than vehicle controls (p<0.05), which closed at 28.6 ± 1.5 days. There was a strong linear correlation (R2=0.9384) between each resolvin's potency in inhibiting neutrophil migration in vitro versus accelerating wound healing in vivo. Furthermore, upon histological analysis, the RvE1-treated group exhibited more mature collagen organization and reepithelialization.
Collapse
Affiliation(s)
- Riyesh Menon
- Biomedical Engineering, Rutgers University, 599 Taylor Road Piscataway, NJ 08854, United States
| | - Paulina Krzyszczyk
- Biomedical Engineering, Rutgers University, 599 Taylor Road Piscataway, NJ 08854, United States
| | - François Berthiaume
- Biomedical Engineering, Rutgers University, 599 Taylor Road Piscataway, NJ 08854, United States
| |
Collapse
|
28
|
de la Portilla F, Pereira S, Molero M, De Marco F, Perez-Puyana V, Guerrero A, Romero A. Microstructural, mechanical, and histological evaluation of modified alginate-based scaffolds. J Biomed Mater Res A 2016; 104:3107-3114. [PMID: 27506966 DOI: 10.1002/jbm.a.35857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022]
Abstract
Scaffolds are three-dimensional structures used for tissue regeneration being the base in tissue engineering. These scaffolds are obtained from natural and/or synthetic polymers and they should satisfy some specific requirements such as biocompatibility, suitable mechanical, and microstructural properties to favor cellular adhesion and neovascularization. This work shows a preclinic study about the production of low and medium molecular weight alginate through the use of calcium salts (calcium glutamate). The results showed prove that better structures, distribution, and pore sizes as well as better mechanical properties correspond to medium molecular weight alginate and higher calcium salts concentration. This type of scaffold, after muscular cells cultivation, has been proved as an excellent material for muscle growth. The histopathological analysis shows a low inflammatory response, without a foreign body reaction, suitable neovascularization and good fibroblasts incorporation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3107-3114, 2016.
Collapse
Affiliation(s)
- F de la Portilla
- Department of General and Digestive Surgery, Unit Colorrectal Surgery, "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD o Ciberehd), Instituto de Salud Carlos III, Spain
| | - S Pereira
- Institute of Biomedicine of Seville (IBiS), "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - M Molero
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - F De Marco
- Institute of Biomedicine of Seville (IBiS), "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - V Perez-Puyana
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - A Guerrero
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - A Romero
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, Sevilla, Spain.
| |
Collapse
|
29
|
Maguire T, Davis M, Marrero-Berrios I, Zhu C, Gaughan C, Weinberg J, Manchikalapati D, SchianodiCola J, Kamath H, Schloss R, Yarmush J. Control Release Anesthetics to Enable an Integrated Anesthetic-mesenchymal Stromal Cell Therapeutic. INTERNATIONAL JOURNAL OF ANESTHESIOLOGY & PAIN MEDICINE 2016; 2:3. [PMID: 31106286 PMCID: PMC6519947 DOI: 10.21767/2471-982x.100012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
While general anesthetics control pain via consciousness regulation, local anesthetics (LAs) act by decreasing sensation in the localized area of administration by blocking nerve transmission to pain centers. Perioperative intra-articular administration of LAs is a commonly employed practice in orthopedic procedures to minimize patient surgical and post-surgical pain and discomfort. LAs are also co-administered with cellular mesenchymal stromal cell (MSC) therapies for a variety of tissue regenerative and inflammatory applications including osteoarthritis (OA) treatment; however, LAs can affect MSC viability and function. Therefore, finding an improved method to co-administer LAs with cells has become critically important. We have developed a sustained release LA delivery model that could enable the co-administration of LAs and MSCs. Encapsulation of liposomes within an alginate matrix leads to sustained release of bupivacaine as compared to bupivacaine-containing liposomes alone. Furthermore, drug release is maintained for a minimum of 4 days and the alginate-liposome capsules mitigated the adverse effects of bupivacaine on MSC viability.
Collapse
Affiliation(s)
- T Maguire
- Rutgers Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- BeauRidge Pharmaceuticals, LLC, New York, USA
| | - M Davis
- Rutgers Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - I Marrero-Berrios
- Rutgers Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - C Zhu
- Rutgers Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - C Gaughan
- BeauRidge Pharmaceuticals, LLC, New York, USA
| | - J Weinberg
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York, USA
| | - D Manchikalapati
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York, USA
| | - J SchianodiCola
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York, USA
| | - H Kamath
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York, USA
| | - R Schloss
- Rutgers Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - J Yarmush
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York, USA
| |
Collapse
|
30
|
Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response. Mediators Inflamm 2016; 2016:3735452. [PMID: 27546994 PMCID: PMC4978851 DOI: 10.1155/2016/3735452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms.
