1
|
Kumar P, Kermanshahi-pour A, Brar SK, Xu CC, He QS, Evans S, Rainey JK. Enzymatic digestibility of lignocellulosic wood biomass: Effect of enzyme treatment in supercritical carbon dioxide and biomass pretreatment. Heliyon 2023; 9:e21811. [PMID: 38027598 PMCID: PMC10660486 DOI: 10.1016/j.heliyon.2023.e21811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
Energy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO2 (scCO2) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO2 pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes. The impact of scCO2 and ultrasound-assisted alkaline pretreatments of wood were insignificant for the enzymatic digestibility, and acetosolv pulping-alkaline hydrogen peroxide bleaching was the most effective pretreatment that showed the release of total reducing sugar yield (TRS) of ∼95.0 wt% of total hydrolyzable sugars (THS) in enzymatic hydrolysis. The optimized enzyme cocktail showed higher yield than individual enzymes with degree of synergism 1.34 among the enzymes, and scCO2 pretreatment of cocktail for 0.5-1.0 h at 10.0-22.0 MPa and 38.0-54.0 °C had insignificant effect on the enzyme's primary and global secondary structure of cocktail and its activity.
Collapse
Affiliation(s)
- Pawan Kumar
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3 J 1Z1, Canada
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3 J 1Z1, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Chunbao Charles Xu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Sara Evans
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
2
|
Badgujar KC, Dange R, Bhanage BM. Recent advances of use of the supercritical carbon dioxide for the biomass pre-treatment and extraction: A mini-review. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Li H, Wu H, Yu Z, Zhang H, Yang S. CO 2 -Enabled Biomass Fractionation/Depolymerization: A Highly Versatile Pre-Step for Downstream Processing. CHEMSUSCHEM 2020; 13:3565-3582. [PMID: 32285649 DOI: 10.1002/cssc.202000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulosic biomass is inevitably subject to fractionation and depolymerization processes for enhanced selectivity toward specific products, in most cases prior to catalytic upgrading of the three main fractions-cellulose, hemicellulose, and lignin. Among the developed pretreatment techniques, CO2 -assisted biomass processing exhibits some unique advantages such as the lowest critical temperature (31.0 °C) with moderate critical pressure, low cost, nontoxicity, nonflammability, ready availability, and the addition of acidity, alongside easy recovery by pressure release. This Review showcases progress in the study of sub- or supercritical CO2 -mediated thermal processing of lignocellulosic biomass-the key pre-step for downstream conversion processes. The auxo-action of CO2 in biomass pretreatment and fractionation, along with the involved variables, direct degradation of untreated biomass in CO2 by gasification, pyrolysis, and liquefaction with relevant conversion mechanisms, and CO2 -enabled depolymerization of lignocellulosic fractions with representative reaction pathways are summarized. Moreover, future prospects for the practical application of CO2 -assisted up- and downstream biomass-to-bioproduct conversion are also briefly discussed.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Zhaozhuo Yu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P.R. China
| |
Collapse
|
4
|
Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation. Front Bioeng Biotechnol 2020; 8:252. [PMID: 32391337 PMCID: PMC7191036 DOI: 10.3389/fbioe.2020.00252] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lignocellulosic biomasses are primarily composed of cellulose, hemicelluloses and lignin and these biopolymers are bonded together in a heterogeneous matrix that is highly recalcitrant to chemical or biological conversion processes. Thus, an efficient pretreatment technique must be selected and applied to this type of biomass in order to facilitate its utilization in biorefineries. Classical pretreatment methods tend to operate under severe conditions, leading to sugar losses by dehydration and to the release of inhibitory compounds such as furfural (2-furaldehyde), 5-hydroxy-2-methylfurfural (5-HMF), and organic acids. By contrast, supercritical fluids can pretreat lignocellulosic materials under relatively mild pretreatment conditions, resulting in high sugar yields, low production of fermentation inhibitors and high susceptibilities to enzymatic hydrolysis while reducing the consumption of chemicals, including solvents, reagents, and catalysts. This work presents a review of biomass pretreatment technologies, aiming to deliver a state-of-art compilation of methods and results with emphasis on supercritical processes.
Collapse
Affiliation(s)
- Estephanie Laura Nottar Escobar
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Thiago Alessandre da Silva
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Cleverton Luiz Pirich
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| | - Marcos Lúcio Corazza
- Applied Kinetics and Thermodynamics Laboratory, Department of Chemical Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Luiz Pereira Ramos
- Department of Chemistry, Research Center in Applied Chemistry, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
5
|
Kuglarz M, Alvarado-Morales M, Dąbkowska K, Angelidaki I. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. BIORESOURCE TECHNOLOGY 2018; 265:191-199. [PMID: 29902651 DOI: 10.1016/j.biortech.2018.05.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw.
