1
|
Tan Y, Stein LY, Sauvageau D. Methanol bioconversion in Methylotuvimicrobium buryatense 5GB1C through self-cycling fermentation. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02876-3. [PMID: 37160768 DOI: 10.1007/s00449-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Methanol is an abundant and low-cost next-generation carbon source. While many species of methanotrophic bacteria can convert methanol into valuable bioproducts in bioreactors, Methylotuvimicrobium buryatense 5GB1C stands out as one of the most promising strains for industrialization. It has a short doubling time compared to most methanotrophs, remarkable resilience against contamination, and a suite of tools enabling genetic engineering. When approaching industrial applications, growing M. buryatense 5GB1C on methanol using common batch reactor operation has important limitations; for example methanol toxicity leads to mediocre biomass productivity. Advanced bioreactor operation strategies, such as fed-batch and self-cycling fermentation, have the potential to greatly improve the industrial prospects of methanotrophs growing on methanol. Herein, implementation of fed-batch operation led to a 26-fold increase in biomass density, while two different self-cycling fermentation (SCF) strategies led to 3-fold and 10-fold increases in volumetric biomass productivity. Interestingly, while synchronization is a typical trait of microbial populations undergoing SCF, M. buryatense 5GB1C cultures growing under this mode of operation led to stable, reproducible cycles but no significant synchronization.
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
2
|
Tan Y, Stein LY, Sauvageau D. The influence of self-cycling fermentation long- and short-cycle schemes on Saccharomyces cerevisiae and Escherichia coli. Sci Rep 2022; 12:13154. [PMID: 35915208 PMCID: PMC9343364 DOI: 10.1038/s41598-022-16831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Self-cycling fermentation (SCF), a cyclic process in which cells, on average, divide once per cycle, has been shown to lead to whole-culture synchronization and improvements in productivity during bioconversion. Previous studies have shown that the completion of synchronized cell replication sometimes occurs simultaneously with depletion of the limiting nutrient. However, cases in which the end of cell doubling occurred before limiting nutrient exhaustion were also observed. In order to better understand the impact of these patterns on bioprocessing, we investigated the growth of Saccharomyces cerevisiae and Escherichia coli in long- and short-cycle SCF strategies. Three characteristic events were identified during SCF cycles: (1) an optimum in control parameters, (2) the time of completion of synchronized cell division, and (3) the depletion or plateau of the limiting nutrient. Results from this study and literature led to the identification of three potential trends in SCF cycles: (A) co-occurrence of the three key events, (B) cell replication ending prior to the co-occurrence of the other two events, and (C) depletion or plateau of the limiting nutrient occurring later than the co-occurrence of the other two events. Based on these observations, microbial physiological differences were analyzed and a novel definition for SCF is proposed.
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Tan Y, Agustin RVC, Stein LY, Sauvageau D. Transcriptomic analysis of synchrony and productivity in self-cycling fermentation of engineered yeast producing shikimic acid. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00691. [PMID: 34934640 PMCID: PMC8660916 DOI: 10.1016/j.btre.2021.e00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/25/2023]
Abstract
Industrial fermentation provides a wide variety of bioproducts, such as food, biofuels and pharmaceuticals. Self-cycling fermentation (SCF), an advanced automated semi-continuous fermentation approach, has shown significant advantages over batch reactors (BR); including cell synchrony and improved production. Here, Saccharomyces cerevisiae engineered to overproduce shikimic acid was grown under SCF operation. This led to four-fold increases in product yield and volumetric productivity compared to BR. Transcriptomic analyses were performed to understand the cellular mechanisms leading to these increases. Results indicate an up-regulation of a large number of genes related to the cell cycle and DNA replication in the early stages of SCF cycles, inferring substantial synchronization. Moreover, numerous genes related to gluconeogenesis, the citrate cycle and oxidative phosphorylation were significantly up-regulated in the late stages of SCF cycles, consistent with significant increases in shikimic acid yield and productivity.
Collapse
Key Words
- BR, Batch reactor
- CER, Carbon dioxide evolution rate
- DDT, Dithiothreitol
- DNA, Deoxyribonucleic acid
- EDTA, Ethylenediaminetetraacetic acid
- FC, Fold change
- OD600, Optical density at 600 nm
- RNA, Ribonucleic acid
- SCF, Self-cycling fermentation
- STP, Standard temperature and pressure
- Saccharomyces cerevisiae
- Self-cycling fermentation (SCF)
- Shikimic acid
- Synchrony
- Transcriptomics
- cDNA, Complementary deoxyribonucleic acid
- mRNA, Messenger ribonucleic acid
- qPCR, Quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Roman Vincent C. Agustin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Y. Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Wang J, Chae M, Beyene D, Sauvageau D, Bressler DC. Co-production of ethanol and cellulose nanocrystals through self-cycling fermentation of wood pulp hydrolysate. BIORESOURCE TECHNOLOGY 2021; 330:124969. [PMID: 33740586 DOI: 10.1016/j.biortech.2021.124969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
A promising approach to help offset production costs for the cellulosic ethanol industry is to improve ethanol productivity while simultaneously generating value-added by-products. This study reports integration of an advanced fermentation approach (self-cycling fermentation) with the production of cellulose nanocrystals. Specifically, wood pulp was enzymatically hydrolyzed to yield dissolved sugars, which were fed to a self-cycling fermentation system for ethanol production, and residual solids were used for cellulose nanocrystals production via acid hydrolysis. Self-cycling fermentation achieved stable ethanol production for 10 cycles with significantly greater productivity than batch operation: ethanol volumetric productivity increased by 63-95% and annual ethanol productivity by 96 ± 5%. Additionally, the enzyme hydrolysis approach employed did not impede ethanol fermentation, and the cellulose nanocrystals generated displayed properties consistent with previous studies. Taken together, these results highlight the potential of this co-production strategy to produce both cellulosic ethanol and cellulose nanocrystals from a single feedstock.
