1
|
Lee Y, Cha YJ, Jeong S, Yun S, Nho Y, Kang S, Kim W, Son J, Kim J, Kyung S. A novel sophorolipids extraction method by yeast fermentation process for enhanced skin efficacy. Skin Res Technol 2023; 29:e13518. [PMID: 38009026 PMCID: PMC10643984 DOI: 10.1111/srt.13518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/21/2023] [Indexed: 11/28/2023]
Abstract
AIMS Oriental herbs have been used as medicines in the folk remedy for their numerous phytochemicals and bioactivities. In this study, we have selected five Korean traditional medical herbs and applied bio conversion extraction technology, named it as Bioconversion Oji complex, to identify phytochemicals and evaluate skin related efficacies. MATERIAL AND METHODS The process of two-step bio conversion was sequentially conducted. The first step of fermentation was to produce biosurfactants using macadamia seed oil with Candida bombicola, and then five natural plants were added to carry out the main fermentation. To evaluate skin improvement efficacy of Bioconversion Oji complex, in vitro and in vivo studies were conducted. We studied HaCaT cells cultured to assess viability, skin anti-inflammatory, moisturizing and barrier improvement-related mRNA expression. For efficacy study, 21 participants were tested evaluating anti-inflammatory, skin moisturizing and skin barrier improving effects of Bioconversion Oji complex compared to Water extraction of Oji (placebo) for the 4 weeks test period. RESULTS The application of bioconversion technology highly increased the content of amino acids and lipids within Bioconversion Oji complex, and 23 flavonoids were also identified. Bioconversion Oji complex was found to be non-toxic and showed significant effects in all parameters tested, including anti-inflammation, skin moisture, and skin barrier in both in vitro and in clinical studies. CONCLUSIONS Bioconversion Oji complex has demonstrated skin-friendly properties with significant beneficial effects on anti-inflammatory, skin hydration and barrier function properties. This study provides evidence for the use of Bioconversion Oji complex as an active ingredient in cosmetics and skincare products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juhyun Son
- ZOE BIO BIO‐Material R&I CenterSeoulSouth Korea
| | - Juyun Kim
- ZOE BIO BIO‐Material R&I CenterSeoulSouth Korea
| | | |
Collapse
|
2
|
Baccile N, Chaleix V, Hoffmann I. Measuring the bending rigidity of microbial glucolipid (biosurfactant) bioamphiphile self-assembled structures by neutron spin-echo (NSE): Interdigitated vesicles, lamellae and fibers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1866:184243. [PMID: 39491124 DOI: 10.1016/j.bbamem.2023.184243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Bending rigidity, k, is classically measured for lipid membranes to characterize their nanoscale mechanical properties as a function of composition. Widely employed as a comparative tool, it helps understanding the relationship between the lipid's molecular structure and the elastic properties of its corresponding bilayer. Widely measured for phospholipid membranes in the shape of giant unilamellar vesicles (GUVs), bending rigidity is determined here for three self-assembled structures formed by a new biobased glucolipid bioamphiphile, rather associated to the family of glycolipid biosurfactants than phospholipids. In its oleyl form, glucolipid G-C18:1 can assemble into vesicles or crystalline fibers, while in its stearyl form, glucolipid G-C18:0 can assemble into lamellar gels. Neutron spin-echo (NSE) is employed in the q-range between 0.3 nm-1 (21 nm) and 1.5 nm-1 (4.1 nm) with a spin-echo time in the range of up to 500 ns to characterize the bending rigidity of three different structures (Vesicle suspension, Lamellar gel, Fiber gel) solely composed of a single glucolipid. The low (k = 0.30 ± 0.04 kbT) values found for the Vesicle suspension and high values found for the Lamellar (k = 130 ± 40 kbT) and Fiber gels (k = 900 ± 500 kbT) are unusual when compared to most phospholipid membranes. By attempting to quantify for the first time the bending rigidity of self-assembled bioamphiphiles, this work not only contributes to the fundamental understanding of these new molecular systems, but it also opens new perspectives in their integration in the field of soft materials.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Vincent Chaleix
- Université de Limoges, Faculté des sciences et techniques, Laboratoire LABCiS - UR 22722, 87060 Limoges, France
| | | |
Collapse
|
3
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
4
|