Collapse
|
31
|
Follin B, Juhl M, Cohen S, Pedersen AE, Kastrup J, Ekblond A. Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three-Dimensional Culture. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:322-9. [PMID: 26861485 PMCID: PMC4964752 DOI: 10.1089/ten.teb.2015.0532] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have been investigated extensively through the past years, proving to have great clinical therapeutic potential. In vitro cultivation of MSCs in three-dimensional (3D) culture systems, such as scaffolds, hydrogels, or spheroids, have recently gained attention for tissue engineering applications. Studies on MSC spheroids demonstrated that such cultivation increased the paracrine immunomodulatory potential of the MSCs, accompanied by phenotypic alterations. In this review, we gather results from recent experimental studies on the immunomodulatory abilities of MSCs when cultured as spheroids or in biomaterials like scaffolds or hydrogels compared to regular two-dimensional (2D) culture and show that alterations occurring to MSCs in spheroids also occur in MSCs in biomaterials. We provide a brief description of known mechanisms of MSC immunomodulatory capacity and how they are altered in the two 3D culture systems, together with phenotypic cellular changes. Based on the present knowledge, we highlight vital areas in need of further investigation. The impact of 3D environments on immunomodulation has great potential for tissue engineering and cellular therapy, and this is the first review to gather this knowledge with a comparison across different 3D environments.
Collapse
Affiliation(s)
- Bjarke Follin
- 1 Cardiology Stem Cell Center, The Heart Center, Rigshospitalet, Copenhagen University Hospital , Copenhagen, Denmark
| | - Morten Juhl
- 1 Cardiology Stem Cell Center, The Heart Center, Rigshospitalet, Copenhagen University Hospital , Copenhagen, Denmark
| | - Smadar Cohen
- 2 Regenerative Medicine and Stem Cell Research Center, the Avram and Stella Goldstein-Goren Department of Biotechnology and Engineering, Ben-Gurion University of the Negev , Beer Sheva, Israel
| | - Anders Elm Pedersen
- 3 Department of Immunology and Microbiology, University of Copenhagen , Copenhagen, Denmark
| | - Jens Kastrup
- 1 Cardiology Stem Cell Center, The Heart Center, Rigshospitalet, Copenhagen University Hospital , Copenhagen, Denmark
| | - Annette Ekblond
- 1 Cardiology Stem Cell Center, The Heart Center, Rigshospitalet, Copenhagen University Hospital , Copenhagen, Denmark
| |
Collapse
|
32
|
The effect of local anesthetic on pro-inflammatory macrophage modulation by mesenchymal stromal cells. Int Immunopharmacol 2016; 33:48-54. [PMID: 26854576 DOI: 10.1016/j.intimp.2016.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Administering local anesthetics (LAs) peri- and post-operatively aims to prevent or mitigate pain in surgical procedures and after tissue injury in cases of osteoarthritis (OA) and other degenerative diseases. Innovative tissue protective and reparative therapeutic interventions such as mesenchymal stromal cells (MSCs) are likely to be exposed to co-administered drugs such as LAs. Therefore, it is important to determine how this exposure affects the therapeutic functions of MSCs and other cells in their target microenvironment. In these studies, we measured the effect of LAs, lidocaine and bupivacaine, on macrophage viability and pro-inflammatory secretion. We also examined their effect on modulation of the macrophage pro-inflammatory phenotype in an in vitro co-culture system with MSCs, by quantifying macrophage tumor necrosis factor (TNF)-α secretion and MSC prostaglandin E2 (PGE2) production. Our studies indicate that both LAs directly attenuated macrophage TNF-α secretion, without significantly affecting viability, in a concentration- and potency-dependent manner. LA-mediated attenuation of macrophage TNF-α was sustained in co-culture with MSCs, but MSCs did not further enhance this anti-inflammatory effect. Concentration- and potency-dependent reductions in macrophage TNF-α were concurrent with decreased PGE2 levels in the co-cultures further indicating MSC-independent macrophage attenuation. MSC functional recovery from LA exposure was assessed by pre-treating MSCs with LAs prior to co-culture with macrophages. Both MSC attenuation of TNF-α and PGE2 secretion were impaired by pre-exposure to the more potent bupivacaine and high dose of lidocaine in a concentration-dependent manner. Therefore, LAs can affect anti-inflammatory function by both directly attenuating macrophage inflammation and MSC secretion and possibly by altering the local microenvironment which can secondarily reduce MSC function. Furthermore, the LA effect on MSC function may persist even after LA removal.