Collapse
Affiliation(s)
- Jie Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Michael Chae
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Dawit Beyene
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, Canada.
| |
Collapse
|
5
|
Wang J, Chae M, Bressler DC, Sauvageau D. Improved bioethanol productivity through gas flow rate-driven self-cycling fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:14. [PMID: 31998407 PMCID: PMC6979077 DOI: 10.1186/s13068-020-1658-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND The growth of the cellulosic ethanol industry is currently impeded by high production costs. One possible solution is to improve the performance of fermentation itself, which has great potential to improve the economics of the entire production process. Here, we demonstrated significantly improved productivity through application of an advanced fermentation approach, named self-cycling fermentation (SCF), for cellulosic ethanol production. RESULTS The flow rate of outlet gas from the fermenter was used as a real-time monitoring parameter to drive the cycling of the ethanol fermentation process. Then, long-term operation of SCF under anaerobic conditions was improved by the addition of ergosterol and fatty acids, which stabilized operation and reduced fermentation time. Finally, an automated SCF system was successfully operated for 21 cycles, with robust behavior and stable ethanol production. SCF maintained similar ethanol titers to batch operation while significantly reducing fermentation and down times. This led to significant improvements in ethanol volumetric productivity (the amount of ethanol produced by a cycle per working volume per cycle time)-ranging from 37.5 to 75.3%, depending on the cycle number, and in annual ethanol productivity (the amount of ethanol that can be produced each year at large scale)-reaching 75.8 ± 2.9%. Improved flocculation, with potential advantages for biomass removal and reduction in downstream costs, was also observed. CONCLUSION Our successful demonstration of SCF could help reduce production costs for the cellulosic ethanol industry through improved productivity and automated operation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - Michael Chae
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - David C. Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9 Canada
| |
Collapse
|
6
|
Abstract
The optimal conditions for the production of virulent bacteriophages in bioreactors can vary greatly depending on the host-bacteriophage system used. We present a general method for the production of virulent bacteriophages in bioreactors that can be adapted to many host-bacteriophage systems and various operating conditions (reactor volume, medium composition, temperature, etc.). The procedures detail how to establish optimal initial infection conditions (infection load and initial multiplicity of infection (MOI)), prepare the host pre-culture and bioreactor, operate the bioreactor, and harvest the bacteriophage product. Batch operation is detailed but a short discussion addresses other modes of operation, namely two-stage continuous bioreactors and two-stage cycling bioreactors.
Collapse
Affiliation(s)
- Maryam Agboluaje
- Chemical and Materials Engineering, University of Alberta, 12th floor Donadeo ICE Building, 9211 116 St NW, Edmonton, AB, Canada, T5M 0L5
| | - Dominic Sauvageau
- Chemical and Materials Engineering, University of Alberta, 12th floor Donadeo ICE Building, 9211 116 St NW, Edmonton, AB, Canada, T5M 0L5.
| |
Collapse
|
7
|
Wang J, Chae M, Sauvageau D, Bressler DC. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:193. [PMID: 28785309 PMCID: PMC5541432 DOI: 10.1186/s13068-017-0879-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/19/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. RESULTS Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. CONCLUSIONS This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the cellulosic ethanol industry.
Collapse
Affiliation(s)
- Jie Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - Michael Chae
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9 Canada
| | - David C. Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| |
Collapse
|
8
|
Royle K, Kontoravdi C. A systems biology approach to optimising hosts for industrial protein production. Biotechnol Lett 2013; 35:1961-9. [DOI: 10.1007/s10529-013-1297-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 02/07/2023]
|
9
|
Zhu Z, Li R, Yu G, Ran W, Shen Q. Enhancement of lipopeptides production in a two-temperature-stage process under SSF conditions and its bioprocess in the fermenter. BIORESOURCE TECHNOLOGY 2013; 127:209-215. [PMID: 23131643 DOI: 10.1016/j.biortech.2012.09.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/29/2012] [Accepted: 09/29/2012] [Indexed: 06/01/2023]
Abstract
A two-temperature-stage process was developed for the production of lipopeptides under SSF conditions. The effects of various temperatures, ranging from 25 to 40 °C, on the bacterial growth during the growth stage and on the production of lipopeptides during the productive stage were investigated. The optimum temperatures were found to be 30 °C for the growth of the strain and 37 °C for the biosynthesis of lipopeptides. The two-stage fermentation temperatures should be 30 °C in the initial 24h and then 37 °C for the enhanced production of lipopeptides. The bioprocess results obtained in a 50 L fermenter verified the efficacy of this technique, which increased the yield of lipopeptides by 8.40% in flasks and by 13.11% in the fermenter, with a 4h decrease of fermentation time in the fermenter. The 1000-fold scale-up of fermentation in a fermenter was successfully achieved.
Collapse
Affiliation(s)
- Zhen Zhu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | |
Collapse
|