Thu NTT, Hoang LH, Cuong PK, Viet-Linh N, Nga TTH, Kim DD, Leong YK, Nhi-Cong LT. Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in Vietnam. Sci Rep 2023; 13:3137. [PMID: 36823427 PMCID: PMC9950484 DOI: 10.1038/s41598-023-28220-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Following the rising concern on environmental issues caused by conventional fossil-based plastics and depleting crude oil resources, polyhydroxyalkanoates (PHAs) are of great interest by scientists and biodegradable polymer market due to their outstanding properties which include high biodegradability in various conditions and processing flexibility. Many polyhydroxyalkanoate-synthesizing microorganisms, including normal and halophilic bacteria, as well as algae, have been investigated for their performance in polyhydroxyalkanoate production. However, to the best of our knowledge, there is still limited studies on PHAs-producing marine yeast. In the present study, a halophilic yeast strain isolated from Spratly Island in Vietnam were investigated for its potential in polyhydroxyalkanoate biosynthesis by growing the yeast in Zobell marine agar medium (ZMA) containing Nile red dye. The strain was identified by 26S rDNA analysis as Pichia kudriavzevii TSLS24 and registered at Genbank database under code OL757724. The amount of polyhydroxyalkanoates synthesized was quantified by measuring the intracellular materials (predicted as poly(3-hydroxybutyrate) -PHB) by gravimetric method and subsequently confirmed by Fourier transform infrared (FTIR) spectroscopic and nuclear magnetic resonance (NMR) spectroscopic analyses. Under optimal growth conditions of 35 °C and pH 7 with supplementation of glucose and yeast extract at 20 and 10 gL-1, the isolated strain achieved poly(3-hydroxybutyrate) content and concentration of 43.4% and 1.8 gL-1 after 7 days of cultivation. The poly(3-hydroxybutyrate) produced demonstrated excellent biodegradability with degradation rate of 28% after 28 days of incubation in sea water.
Collapse
Affiliation(s)
- Nguyen Thi Tam Thu
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Le Huy Hoang
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Pham Kien Cuong
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Nguyen Viet-Linh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| | - Tran Thi Huyen Nga
- grid.267852.c0000 0004 0637 2083University of Science, Vietnam National University-Hanoi, Hanoi, 11400 Vietnam
| | - Dang Dinh Kim
- grid.267849.60000 0001 2105 6888Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Yoong Kit Leong
- grid.265231.10000 0004 0532 1428Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407224 Taiwan
| | - Le Thi Nhi-Cong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| |
Collapse
|
5
|
Phulpoto IA, Yu Z, Qazi MA, Ndayisenga F, Yang J. A comprehensive study on microbial-surfactants from bioproduction scale-up toward electrokinetics remediation of environmental pollutants: Challenges and perspectives. CHEMOSPHERE 2023; 311:136979. [PMID: 36309062 DOI: 10.1016/j.chemosphere.2022.136979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Currently, researchers have focused on electrokinetic (EK) bioremediation due to its potential to remove a wide-range of pollutants. Further, to improve their performance, synthetic surfactants are employed as effective additives because of their excellent solubility and mobility. Synthetic surfactants have an excessive position in industries since they are well-established, cheap, and easily available. Nevertheless, these surfactants have adverse environmental effects and could be detrimental to aquatic and terrestrial life. Owing to social and environmental awareness, there is a rising demand for bio-based surfactants in the global market, from environmental sustainability to public health, because of their excellent surface and interfacial activity, higher and stable emulsifying property, biodegradability, non- or low toxicity, better selectivity and specificity at extreme environmental conditions. Unfortunately, challenges to biosurfactants, like expensive raw materials, low yields, and purification processes, hinder their applicability to large-scale. To date, extensive research has already been conducted for production scale-up using multidisciplinary approaches. However, it is still essential to research and develop high-yielding bacteria for bioproduction through traditional and biotechnological advances to reduce production costs. Herein, this review evaluates the recent progress made on microbial-surfactants for bioproduction scale-up and provides detailed information on traditional and advanced genetic engineering approaches for cost-effective bioproduction. Furthermore, this study emphasized the role of electrokinetic (EK) bioremediation and discussed the application of BioS-mediated EK for various pollutants remediation.