Collapse
|
33
|
Kumar S, Babiarz J, Basak S, Kim JH, Barminko J, Gray A, Mendapara P, Schloss R, Yarmush ML, Grumet M. Sizes and Sufficient Quantities of MSC Microspheres for Intrathecal Injection to Modulate Inflammation in Spinal Cord Injury. ACTA ACUST UNITED AC 2016; 5. [PMID: 29545904 DOI: 10.1142/s179398441550004x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microencapsulation of mesenchymal stem cells (MSC) in alginate facilitates cell delivery, localization and survival, and modulates inflammation in vivo. However, we found that delivery of the widely used ~0.5 mm diameter encapsulated MSC (eMSC) by intrathecal injection into spinal cord injury (SCI) rats was highly variable. Injections of smaller (~0.2 mm) diameter eMSC into the lumbar spine were much more reproducible and they increased the anti-inflammatory macrophage response around the SCI site. We now report that injection of small eMSC >2 cm caudal from the rat SCI improved locomotion and myelin preservation 8 weeks after rat SCI versus control injections. Because preparation of sufficient quantities of small eMSC for larger studies was not feasible and injection of the large eMSC is problematic, we have developed a procedure to prepare medium-sized eMSC (~0.35 mm diameter) that can be delivered more reproducibly into the lumbar rat spine. The number of MSC incorporated/capsule in the medium sized capsules was ~5-fold greater than that in small capsules and the total yield of eMSC was ~20-fold higher than that for the small capsules. Assays with all three sizes of eMSC capsules showed that they inhibited TNF-α secretion from activated macrophages in co-cultures, suggesting no major difference in their anti-inflammatory activity in vitro. The in vivo activity of the medium-sized eMSC was tested after injecting them into the lumbar spine 1 day after SCI. Histological analyses 1 week later showed that eMSC reduced levels of activated macrophages measured by IB4 staining and increased white matter sparing in similar regions adjacent to the SCI site. The combined results indicate that ~0.35 mm diameter eMSC reduced macrophage inflammation in regions where white matter was preserved during critical early phases after SCI. These techniques enable preparation of eMSC in sufficient quantities to perform pre-clinical SCI studies with much larger numbers of subjects that will provide functional analyses of several critical parameters in rodent models for CNS inflammatory injury.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Joanne Babiarz
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Sayantani Basak
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Jae Hwan Kim
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA. Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jeffrey Barminko
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA. The Mount Sinai Hospital, One Gustave L. Levy Place New York, NY 10029
| | - Andrea Gray
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Parry Mendapara
- Department of Cell Biology & Neuroscience, Rutgers University, 604 Allison Rd., Piscataway, NJ 08854 USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Martin Grumet
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center. Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ, 08854 USA
| |
Collapse
|
34
|
Montanucci P, Alunno A, Basta G, Bistoni O, Pescara T, Caterbi S, Pennoni I, Bini V, Gerli R, Calafiore R. Restoration of t cell substes of patients with type 1 diabetes mellitus by microencapsulated human umbilical cord Wharton jelly-derived mesenchymal stem cells: An in vitro study. Clin Immunol 2015; 163:34-41. [PMID: 26680606 DOI: 10.1016/j.clim.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/04/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022]
Abstract
Human umbilical cord Wharton jelly-derived mesenchymal stem cells (hUCMS) might apply to treating chronic autoimmune disorders, as already shown for Sjögren's syndrome, including type 1 diabetes mellitus (T1D). Since naked hUCMS grafts encountered restraints, we enveloped hUCMS, within immunoisolatory microcapsules (CpS-hUCMS), made of our endotoxin-free, clinical grade alginate. We then examined the vitro effects of interferon (IFN)-γ-pretreated CpS-hUCMS on Th17 and Treg of T1D patients (n=15) and healthy controls (n=10). Peripheral blood mononuclear cells (PBMCs) were co-cultured with PBMC/CpS-hUCMS: lymphocyte proliferation was assessed by carboxyfluorescein succinimidyl esther (CFSE) dilution assay, and phenotypic analysis of regulatory and effector Tc was also performed. Cytokine expression was performed by bead array and qPCR on IFN-γ-pretreated hUCMS before PBMCs co-culture. CpS-hUCMS restored a correct Treg/Th17 ratio, relevant to the T1D disease process. In summary, we have preliminarily developed a new biohybrid system, associated with immunoregulatory properties, that is ready for in vivo application.
