1
|
Hokello J, Sharma AL, Tyagi M. An Update on the HIV DNA Vaccine Strategy. Vaccines (Basel) 2021; 9:vaccines9060605. [PMID: 34198789 PMCID: PMC8226902 DOI: 10.3390/vaccines9060605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
In 2020, the global prevalence of human immunodeficiency virus (HIV) infection was estimated to be 38 million, and a total of 690,000 people died from acquired immunodeficiency syndrome (AIDS)–related complications. Notably, around 12.6 million people living with HIIV/AIDS did not have access to life-saving treatment. The advent of the highly active antiretroviral therapy (HAART) in the mid-1990s remarkably enhanced the life expectancy of people living with HIV/AIDS as a result of improved immune functions. However, HAART has several drawbacks, especially when it is not used properly, including a high risk for the development of drug resistance, as well as undesirable side effects such as lipodystrophy and endocrine dysfunctions, which result in HAART intolerability. HAART is also not curative. Furthermore, new HIV infections continue to occur globally at a high rate, with an estimated 1.7 million new infections occurring in 2018 alone. Therefore, there is still an urgent need for an affordable, effective, and readily available preventive vaccine against HIV/AIDS. Despite this urgent need, however, progress toward an effective HIV vaccine has been modest over the last four decades. Reasons for this slow progress are mainly associated with the unique aspects of HIV itself and its ability to rapidly mutate, targeting immune cells and escape host immune responses. Several approaches to an HIV vaccine have been undertaken. However, this review will mainly discuss progress made, including the pre-clinical and clinical trials involving vector-based HIV DNA vaccines and the use of integrating lentiviral vectors in HIV vaccine development. We concluded by recommending particularly the use of integrase-defective lentiviral vectors, owing to their safety profiles, as one of the promising vectors in HIV DNA vaccine strategies both for prophylactic and therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University-Western Campus, P.O. Box 71, Bushenyi 0256, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
2
|
Manceur AP, Kim H, Misic V, Andreev N, Dorion-Thibaudeau J, Lanthier S, Bernier A, Tremblay S, Gélinas AM, Broussau S, Gilbert R, Ansorge S. Scalable Lentiviral Vector Production Using Stable HEK293SF Producer Cell Lines. Hum Gene Ther Methods 2017; 28:330-339. [PMID: 28826344 PMCID: PMC5734158 DOI: 10.1089/hgtb.2017.086] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lentiviral vectors (LV) represent a key tool for gene and cell therapy applications. The production of these vectors in sufficient quantities for clinical applications remains a hurdle, prompting the field toward developing suspension processes that are conducive to large-scale production. This study describes a LV production strategy using a stable inducible producer cell line. The HEK293 cell line employed grows in suspension, thus offering direct scalability, and produces a green fluorescent protein (GFP)-expressing lentiviral vector in the 106 transduction units (TU)/mL range without optimization. The stable producer cell line, called clone 92, was derived by stable transfection from a packaging cell line with a plasmid encoding the transgene GFP. The packaging cell line expresses all the other necessary components to produce LV upon induction with cumate and doxycycline. First, the study demonstrated that LV production using clone 92 is scalable from 20 mL shake flasks to 3 L bioreactors. Next, two strategies were developed for high-yield LV production in perfusion mode using acoustic cell filter technology in 1–3 L bioreactors. The first approach uses a basal commercial medium and perfusion mode both pre- and post-induction for increasing cell density and LV recovery. The second approach makes use of a fortified medium formulation to achieve target cell density for induction in batch mode, followed by perfusion mode after induction. Using these perfusion-based strategies, the titer was improved to 3.2 × 107 TU/mL. As a result, cumulative functional LV titers were increased by up to 15-fold compared to batch mode, reaching a cumulative total yield of 8 × 1010 TU/L of bioreactor culture. This approach is easily amenable to large-scale production and commercial manufacturing.
Collapse
Affiliation(s)
- Aziza P Manceur
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Howard Kim
- 2 BridGE, Centre for Commercialization of Regenerative Medicine , Toronto, Canada
| | - Vanja Misic
- 2 BridGE, Centre for Commercialization of Regenerative Medicine , Toronto, Canada
| | - Nadejda Andreev
- 2 BridGE, Centre for Commercialization of Regenerative Medicine , Toronto, Canada
| | | | - Stéphane Lanthier
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Alice Bernier
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Sonia Tremblay
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Anne-Marie Gélinas
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Sophie Broussau
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Rénald Gilbert
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Sven Ansorge
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| |
Collapse
|
3
|
Kim JT, Liu Y, Kulkarni RP, Lee KK, Dai B, Lovely G, Ouyang Y, Wang P, Yang L, Baltimore D. Dendritic cell-targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation. Sci Immunol 2017; 2:2/13/eaal1329. [PMID: 28733470 DOI: 10.1126/sciimmunol.aal1329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Dendritic cell (DC) activation and antigen presentation are critical for efficient priming of T cell responses. Here, we study how lentiviral vectors (LVs) deliver antigen and activate DCs to generate T cell immunization in vivo. We report that antigenic proteins delivered in vector particles via pseudotransduction were sufficient to stimulate an antigen-specific immune response. The delivery of the viral genome encoding the antigen increased the magnitude of this response in vivo but was irrelevant in vitro. Activation of DCs by LVs was independent of MyD88, TRIF, and MAVS, ruling out an involvement of Toll-like receptor or RIG-I-like receptor signaling. Cellular DNA packaged in LV preparations induced DC activation by the host STING (stimulator of interferon genes) and cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase) pathway. Envelope-mediated viral fusion also activated DCs in a phosphoinositide 3-kinase-dependent but STING-independent process. Pseudotransduction, transduction, viral fusion, and delivery of cellular DNA collaborate to make the DC-targeted LV preparation an effective immunogen.