Collapse
Affiliation(s)
- Irfan Ali Phulpoto
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, 100085, China.
| | - Muneer Ahmed Qazi
- Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur Mir's, 66020, Sindh, Pakistan
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jie Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
6
|
Delavault A, Zoheir AE, Muller D, Hollenbach R, Rabe KS, Ochsenreither K, Rudat J, Syldatk C. Enhanced Bioactivity of Tailor-Made Glycolipid Enriched Manuka Honey. Int J Mol Sci 2022; 23:12031. [PMID: 36233331 PMCID: PMC9570014 DOI: 10.3390/ijms231912031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Glycolipids can be synthetized in deep eutectic solvents (DESs) as they possess low water content allowing a reversed lipase activity and thus enables ester formation. Based on this principle, honey can also serve as a media for glycolipid synthesis. Indeed, this supersaturated sugar solution is comparable in terms of physicochemical properties to the sugar-based DESs. Honey-based products being commercially available for therapeutic applications, it appears interesting to enhance its bioactivity. In the current work, we investigate if enriching medical grade honey with in situ enzymatically-synthetized glycolipids can improve the antimicrobial property of the mixture. The tested mixtures are composed of Manuka honey that is enriched with octanoate, decanoate, laurate, and myristate sugar esters, respectively dubbed GOH, GDH, GLH, and GMH. To characterize the bioactivity of those mixtures, first a qualitative screening using an agar well diffusion assay has been performed with methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Candida bombicola, Escherichia coli, and Pseudomonas putida which confirmed considerably enhanced susceptibility of these micro-organisms to the different glycolipid enriched honey mixtures. Then, a designed biosensor E. coli strain that displays a stress reporter system consisting of three stress-specific inducible, red, green, and blue fluorescent proteins which respectively translate to physiological stress, genotoxicity, and cytotoxicity was used. Bioactivity was, therefore, characterized, and a six-fold enhancement of the physiological stress that was caused by GOH compared to regular Manuka honey at a 1.6% (v/v) concentration was observed. An antibacterial agar well diffusion assay with E. coli was performed as well and demonstrated an improved inhibitory potential with GOH upon 20% (v/v) concentration.
Collapse
Affiliation(s)
- André Delavault
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ahmed E. Zoheir
- Department of Genetics and Cytology, National Research Center (NRC), Cairo 12622, Egypt
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Delphine Muller
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Rebecca Hollenbach
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Kersten S. Rabe
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Jens Rudat
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Chatterjee M, Patel JB, Stober ST, Zhang X. Heterologous Synthesis and Secretion of Ricinoleic Acid in Starmerella bombicola with Sophorolipid as an Intermediate. ACS Synth Biol 2022; 11:1178-1185. [PMID: 35157794 DOI: 10.1021/acssynbio.1c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ricinoleic acid (RA) is a long-chain hydroxy fatty acid produced from castor bean that is used in the manufacturing of a variety of industrial products. The demand for RA keeps increasing due to its broad applications. However, due to the presence of a potent toxin ricin, the native oilseed plant is not an ideal source for hydroxy fatty acid production. Although there have been significant efforts on engineering different microorganisms for heterologous production of RA, all had very limited success. The main reason for this is the exhibited toxicity of the intracellularly accumulated RA. To avoid this issue, we genetically modified a Starmerella bombicola strain by engineering its native sophorolipid production pathway to direct the synthesized RA bound with sophorolipid to be secreted out of the cell, followed by acid hydrolysis to recover RA. The engineered S. bombicola strain expressing the heterologous codon-optimized oleate hydroxylase-encoding gene from ergot fungus Claviceps purpurea resulted in a record production titer of RA at about 2.96 g/L. Thus, this work highlights a new strategy to produce a high level of hydroxy fatty acids in engineered yeast through a sophorolipid intermediate, enabling a new biocatalysis platform for the future.
Collapse
Affiliation(s)
- Mohor Chatterjee
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Jay B. Patel
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Spencer T. Stober
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| | - Xiaozhou Zhang
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801, United States
| |
Collapse
|
8
|
Qazi MA, Wang Q, Dai Z. Sophorolipids bioproduction in the yeast Starmerella bombicola: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2022; 346:126593. [PMID: 34942344 DOI: 10.1016/j.biortech.2021.126593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Sophorolipids are highly active green surfactants (glycolipid biosurfactants) getting tremendous appreciation worldwide due to their low toxicity, biodegradability, broad spectrum of applications, and significant biotechnological potential. Sophorolipids are mainly produced by an oleaginous budding yeast Starmerella bombicola using low-cost substrates. Therefore, the recent state-of-art literature information about S. bombicola yeast is hereby provided, especially the underlying production pathways, biosynthetic gene cluster, and regulatory enzymes. Moreover, the S. bombicola offers flexibility for regulating the structural diversity of sophorolipids, either genetically or by varying fermentative conditions. The emergence of advanced technologies like 'Omics and CRISPR/Cas have certainly boosted rational engineering research for designing high-performing platform strains. Therefore, currently available genetic engineering tools in S. bombicola were reviewed, thereby opening up exciting new possibilities for improving the overall bioproduction titers, structural variability, and stability of sophorolipids. Finally, some technical perspectives to address the current challenges were discussed.