Collapse
Affiliation(s)
- Pia Montanucci
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Alessia Alunno
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Giuseppe Basta
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Onelia Bistoni
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Teresa Pescara
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Sara Caterbi
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Ilaria Pennoni
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Vittorio Bini
- Department of Medicine, Section of Internal Medicine and Endocrine and Metabolic Sciences, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Roberto Gerli
- Department of Medicine, Rheumatology Unit, School of Medicine, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| | - Riccardo Calafiore
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy.
| |
Collapse
|
35
|
Stucky EC, Schloss RS, Yarmush ML, Shreiber DI. Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response. Cytotherapy 2015; 17:1353-64. [PMID: 26210574 PMCID: PMC5928499 DOI: 10.1016/j.jcyt.2015.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Modulation of inflammation after brain trauma is a key therapeutic goal aimed at limiting the consequences of the subsequent injury cascade. Mesenchymal stromal cells (MSCs) have been demonstrated to dynamically regulate the inflammatory environment in several tissue systems, including the central nervous system. There has been limited success, however, with the use of direct implantation of cells in the brain caused by low viability and engraftment at the injury site. To circumvent this, we encapsulated MSCs in alginate microspheres and evaluated the ability of these encapsulated MSCs to attenuate inflammation in rat organotypic hippocampal slice cultures (OHSC). METHODS OHSC were administered lipopolysaccharide to induce inflammation and immediately co-cultured with encapsulated or monolayer human MSCs. After 24 h, culture media was assayed for the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) produced by OHSC, as well as MSC-produced trophic mediators. RESULTS Encapsulated MSCs reduced TNF-α more effectively than did monolayer MSCs. Additionally, there was a strong correlation between increased prostaglandin E2 (PGE2) and reduction of TNF-α. In contrast to monolayer MSCs, inflammatory signals were not required to stimulate PGE2 production by encapsulated MSCs. Further encapsulation-stimulated changes were revealed in a multiplex panel analyzing 27 MSC-produced cytokines and growth factors, from which additional mediators with strong correlations to TNF-α levels were identified. CONCLUSIONS These results suggest that alginate encapsulation of MSCs may not only provide an improved delivery vehicle for transplantation but may also enhance MSC therapeutic benefit for treating neuro-inflammation.
Collapse
Affiliation(s)
- Elizabeth C Stucky
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Martin L Yarmush
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
36
|
Ekwueme EC, Shah JV, Mohiuddin M, Ghebes CA, Crispim JF, Saris DBF, Fernandes HAM, Freeman JW. Cross-Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro. J Cell Biochem 2015; 117:684-93. [PMID: 26308651 DOI: 10.1002/jcb.25353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/24/2015] [Indexed: 12/26/2022]
Abstract
Tendon and ligament (T/L) pathologies account for a significant portion of musculoskeletal injuries and disorders. Tissue engineering has emerged as a promising solution in the regeneration of both tissues. Specifically, the use of multipotent human mesenchymal stromal cells (hMSC) has shown great promise to serve as both a suitable cell source for tenogenic regeneration and a source of trophic factors to induce tenogenesis. Using four donor sets, we investigated the bidirectional paracrine tenogenic response between human hamstring tenocytes (hHT) and bone marrow-derived hMSC. Cell metabolic assays showed that only one hHT donor experienced sustained notable increases in cell metabolic activity during co-culture. Histological staining confirmed that co-culture induced elevated collagen protein levels in both cell types at varying time-points in two of four donor sets assessed. Gene expression analysis using qPCR showed the varied up-regulation of anabolic and catabolic markers involved in extracellular matrix maintenance for hMSC and hHT. Furthermore, analysis of hMSC/hHT co-culture secretome using a reporter cell line for TGF-β, a potent inducer of tenogenesis, revealed a trend of higher TGF-β bioactivity in hMSC secretome compared to hHT. Finally, hHT cytoskeletal immunostaining confirmed that both cell types released soluble factors capable of inducing favorable tenogenic morphology, comparable to control levels of soluble TGF-β1. These results suggest a potential for TGF-β-mediated signaling mechanism that is involved during the paracrine interplay between the two cell types that is reminiscent of T/L matrix remodeling/turnover. These findings have significant implications in the clinical use of hMSC for common T/L pathologies.