Collapse
Affiliation(s)
- Jocelyn T Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Infectious Diseases, Department of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Rajan P Kulkarni
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin K Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bingbing Dai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Geoffrey Lovely
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yong Ouyang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lili Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
4
|
Wang Z, Wu S, Liao J, Zhong L, Xing T, Fan J, Peng Z. Interleukin-6 and rs1800796 locus single nucleotide polymorphisms in response to hypoxia/reoxygenation in hepatocytes. Int J Mol Med 2016; 38:192-200. [PMID: 27221654 PMCID: PMC4899033 DOI: 10.3892/ijmm.2016.2595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion injury due to hypoxia/reoxygenation (H/R) is one of the main causes of liver damage during liver surgery. Donor interleukin-6 (IL-6) rs1800796 single nucleotide polymorphisms (SNPs) affect the metabolism of tacrolimus following liver transplantation-related hepatic H/R. This study investigated the response of IL-6 and its promoter polymorphisms to hepatic H/R in liver parenchymal cells. The association between IL-6 rs1800796 SNPs and IL‑6 expression was measured in 84 disease-free liver tissues using tissue microarrays and immunohistochemistry. Subsequently, LO2G, LO2C and NC-LO2 cells were successfully constructed via stable lentivirus-mediated transfection. The effects of IL-6 and its SNPs on the biological function of LO2 cells were examined using a cell model of H/R. Our results revealed that IL-6 was mainly expressed in hepatocytes. The intermediate IL-6 expression rate in genotype CC carriers was higher than that in genotype CG/GG carriers (P=0.006), which was subsequently verified at the IL-6 mRNA level (P=0.002). The concentrations of alanine aminotransferase in the LO2G cells were significantly higher than those in the LO2C cells following H/R for 6 h and H/R for 24 h (P<0.05). The viability of the LO2C cells was higher than that of the LO2G cells (P<0.05). Furthermore, the expression of IL-6 and its downstream molecules was significantly increased in the LO2C cells compared with the LO2G cells (P<0.05). Therefore, the sequence variants of rs1800796 SNPs (G→C) exhibit an increased IL-6 transcription efficiency in liver parenchymal cells. In addition, the increased expression of IL-6 protects the hepatocytes following hepatic H/R injury.
Collapse
Affiliation(s)
- Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Shaohan Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Jianhua Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Tonghai Xing
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
5
|
Bryson PD, Zhang C, Lee CL, Wang P. A tetracycline-regulated cell line produces high-titer lentiviral vectors that specifically target dendritic cells. J Vis Exp 2013. [PMID: 23851977 DOI: 10.3791/50606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lentiviral vectors (LVs) are a powerful means of delivering genetic material to many types of cells. Because of safety concerns associated with these HIV-1 derived vectors, producing large quantities of LVs is challenging. In this paper, we report a method for producing high titers of self-inactivating LVs. We retrovirally transduce the tet-off stable producer cell line GPR to generate a cell line, GPRS, which can express all the viral components, including a dendritic cell-specific glycoprotein, SVGmu. Then, we use concatemeric DNA transfection to transfect the LV transfer plasmid encoding a reporter gene GFP in combination with a selectable marker. Several of the resulting clones can produce LV at a titer 10-fold greater than what we achieve with transient transfection. Plus, these viruses efficiently transduce dendritic cells in vitro and generate a strong T cell immune response to our reporter antigen. This method may be a good option for producing strong LV-based vaccines for clinical studies of cancer or infectious diseases.
Collapse
Affiliation(s)
- Paul D Bryson
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
6
|
Segura MM, Mangion M, Gaillet B, Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 2013; 13:987-1011. [PMID: 23590247 DOI: 10.1517/14712598.2013.779249] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lentiviruses are a very potent class of viral vectors for which there is presently a rapidly growing interest for a number of gene therapy. However, their construction, production and purification need to be performed according to state-of-the-art techniques in order to obtain sufficient quantities of high purity material of any usefulness and safety. AREAS COVERED The recent advances in the field of recombinant lentivirus vector design, production and purification will be reviewed with an eye toward its utilization for gene therapy. Such a review should be helpful for the potential user of this technology. EXPERT OPINION The principal hurdles toward the use of recombinant lentivirus as a gene therapy vector are the low titer at which it is produced as well as the difficulty to purify it at an acceptable level without degrading it. The recent advances in the bioproduction of this vector suggest these issues are about to be resolved, making the retrovirus gene therapy a mature technology.
Collapse
Affiliation(s)
- Maria Mercedes Segura
- Chemical Engineering Department, Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallès (08193), Barcelona, Spain
| | | | | | | |
Collapse
|
7
|
Current World Literature. Curr Opin Rheumatol 2013; 25:275-83. [DOI: 10.1097/bor.0b013e32835eb755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|