Collapse
Affiliation(s)
- Muneer Ahmed Qazi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China; Institute of Microbiology, Faculty of Natural Science, Shah Abdul Latif University, Khairpur, 66020 Sindh, Pakistan
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China.
| |
Collapse
|
9
|
Dierickx S, Maes K, Roelants SLKW, Pomian B, Van Meulebroek L, De Maeseneire SL, Vanhaecke L, Soetaert WK. A multi-omics study to boost continuous bolaform sophorolipid production. N Biotechnol 2022; 66:107-115. [PMID: 34774786 DOI: 10.1016/j.nbt.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Biodegradable and biobased surface active agents are renewable and environmentally friendly alternatives to petroleum derived or oleochemical surfactants. However, they are accompanied by relatively high production costs. In this study, the aim was to reduce the production costs for an innovative type of microbial biosurfactant: bolaform sophorolipids, produced by the yeast Starmerella bombicola ΔsbleΔat. A novel continuous retentostat set-up was performed whereby continuous broth microfiltration retained the biomass in the bioreactor while performing an in situ product separation of bolaform sophorolipids. Although a mean volumetric productivity of 0.56 g L-1 h-1 was achieved, it was not possible to maintain this productivity, which collapsed to almost 0 g L-1 h-1. Therefore, two process adaptations were evaluated, a sequential batch strategy and a phosphate limitation alleviation strategy. The sequential batch set-up restored the mean volumetric productivity to 0.66 g L-1 h-1 for an additional 132 h but was again followed by a productivity decline. A similar result was obtained with the phosphate limitation alleviation strategy where a mean volumetric productivity of 0.54 g L-1 h-1 was reached, but a productivity decline was also observed. Whole genome variant analysis uncovered no evidence for genomic variations for up to 1306 h of retentostat cultivation. Untargeted metabolomics analysis identified 8-hydroxyguanosine, a biomarker for oxidative RNA damage, as a key metabolite correlating with high bolaform sophorolipid productivity. This study showcases the application of a retentostat to increase bolaform sophorolipid productivity and lays the basis of a multi-omics platform for in depth investigation of microbial biosurfactant production with S. bombicola.
Collapse
Affiliation(s)
- Sven Dierickx
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium; Lab of Chemical Analysis (LCA), Ghent University, Merelbeke, Belgium.
| | - Karolien Maes
- Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium.
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium.
| | - Beata Pomian
- Lab of Chemical Analysis (LCA), Ghent University, Merelbeke, Belgium.
| | | | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium.
| | - Lynn Vanhaecke
- Lab of Chemical Analysis (LCA), Ghent University, Merelbeke, Belgium.
| | - Wim K Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium.
| |
Collapse
|
10
|
Trindade M, Sithole N, Kubicki S, Thies S, Burger A. Screening Strategies for Biosurfactant Discovery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:17-52. [PMID: 34518910 DOI: 10.1007/10_2021_174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isolation and screening of bacteria and fungi for the production of surface-active compounds has been the basis for the majority of the biosurfactants discovered to date. Hence, a wide variety of well-established and relatively simple methods are available for screening, mostly focused on the detection of surface or interfacial activity of the culture supernatant. However, the success of any biodiscovery effort, specifically aiming to access novelty, relies directly on the characteristics being screened for and the uniqueness of the microorganisms being screened. Therefore, given that rather few novel biosurfactant structures have been discovered during the last decade, advanced strategies are now needed to widen access to novel chemistries and properties. In addition, more modern Omics technologies should be considered to the traditional culture-based approaches for biosurfactant discovery. This chapter summarizes the screening methods and strategies typically used for the discovery of biosurfactants and highlights some of the Omics-based approaches that have resulted in the discovery of unique biosurfactants. These studies illustrate the potentially enormous diversity that has yet to be unlocked and how we can begin to tap into these biological resources.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa.