Collapse
Affiliation(s)
- Emmanuel C Ekwueme
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey.,MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - Jay V Shah
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mahir Mohiuddin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Corina A Ghebes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - João F Crispim
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands
| | - Daniël B F Saris
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo A M Fernandes
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Tissue Regeneration, University of Twente, Enschede, The Netherlands.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,UC-Biotech-Cantanhede, Cantanhede, Portugal
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
37
|
Molina ER, Smith BT, Shah SR, Shin H, Mikos AG. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering. J Control Release 2015; 219:107-118. [PMID: 26307349 DOI: 10.1016/j.jconrel.2015.08.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023]
Abstract
The immune system plays a crucial role in the success of tissue engineering strategies. Failure to consider the interactions between implantable scaffolds, usually containing cells and/or bioactive molecules, and the immune system can result in rejection of the implant and devastating clinical consequences. However, recent research into mesenchymal stem cells, which are commonly used in many tissue engineering applications, indicates that they may play a beneficial role modulating the immune system. Likewise, direct delivery of bioactive molecules involved in the inflammatory process can promote the success of tissue engineering constructs. In this article, we will review the various mechanisms in which modulation of the immune system is achieved through delivered bioactive molecules and cells and contextualize this information for future strategies in tissue engineering.
Collapse
Affiliation(s)
- Eric R Molina
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Heungsoo Shin
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Hanyang University, Seoul 133-791, South Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 133-791, South Korea.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Ghodbane M, Stucky EC, Maguire TJ, Schloss RS, Shreiber DI, Zahn JD, Yarmush ML. Development and validation of a microfluidic immunoassay capable of multiplexing parallel samples in microliter volumes. LAB ON A CHIP 2015; 15:3211-21. [PMID: 26130452 PMCID: PMC4507421 DOI: 10.1039/c5lc00398a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Immunoassays are widely utilized due to their ability to quantify a vast assortment of biomolecules relevant to biological research and clinical diagnostics. Recently, immunoassay capabilities have been improved by the development of multiplex assays that simultaneously measure multiple analytes in a single sample. However, these assays are hindered by high costs of reagents and relatively large sample requirements. For example, in vitro screening systems currently dedicate individual wells to each time point of interest and this limitation is amplified in screening studies when the investigation of many experimental conditions is necessary; resulting in large volumes for analysis, a correspondingly high cost and a limited temporal experimental design. Microfluidics based immunoassays have been developed in order to overcome these drawbacks. Together, previous studies have demonstrated on-chip assays with either a large dynamic range, high performance sensitivity, and/or the ability to process samples in parallel on a single chip. In this report, we develop a multiplex immunoassay possessing all of these parallel characteristics using commercially available reagents, which allows the analytes of interest to be easily changed. The device presented can measure 6 proteins in 32 samples simultaneously using only 4.2 μL of sample volume. High quality standard curves are generated for all 6 analytes included in the analysis, and spiked samples are quantified throughout the working range of the assay. In addition, we demonstrate a strong correlation (R(2) = 0.8999) between in vitro supernatant measurements using our device and those obtained from a bench-top multiplex immunoassay. Finally, we describe cytokine secretion in an in vitro inflammatory hippocampus culture system, establishing proof-of-concept of the ability to use this platform as an in vitro screening tool. The low-volume, multiplexing abilities of the microdevice described in this report could be broadly applied to numerous situations where sample volumes and costs are limiting.
Collapse
Affiliation(s)
- Mehdi Ghodbane
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells Int 2015; 2015:989473. [PMID: 26257791 PMCID: PMC4518189 DOI: 10.1155/2015/989473] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models.