Collapse
Affiliation(s)
- Mariusz Kuglarz
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, Bielsko-Biala, Poland
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800 Lyngby, Denmark
| | - Katarzyna Dąbkowska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, ul. Waryńskiego 1, Poland
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Building 113, DK-2800 Lyngby, Denmark.
| |
Collapse
|
6
|
Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Huang R, Guo H, Su R, Qi W, He Z. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Biotechnol Bioeng 2016; 114:543-551. [DOI: 10.1002/bit.26194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Renliang Huang
- Tianjin Engineering Center of Bio Gas/Oil Technology; School of Environmental Science and Engineering; Tianjin University; Tianjin China
| | - Hong Guo
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology; Tianjin University; Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|
8
|
Formation and characterization of emulsions consisting of dense carbon dioxide and water: Ultrasound. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Morais ARC, da Costa Lopes AM, Bogel-Łukasik R. Carbon Dioxide in Biomass Processing: Contributions to the Green Biorefinery Concept. Chem Rev 2014; 115:3-27. [DOI: 10.1021/cr500330z] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ana R. C. Morais
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Andre M. da Costa Lopes
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Rafał Bogel-Łukasik
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, I.P., Estrada do Paço
do Lumiar 22, 1649-038 Lisboa, Portugal
| |
Collapse
|
10
|
Yang D, Parlange JY, Walker LP. Revisiting size-exclusion chromatography for measuring structural changes in raw and pretreated mixed hardwoods and switchgrass. Biotechnol Bioeng 2014; 112:549-59. [PMID: 25212985 DOI: 10.1002/bit.25460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
The study of the biomass porous structure and its role in defining the accessibility of cell-wall-degrading enzymes (CWDEs) to the substrate is very important for understanding the cellulase-cellulose reaction system. Specific pore volume and specific surface area are two important measures of accessibility and a variety of methods have been used to make these measurements. For this study a size exclusion chromatography system was developed to measure specific pore volume and specific surface areas for raw and pretreated mixed-hardwood and switchgrass. Polyethylene glycol (PEG) probes of known molecular diameter (1.8-13 nm) were allowed to diffuse into the pore structure of the various biomass substrate packed in the column and subsequently eluted to generate high resolution concentration measurements with excellent reproducibility. Replicate measurements of probe concentrations from this system consistently yielded coefficient of variance of less than 1.5%. Our results showed that particle size reduction had a smaller influence on the specific pore volume distribution of raw mixed-hardwoods, whereas for switchgrass the larger particles yielded a significantly lower estimate for the pore volume distribution compared to the smaller particles. Our results also clearly showed that our bi-phasic pretreatment yielded the largest increase in pore volume accessibility for mixed-hardwoods relative to switchgrass. From these results a pore size change mechanism was proposed that could explain the influence of size reduction and pretreatment on pore volume measurements.
Collapse
Affiliation(s)
- Dong Yang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, 14853
| | | | | |
Collapse
|
11
|
Luterbacher JS, Moran-Mirabal JM, Burkholder EW, Walker LP. Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass. Biotechnol Bioeng 2014; 112:32-42. [DOI: 10.1002/bit.25328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/08/2014] [Accepted: 06/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy S. Luterbacher
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York 14850
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology; Arthur N. Bourns Science Building; McMaster University; Hamilton Ontario Canada L8S 4M1
| | - Eric W. Burkholder
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York 14850
| | - Larry P. Walker
- Department of Biological and Environmental Engineering; Riley-Robb Hall; Cornell University; Ithaca New York 14850
| |
Collapse
|
12
|
Luterbacher JS, Moran-Mirabal JM, Burkholder EW, Walker LP. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose. Biotechnol Bioeng 2014; 112:21-31. [DOI: 10.1002/bit.25329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/08/2014] [Accepted: 06/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy S. Luterbacher
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology; Arthur N. Bourns Science Building; McMaster University; Hamilton Ontario, Canada L8S4M1
| | - Eric W. Burkholder
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Larry P. Walker
- Department of Biological and Environmental Engineering; Riley-Robb Hall; Cornell University; Ithaca New York 14850
| |
Collapse
|
13
|
Zhang H, Wu S. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2014; 158:161-165. [PMID: 24603488 DOI: 10.1016/j.biortech.2014.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Most biomass pretreatment processes for sugar production are run at low-solid concentration (<10 wt.%). Subcritical carbon dioxide (CO2) could provide a more sustainable pretreatment medium while using relative high-solid contents (15 wt.%). The effects of subcritical CO2 pretreatment of sugarcane bagasse to the solid and glucan recoveries at different pretreatment conditions were investigated. Subsequently, enzymatic hydrolysis at different hydrolysis time was applied to obtain maximal glucose yield, which can be used for ethanol fermentation. The maximum glucose yield in enzyme hydrolyzate reached 38.5 g based on 100g raw material after 72 h of enzymatic hydrolysis, representing 93.0% glucose in sugarcane bagasse. The enhanced digestibilities of subcritical CO2 pretreated sugarcane bagasse were due to the removal of hemicellulose, which were confirmed by XRD, FTIR, SEM, and TGA analyses.