| | - Nombuso Sithole
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anita Burger
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
11
|
From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol Adv 2021; 54:107788. [PMID: 34166752 DOI: 10.1016/j.biotechadv.2021.107788] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
Sophorolipids are biobased compounds produced by the genera Starmerella and Pseudohyphozyma that gain exponential interest from academic and industrial stakeholders due to their mild and environmental friendly characteristics. Currently, industrially relevant sophorolipid volumetric productivities are reached up to 3.7 g∙L-1∙h-1 and sophorolipids are used in the personal care and cleaning industry at small scale. Moreover, applications in crop protection, food, biohydrometallurgy and medical fields are being extensively researched. The research and development of sophorolipids is at a crucial stage. Therefore, this work presents an overview of the state-of-the-art on sophorolipid research and their applications, while providing a critical assessment of scientific techniques and standardisation in reporting. In this review, the genuine sophorolipid producing organisms and the natural role of sophorolipids are discussed. Subsequently, an evaluation is made of innovations in production processes and the relevance of in-situ product recovery for process performance is discussed. Furthermore, a critical assessment of application research and its future perspectives are portrayed with a focus on the self-assembly of sophorolipid molecules. Following, genetic engineering strategies that affect the sophorolipid physiochemical properties are summarised. Finally, the impact of sophorolipids on the bioeconomy are uncovered, along with relevant future perspectives.
Collapse
|
12
|
Ojha N, Das N. Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Lodens S, Roelants SLKW, Ciesielska K, Geys R, Derynck E, Maes K, Pattyn F, Van Renterghem L, Mottet L, Dierickx S, Vanhaecke L, Devreese B, De Maeseneire SL, Soetaert W. Unraveling and resolving inefficient glucolipid biosurfactants production through quantitative multiomics analyses of Starmerella bombicola strains. Biotechnol Bioeng 2019; 117:453-465. [PMID: 31612987 DOI: 10.1002/bit.27191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 01/18/2023]
Abstract
Glucolipids (GLs) are glycolipid biosurfactants with promising properties. These GLs are composed of glucose attached to a hydroxy fatty acid through a ω and/or ω-1 glycosidic linkage. Up until today these interesting molecules could only be produced using an engineered Starmerella bombicola strain (∆ugtB1::URA3 G9) producing GLs instead of sophorolipids, albeit with a very low average productivity (0.01 g·L-1 ·h-1 ). In this study, we investigated the reason(s) for this via reverse-transcription quantitative polymerase chain reaction and Liquid chromatography-multireaction monitoring-mass spectrometry. We found that all glycolipid biosynthetic genes and enzymes were downregulated in the ∆ugtB1 G9 strain in comparison to the wild type. The underlying reason for this downregulation was further investigated by performing quantitative metabolome comparison of the ∆ugtB1 G9 strain with the wild type and two other engineered strains also tinkered in their glycolipid biosynthetic gene cluster. This analysis revealed a clear distortion of the entire metabolism of the ∆ugtB1 G9 strain compared to all the other strains. Because the parental strain of the former was a spontaneous ∆ura3 mutant potentially containing other "hidden" mutations, a new GL production strain was generated based on a rationally engineered ∆ura3 mutant (PT36). Indeed, a 50-fold GL productivity increase (0.51 g·L-1 ·h-1 ) was obtained with the new ∆ugtB1::URA3 PT36 strain compared with the G9-based strain (0.01 g·L-1 ·h-1 ) in a 10 L bioreactor experiment, yielding 118 g/L GLs instead of 8.39 g/L. Purification was investigated and basic properties of the purified GLs were determined. This study forms the base for further development and optimization of S. bombicola as a production platform strain for (new) biochemicals.