Collapse
|
40
|
Gray A, Marrero-Berrios I, Ghodbane M, Maguire T, Weinberg J, Manchikalapati D, SchianodiCola J, Schloss RS, Yarmush J. Effect of Local Anesthetics on Human Mesenchymal Stromal Cell Secretion. ACTA ACUST UNITED AC 2015; 5:1550001-1550014. [PMID: 26539251 DOI: 10.1142/s1793984415500014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Anti-fibrotic and tissue regenerative mesenchymal stromal cell (MSC) properties are largely mediated by secreted cytokines and growth factors. MSCs are implanted to augment joint cartilage replacement and to treat diabetic ulcers and burn injuries simultaneously with local anesthetics, which reduce pain. However, the effect of anesthetics on therapeutic human MSC secretory function has not been evaluated. In order to assess the effect of local anesthetics on the MSC secretome, a panel of four anesthetics with different potencies - lidocaine, procaine, ropivacaine and bupivacaine - was evaluated. Since injured tissues secrete inflammatory cytokines, the effects of anesthetics on MSCs stimulated with tumor necrosis factor (TNF)-α and interferon (IFN)-γ were also measured. Dose dependent and anesthesia specific effects on cell viability, post exposure proliferation and secretory function were quantified using alamar blue reduction and immunoassays, respectively. Computational pathway analysis was performed to identify upstream regulators and molecular pathways likely associated with the effects of these chemicals on the MSC secretome. Our results indicated while neither lidocaine nor procaine greatly reduced unstimulated cell viability, ropivacaine and bupivacaine induced dose dependent viability decreases. This pattern was exaggerated in the simulated inflammatory environment. The reversibility of these effects after withdrawal of the anesthetics was attenuated for TNF-α/IFN-γ-stimulated MSCs exposed to ropivacaine and bupivacaine. In addition, secretome analysis indicated that constitutive secretion changes were clearly affected by both anesthetic alone and anesthetic plus TNFα/IFNγ cell stimulation, but the secretory pattern was drug specific and did not necessarily coincide with viability changes. Pathway analysis identified different intracellular regulators for stimulated and unstimulated MSCs. Within these groups, ropivacaine and bupivacaine appeared to act on MSCs similarly via the same regulatory mechanisms. Given the variable effect of local anesthetics on MSC viability and function, these studies underscore the need to evaluate MSC in the presence of medications, such as anesthetics, that are likely to accompany cell implantation.
Collapse
Affiliation(s)
- Andrea Gray
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Ileana Marrero-Berrios
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Mehdi Ghodbane
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Timothy Maguire
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Jonathan Weinberg
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York 11215, USA
| | | | - Joseph SchianodiCola
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York 11215, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08805, USA
| | - Joel Yarmush
- Department of Anesthesiology, New York Methodist Hospital, Brooklyn, New York 11215, USA
| |
Collapse
|
41
|
Gray A, Maguire T, Schloss R, Yarmush ML. Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Prog 2015; 31:1058-70. [PMID: 25958832 DOI: 10.1002/btpr.2103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC-based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic-polycytidylic acid [poly(I:C)], interleukin [IL]-6, IL-1β, interferon [IFN]-β, and IFN-γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)-α, a pro-inflammatory molecule, by activated-MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate-encapsulated MSCs (eMSCs). The screen revealed that LPS and IL-1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF-α. Activation by LPS and IL-1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF-α. MLR and covariate analysis revealed that macrophage TNF-α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC-biomaterial functions prior to transplantation to improve MSC therapies.
Collapse
Affiliation(s)
- Andrea Gray
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Timothy Maguire
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Rene Schloss
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Martin L Yarmush
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| |
Collapse
|
42
|
Bussche L, Harman RM, Syracuse BA, Plante EL, Lu YC, Curtis TM, Ma M, Van de Walle GR. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Res Ther 2015; 6:66. [PMID: 25889766 PMCID: PMC4413990 DOI: 10.1186/s13287-015-0037-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The prevalence of impaired cutaneous wound healing is high and treatment is difficult and often ineffective, leading to negative social and economic impacts for our society. Innovative treatments to improve cutaneous wound healing by promoting complete tissue regeneration are therefore urgently needed. Mesenchymal stromal cells (MSCs) have been reported to provide paracrine signals that promote wound healing, but (i) how they exert their effects on target cells is unclear and (ii) a suitable delivery system to supply these MSC-derived secreted factors in a controlled and safe way is unavailable. The present study was designed to provide answers to these questions by using the horse as a translational model. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC-derived conditioned medium (CM), containing all factors secreted by MSCs, on equine dermal fibroblasts, a cell type critical for successful wound healing, and (ii) explore the potential of microencapsulated equine MSCs to deliver CM to wounded cells in vitro. METHODS MSCs were isolated from the peripheral blood of healthy horses. Equine dermal fibroblasts from the NBL-6 (horse dermal fibroblast cell) line were wounded in vitro, and cell migration and expression levels of genes involved in wound healing were evaluated after treatment with MSC-CM or NBL-6-CM. These assays were repeated by using the CM collected from MSCs encapsulated in core-shell hydrogel microcapsules. RESULTS Our salient findings were that equine MSC-derived CM stimulated the migration of equine dermal fibroblasts and increased their expression level of genes that positively contribute to wound healing. In addition, we found that equine MSCs packaged in core-shell hydrogel microcapsules had similar effects on equine dermal fibroblast migration and gene expression, indicating that microencapsulation of MSCs does not interfere with the release of bioactive factors. CONCLUSIONS Our results demonstrate that the use of CM from MSCs might be a promising new therapy for impaired cutaneous wounds and that encapsulation may be a suitable way to effectively deliver CM to wounded cells in vivo.