Collapse
Affiliation(s)
- Hongdan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shubin Wu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
14
|
Zhang H, Wu S. Subcritical CO2 pretreatment of sugarcane bagasse and its enzymatic hydrolysis for sugar production. BIORESOURCE TECHNOLOGY 2013; 149:546-550. [PMID: 24128605 DOI: 10.1016/j.biortech.2013.08.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
The present work investigated the effects of subcritical CO2 pretreatment of sugarcane bagasse at different CO2 pressure, pretreatment time, and temperature with relative high-solid concentration (15% w/v) to the composition of prehydrolyzate and the enzymatic hydrolysis. The results indicated that the maximum xylose yields in prehydrolyzate liquid were 15.78 g (combined 3.16 g xylose and 12.62 g xylo-oligosaccharides per 100g raw material). Due to the effective removal of hemicellulose, the maximum glucose yield in enzyme hydrolyzate reached 37.99 g per 100g raw material, representing 91.87% of glucose in the sugarcane bagasse. The maximal total sugars yield (combined xylose and glucose both in prehydrolyzate and enzymatic hydrolyzate) were 52.95 g based on 100g raw material. These results indicated that subcritical CO2 pretreatment can effectively improve the enzymatic hydrolysis, so it could be successfully applied to sugarcane bagasse.
Collapse
Affiliation(s)
- Hongdan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | | |
Collapse
|
15
|
Gu T, Held MA, Faik A. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. ENVIRONMENTAL TECHNOLOGY 2013; 34:1735-49. [PMID: 24350431 DOI: 10.1080/09593330.2013.809777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.
Collapse
Affiliation(s)
- Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA.
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ahmed Faik
- Environmental and Plant Biology Department, Ohio University Athens, OH 45701, USA
| |
Collapse
|
16
|
Gu T. Pretreatment of Lignocellulosic Biomass Using Supercritical Carbon Dioxide as a Green Solvent. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2013. [DOI: 10.1007/978-94-007-6052-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Luterbacher JS, Parlange JY, Walker LP. A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass. Biotechnol Bioeng 2012; 110:127-36. [PMID: 22811319 DOI: 10.1002/bit.24614] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/08/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022]
Abstract
Until now, most efforts to improve monosaccharide production from biomass through pretreatment and enzymatic hydrolysis have used empirical optimization rather than employing a rational design process guided by a theory-based modeling framework. For such an approach to be successful a modeling framework that captures the key mechanisms governing the relationship between pretreatment and enzymatic hydrolysis must be developed. In this study, we propose a pore-hindered diffusion and kinetic model for enzymatic hydrolysis of biomass. When compared to data available in the literature, this model accurately predicts the well-known dependence of initial cellulose hydrolysis rates on surface area available to a cellulase-size molecule. Modeling results suggest that, for particles smaller than 5 × 10(-3) cm, a key rate-limiting step is the exposure of previously unexposed cellulose occurring after cellulose on the surface has hydrolyzed, rather than binding or diffusion. However, for larger particles, according to the model, diffusion plays a more significant role. Therefore, the proposed model can be used to design experiments that produce results that are either affected or unaffected by diffusion. Finally, by using pore size distribution data to predict the biomass fraction that is accessible to degradation, this model can be used to predict cellulose hydrolysis with time using only pore size distribution and initial composition data.
Collapse
Affiliation(s)
- Jeremy S Luterbacher
- Department of Chemical and Biomolecular Engineering, Olin Hall, Cornell University, Ithaca, New York 14850, USA
| | | | | |
Collapse
|
18
|
Luterbacher JS, Walker LP, Moran-Mirabal JM. Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled Trichoderma reseii Cel7A through confocal microscopy. Biotechnol Bioeng 2012; 110:108-17. [PMID: 22766843 DOI: 10.1002/bit.24597] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/14/2012] [Accepted: 06/20/2012] [Indexed: 11/07/2022]
Abstract
Understanding the depolymerization mechanisms of cellulosic substrates by cellulase cocktails is a critical step towards optimizing the production of monosaccharides from biomass. The Spezyme CP cellulase cocktail combined with the Novo 188 β-glucosidase blend was used to depolymerize bacterial microcrystalline cellulose (BMCC), which was immobilized on a glass surface. The enzyme mixture was supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A, which served as a reporter to track cellulase binding onto the physical structure of the cellulosic substrate. Both micro-scale imaging and bulk experiments were conducted. All reported experiments were conducted at 50 °C, the optimal temperature for maximum hydrolytic activity of the enzyme cocktail. BMCC structure was observed throughout degradation by labeling it with a fluorescent dye. This method allowed us to measure the binding of cellulases in situ and follow the temporal morphological changes of cellulose during its depolymerization by a commercial cellulase mixture. Three kinetic models were developed and fitted to fluorescence intensity data obtained through confocal microscopy: irreversible and reversible binding models, and an instantaneous binding model. The models were successfully used to predict the soluble sugar concentrations that were liberated from BMCC in bulk experiments. Comparing binding and kinetic parameters from models with different assumptions to previously reported constants in the literature led us to conclude that exposing new binding sites is an important rate-limiting step in the hydrolysis of crystalline cellulose.
Collapse
Affiliation(s)
- Jeremy S Luterbacher
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|