Collapse
Affiliation(s)
- Sofie Lodens
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Bio Base Europe Pilot Plant, Desteldonk, Belgium
| | | | - Robin Geys
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | - Filip Pattyn
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Lisa Van Renterghem
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Sven Dierickx
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart Devreese
- L-Probe, Department of Sciences, Ghent University, Ghent, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Baccile N, Van Renterghem L, Le Griel P, Ducouret G, Brennich M, Cristiglio V, Roelants SLKW, Soetaert W. Bio-based glyco-bolaamphiphile forms a temperature-responsive hydrogel with tunable elastic properties. SOFT MATTER 2018; 14:7859-7872. [PMID: 30211424 DOI: 10.1039/c8sm01167b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A bio-based glycolipid bolaamphiphile (glyco-bolaamphiphile) has recently been produced (Van Renterghem et al., Biotechnol. Bioeng., 2018, 115, 1195-1206) on a gram scale by using the genetically-engineered S. bombicola strain Δat Δsble Δfao1. The glyco-bolaamphiphile bears two symmetrical sophorose headgroups at the extremities of a C16:0 (ω-1 hydroxylated palmitic alcohol) spacer. Its atypical structure has been obtained by redesigning the S. bombicola strain Δat Δsble, producing non-symmetrical glyco-bolaamphiphile, with an additional knock out (Δfao1) and feeding this new strain with fatty alcohols. The molecular structure of the glyco-bolaamphiphile is obtained by feeding the new strain a saturated C16 substrate (palmitic alcohol), which enables the biosynthesis of bolaform glycolipids. In this work, we show that the bio-based glyco-bolaamphiphile readily forms a hydrogel in water at room temperature, and that the hydrogel formation depends on the formation of self-assembled fibers. Above 28 °C, the molecules undergo a gel-to-sol transition, which is due to a fiber-to-micelle phase change. We provide a quantitative description of the Self-Assembled Fibrillar Network (SAFiN) hydrogel formed by the glyco-bolaampiphile. We identify the sol-gel transition temperature, the gelling time, and the minimal gel concentration; additionally, we explore the fibrillation mechanism as a function of time and temperature and determine the activation energy of the micelle-to-fiber phase transition. These parameters allow control of the elastic properties of the glyco-bolaamphiphile hydrogel: at 3 wt% and 25 °C, the elastic modulus G' is above the kPa range, while at 5 °C, G' can be tuned between 100 Pa and 20 kPa, by controlling the undercooling protocol.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Silva ACSD, Santos PND, Silva TALE, Andrade RFS, Campos-Takaki GM. Biosurfactant production by fungi as a sustainable alternative. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000502017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: A wide variety of bacteria is far more exploited than fungi as biosurfactants (BS) or bioemulsifiers (BE), using renewable sources. BS are considered to be environmentally safe and offer advantages over synthetic surfactants. However, the BS yield depends largely on the metabolic pathways of the microorganisms and the nutritional medium. The production of BS or BE uses several cultural conditions, in which a small change in carbon and nitrogen sources affects the quantity of BS or BE produced. The type and quantity of microbial BS or BE produced depend mainly on the producer organism, and factors such as carbon and nitrogen sources, trace elements, temperature and aeration. The diversity of BS or BE makes it interesting to apply them in the pharmaceutical and cosmetics industries, agriculture, public health, food processes, detergents, when treating oily residues, environmental pollution control and bioremediation. Thus, this paper reviews and addresses the biotechnological potential of yeasts and filamentous fungi for producing, characterizing and applying BS or BE.
Collapse
|
16
|
Maeng Y, Kim KT, Zhou X, Jin L, Kim KS, Kim YH, Lee S, Park JH, Chen X, Kong M, Cai L, Li X. A novel microbial technique for producing high-quality sophorolipids from horse oil suitable for cosmetic applications. Microb Biotechnol 2018; 11:917-929. [PMID: 30022625 PMCID: PMC6116743 DOI: 10.1111/1751-7915.13297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022] Open
Abstract
Horse oil contains linoleic, palmitoleic and unsaturated fatty acids that are similar to those in human skin, and may therefore be an ideal substance from which to isolate biosurfactants for cosmetic products to improve human skin quality. Herein, an innovative approach was developed to synthesise sophorolipids from horse oil by hydrolysis, followed by fermentation using the yeast Candida bombicola. The yield of sophorolipids from direct fermentation of horse oil and hydrolysed horse oil was 40.6 ± 1.3 g l-1 and 58.4 ± 1.8 g l-1 respectively. To further increase the yield, 30-40 g l-1 glucose was added in a fed-batch fermentation process to maintain the pH between 4.0 and 4.5, resulting in a conversion yield of 71.7 ± 0.8 g l-1 . The purity and structure of the synthesised sophorolipids were analysed by ultra-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. An in vitro human dermal fibroblast model was used as a surrogate for human skin to measure elastase inhibition activity. Antiwrinkle properties of isolated sophorolipids were better than those of horse oil or hydrolysed horse oil in several in vitro assays. Furthermore, no cytotoxicity was observed at a concentration of 50 μg ml-1 , and wound-healing capacity was evident in a cell culture model. Additionally, the synthesised sophorolipids attenuated lipopolysaccharide-induced expression of inflammatory cytokines in macrophages, and efficiently inhibited several strains of bacteria and yeast. In conclusion, fed-batch fermentation of hydrolysed horse oil is a novel and efficient approach for producing high-quality and high-yield sophorolipids that exhibit great potential as cosmetic ingredients.