Collapse
Affiliation(s)
- Leen Bussche
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - Bethany A Syracuse
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| | - Eric L Plante
- Department of Biological Sciences, State University of New York at Cortland, 21 Graham Avenue, Cortland, NY, 13045, USA.
| | - Yen-Chun Lu
- Department of Biological and Environmental Engineering, Cornell University, Wing Road, Ithaca, NY, 14850, USA.
| | - Theresa M Curtis
- Department of Biological Sciences, State University of New York at Cortland, 21 Graham Avenue, Cortland, NY, 13045, USA.
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Wing Road, Ithaca, NY, 14850, USA.
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
| |
Collapse
|
43
|
Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts. Biochem Biophys Res Commun 2015; 458:8-13. [DOI: 10.1016/j.bbrc.2015.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 01/22/2023]
|
44
|
Ricks CB, Shin SS, Becker C, Grandhi R. Extracellular matrices, artificial neural scaffolds and the promise of neural regeneration. Neural Regen Res 2014; 9:1573-7. [PMID: 25368641 PMCID: PMC4211196 DOI: 10.4103/1673-5374.141778] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 01/08/2023] Open
Abstract
Over last 20 years, extracellular matrices have been shown to be useful in promoting tissue regeneration. Recently, they have been used and have had success in achieving neurogenesis. Recent developments in extracellular matrix design have allowed their successful in vivo incorporation to engender an environment favorable for neural regeneration in animal models. Promising treatments under investigation include manipulation of the intrinsic extracellular matrix and incorporation of engineered naometer-sized scaffolds through which inhibition of molecules serving as barriers to neuroregeneration and delivery of neurotrophic factors and/or cells for successful tissue regeneration can be achieved. Further understanding of the changes incurred within the extracellular matrix following central nervous system injury will undoubtedly help design a clinically efficacious extracellular matrix scaffold that can mitigate or reverse neural degeneration in the clinical setting.
Collapse
Affiliation(s)
- Christian B Ricks
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samuel S Shin
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Ramesh Grandhi
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 2014; 10:1646-62. [PMID: 24334143 DOI: 10.1016/j.actbio.2013.12.006] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022]
Abstract
Alginate hydrogels are extremely versatile and adaptable biomaterials, with great potential for use in biomedical applications. Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration. A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have been developed recently, which further allow their tailoring to the desired application. Additionally, their potential use as injectable materials offers several advantages over preformed scaffold-based approaches, namely: easy incorporation of therapeutic agents, such as cells, under mild conditions; minimally invasive local delivery; and high contourability, which is essential for filling in irregular defects. Alginate hydrogels have already been explored as cell delivery systems to enhance regeneration in different tissues and organs. Here, the in vitro and in vivo potential of injectable alginate hydrogels to deliver cells in a targeted fashion is reviewed. In each example, the selected crosslinking approach, the cell type, the target tissue and the main findings of the study are highlighted.
Collapse
Affiliation(s)
- Sílvia J Bidarra
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| | - Cristina C Barrias
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| | - Pedro L Granja
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
46
|
Golberg A. ANALYTICAL MODEL OF LOCAL DISTRIBUTION OF CHEMICALS IN TISSUES WITH FIRST-ORDER-RATE METABOLISM KINETICS. CHEM ENG COMMUN 2014. [DOI: 10.1080/00986445.2012.762628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Gattás-Asfura K, Valdes M, Celik E, Stabler C. Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsulesto impart stability and permselectivity. J Mater Chem B 2014; 2:8208-8219. [PMID: 25478165 DOI: 10.1039/c4tb01241k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The microencapsulation of cells has shown promise as a therapeutic vehicle for the treatment of a wide variety of diseases. While alginate microcapsules provide an ideal cell encapsulation material, polycations coatings are commonly employed to enhance stability and impart permselectivity. In this study, functionalized hyperbranched alginate and dendrimer polymers were used to generate discreet nanoscale coatings onto alginate microbeads via covalent layer-by-layer assembly. The bioorthogonal Staudinger ligation scheme was used to chemoselectively crosslink azide functionalized hyperbranched alginate (alginate-hN3) to methyl-2-diphenylphosphino-terephthalate (MDT) linked PAMAM dendrimer (PAMAM-MDT). Covalent layer-by-layer deposition of PAMAM-MDT/alginate-hN3 coatings onto alginate microbeads resulted in highly stable coatings, even after the inner alginate gel was liquefied to form microcapsules. The permselectivity of the coated microcapsules could be manipulated via the charge density of the PAMAM, the number of layers deposited, and the length of the functional arms. The cytocompatibility of the resulting PAMAM-MDT/alginate-hN3 coating was evaluated using a beta cell line, with no significant detrimental response observed. The biocompatibility of the coatings in vivo was also found comparable to uncoated alginate beads. The remarkable stability and versatile nature of these coatings provides an appealing option for bioencapsulation and the release of therapeutic agents.