Collapse
Affiliation(s)
- Yoojae Maeng
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| | - Kyoung Tae Kim
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| | - Xuan Zhou
- Ningbo First HospitalNingbo315000China
| | - Litai Jin
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| | - Ki Soo Kim
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- BiolandBiotec. Co., Ltd.Zhangjiang Modern Medical Device ParkPudong, Shanghai201203China
| | - Young Heui Kim
- SK Bioland59, Songjeongni 2‐gil, Byeongchen, Dongnam, CheonanChungnam31257Korea
| | - Suyeon Lee
- SK Bioland59, Songjeongni 2‐gil, Byeongchen, Dongnam, CheonanChungnam31257Korea
| | - Ji Ho Park
- SK Bioland162, Gwahaksaneop 3‐ro, OchangCheongwon, Cheongju, Chungbuk28125Korea
| | - Xiuyu Chen
- BiolandBiotec. Co., Ltd.Zhangjiang Modern Medical Device ParkPudong, Shanghai201203China
| | - Mingxia Kong
- BiolandBiotec. Co., Ltd.Zhangjiang Modern Medical Device ParkPudong, Shanghai201203China
| | - Lu Cai
- Departments of Pediatrics, Radiation Oncology, Pharmacology and ToxicologyPediatric Research InstituteUniversity of LouisvilleLouisvilleKY40202USA
| | - Xiaokun Li
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou325035China
- Collaborative Innovation Center of BiomedicineWenzhou Medical University‐Wenzhou UniversityWenzhou325035China
| |
Collapse
|
17
|
De Graeve M, De Maeseneire SL, Roelants SLKW, Soetaert W. Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res 2018; 18:5049474. [DOI: 10.1093/femsyr/foy072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marilyn De Graeve
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
18
|
Boldt J. Machine metaphors and ethics in synthetic biology. LIFE SCIENCES, SOCIETY AND POLICY 2018; 14:12. [PMID: 29862436 PMCID: PMC5985241 DOI: 10.1186/s40504-018-0077-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The extent to which machine metaphors are used in synthetic biology is striking. These metaphors contain a specific perspective on organisms as well as on scientific and technological progress. Expressions such as "genetically engineered machine", "genetic circuit", and "platform organism", taken from the realms of electronic engineering, car manufacturing, and information technology, highlight specific aspects of the functioning of living beings while at the same time hiding others, such as evolutionary change and interdependencies in ecosystems. Since these latter aspects are relevant for, for example, risk evaluation of uncontained uses of synthetic organisms, it is ethically imperative to resist the thrust of machine metaphors in this respect. In addition, from the perspective of the machine metaphor viewing an entity as a moral agent or patient becomes dubious. If one were to regard living beings, including humans, as machines, it becomes difficult to justify ascriptions of moral status. Finally, the machine metaphor reinforces beliefs in the potential of synthetic biology to play a decisive role in solving societal problems, and downplays the role of alternative technological, and social and political measures.
Collapse
Affiliation(s)
- Joachim Boldt
- Department of Medical Ethics and the History of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Van Renterghem L, Roelants SL, Baccile N, Uyttersprot K, Taelman MC, Everaert B, Mincke S, Ledegen S, Debrouwer S, Scholtens K, Stevens C, Soetaert W. From lab to market: An integrated bioprocess design approach for new-to-nature biosurfactants produced byStarmerella bombicola. Biotechnol Bioeng 2018; 115:1195-1206. [DOI: 10.1002/bit.26539] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/23/2017] [Accepted: 12/26/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Lisa Van Renterghem
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Sophie L.K.W. Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
- Bio Base Europe Pilot Plant; Ghent Belgium
| | - Niki Baccile
- Chimie de la Matière Condensée de Paris (UMR 7574); Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France; Paris Île-de-France France
| | | | | | | | - Stein Mincke
- Department of Sustainable Organic Chemistry and Technology; Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Sam Ledegen
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | | | | | - Christian Stevens
- Department of Sustainable Organic Chemistry and Technology; Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| |
Collapse
|
20
|
Lodens S, De Graeve M, Roelants SLKW, De Maeseneire SL, Soetaert W. Transformation of an Exotic Yeast Species into a Platform Organism: A Case Study for Engineering Glycolipid Production in the Yeast Starmerella bombicola. Synth Biol (Oxf) 2018; 1772:95-123. [DOI: 10.1007/978-1-4939-7795-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
21
|
Jezierska S, Claus S, Van Bogaert I. Yeast glycolipid biosurfactants. FEBS Lett 2017; 592:1312-1329. [DOI: 10.1002/1873-3468.12888] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sylwia Jezierska
- Faculty of Bioscience Engineering Centre for Synthetic Biology Gent Belgium
| | - Silke Claus
- Faculty of Bioscience Engineering Centre for Synthetic Biology Gent Belgium
| | - Inge Van Bogaert
- Faculty of Bioscience Engineering Centre for Synthetic Biology Gent Belgium
| |
Collapse
|
22
|
Almeida DG, Soares da Silva RDCF, Luna JM, Rufino RD, Santos VA, Sarubbo LA. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates. Front Microbiol 2017; 8:157. [PMID: 28223971 PMCID: PMC5293750 DOI: 10.3389/fmicb.2017.00157] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022] Open
Abstract
Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry.