Collapse
Affiliation(s)
- Km Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA
| | - M Valdes
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA ; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - E Celik
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Cl Stabler
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA ; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 USA ; Department of Surgery and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
48
|
Mokarram N, Bellamkonda RV. A perspective on immunomodulation and tissue repair. Ann Biomed Eng 2013; 42:338-51. [PMID: 24297492 DOI: 10.1007/s10439-013-0941-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/12/2013] [Indexed: 12/14/2022]
Abstract
An immune response involves the action of all types of macrophages, classically activated subtype (M1) in the early inflammatory phase and regulatory and wound-healing subtypes (M2) in the resolution phase. The remarkable plasticity of macrophages makes them an interesting target in the context of immunomodulation. Here, we reviewed the current state of understanding regarding the role that different phenotypes of macrophages and monocytes play following injury and during the course of remodeling in different tissue types. Moreover, we explored recent designs of macrophage modulatory biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Nassir Mokarram
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
49
|
Dollé JP, Barminko J, Veruva S, Moure C, Schloss R, Yarmush ML. REVERSAL OF FIBRONECTIN-INDUCED HIPPOCAMPAL DEGENERATION WITH ENCAPSULATED MESENCHYMAL STROMAL CELLS. NANO LIFE 2013; 3:1350004. [PMID: 29725486 PMCID: PMC5929141 DOI: 10.1142/s1793984413500049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stromal cells (MSC) can promote tissue protection following injury, in part by modulating inflammatory cell responses. The aim of this study was to investigate the potential tissue protective properties of encapsulated MSCs (eMSC) in an organotypic injury model induced by fibronectin culture. MSC were encapsulated in alginate beads containing a network of nanopores, which segregate the cells from the extracapsular milieu, while still permitting diffusion into and out of the capsule. An increase in blood brain barrier permeability during pathological conditions permits the influx of blood plasma constituents that can be quite harmful to surrounding tissues. In particular, increased concentrations of fibronectin have been shown in a number of diseases and CNS traumas, co-localizing in areas of activated microglia. We observed over a 14-day period, a consistent increase in OHC degradation in the presence of fibronectin measured by a significant decrease in slice area, the breakdown in OHC pyramidal layers, and consistent cell death over the culture period. Microglial ionized calcium-binding adapter molecule 1 (IBA-1) expression remained elevated throughout the culture period with the majority found within the pyramidal layers. When eMSC were added to the cultures, a significant decrease in OHC degradation was observed as reflected by a reduction in OHC area shrinkage and in the amount of cell death. In the presence of eMSC, pyramidal layer structure was maintained and axonal extension from the periphery of the OHCs was observed. Therefore, MSC, delivered in a nanoporous alginate matrix, can modulate responses to injury by reversing fibronectin-induced OHC degradation.
Collapse
Affiliation(s)
- Jean-Pierre Dollé
- Department of Biomedical Engineering Rutgers, The State University of New Jersey 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Jeffrey Barminko
- Department of Biomedical Engineering Rutgers, The State University of New Jersey 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Sai Veruva
- Department of Biomedical Engineering Rutgers, The State University of New Jersey 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Casey Moure
- Department of Biomedical Engineering Rutgers, The State University of New Jersey 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering Rutgers, The State University of New Jersey 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering Rutgers, The State University of New Jersey 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
50
|
Alternatively Activated Macrophages in Spinal Cord Injury and Remission: Another Mechanism for Repair? Mol Neurobiol 2013; 47:1011-9. [DOI: 10.1007/s12035-013-8398-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
|