Collapse
Affiliation(s)
- Darne G Almeida
- Northeast Biotechnology Network, Federal Rural University of PernambucoRecife, Brazil; Advanced Institute of Technology and InnovationRecife, Brazil
| | - Rita de Cássia F Soares da Silva
- Northeast Biotechnology Network, Federal Rural University of PernambucoRecife, Brazil; Advanced Institute of Technology and InnovationRecife, Brazil
| | - Juliana M Luna
- Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
| | - Raquel D Rufino
- Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
| | - Valdemir A Santos
- Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
| | - Leonie A Sarubbo
- Northeast Biotechnology Network, Federal Rural University of PernambucoRecife, Brazil; Advanced Institute of Technology and InnovationRecife, Brazil; Center of Sciences and Technology, Catholic University of PernambucoRecife, Brazil
| |
Collapse
|
23
|
Jezierska S, Van Bogaert INA. Crossing boundaries: the importance of cellular membranes in industrial biotechnology. J Ind Microbiol Biotechnol 2016; 44:721-733. [PMID: 27837352 DOI: 10.1007/s10295-016-1858-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/30/2016] [Indexed: 01/04/2023]
Abstract
How small molecules cross cellular membranes is an often overlooked issue in an industrial microbiology and biotechnology context. This is to a large extent governed by the technical difficulties to study these transport systems or by the lack of knowledge on suitable efflux pumps. This review emphasizes the importance of microbial cellular membranes in industrial biotechnology by highlighting successful strategies of membrane engineering towards more resistant and hence better performing microorganisms, as well as transporter and other engineering strategies for increased efflux of primary and secondary metabolites. Furthermore, the benefits and limitations of eukaryotic subcellular compartmentalization are discussed, as well as the biotechnological potential of membrane vesicles.
Collapse
Affiliation(s)
- Sylwia Jezierska
- Laboratory for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Inge N A Van Bogaert
- Laboratory for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
24
|
Roelants SL, Ciesielska K, De Maeseneire SL, Moens H, Everaert B, Verweire S, Denon Q, Vanlerberghe B, Van Bogaert IN, Van der Meeren P, Devreese B, Soetaert W. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene fromStarmerella bombicola. Biotechnol Bioeng 2015; 113:550-9. [DOI: 10.1002/bit.25815] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Sophie L.K.W. Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering, Ghent University; Coupure Links 653 9000 Ghent Belgium
- Bio Base Europe Pilot Plant (BBEU); Rodenhuizekaai 1; 9042 Ghent (Desteldonk) Belgium
| | - Katarzyna Ciesielska
- L-Probe, Department of Sciences; Ghent University; K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering, Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Helena Moens
- Bio Base Europe Pilot Plant (BBEU); Rodenhuizekaai 1; 9042 Ghent (Desteldonk) Belgium
| | - Bernd Everaert
- Bio Base Europe Pilot Plant (BBEU); Rodenhuizekaai 1; 9042 Ghent (Desteldonk) Belgium
| | - Stijn Verweire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering, Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Quenten Denon
- Particle and Interfacial Technology Group; Department of Applied Analytical and Physical Chemistry; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Brecht Vanlerberghe
- Bio Base Europe Pilot Plant (BBEU); Rodenhuizekaai 1; 9042 Ghent (Desteldonk) Belgium
| | - Inge N.A. Van Bogaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering, Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group; Department of Applied Analytical and Physical Chemistry; Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - Bart Devreese
- L-Probe, Department of Sciences; Ghent University; K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be); Faculty of Bioscience Engineering, Ghent University; Coupure Links 653 9000 Ghent Belgium
- Bio Base Europe Pilot Plant (BBEU); Rodenhuizekaai 1; 9042 Ghent (Desteldonk) Belgium
| |
Collapse
|
25
|
Saerens KM, Van Bogaert IN, Soetaert W. Characterization of sophorolipid biosynthetic enzymes fromStarmerella bombicola. FEMS Yeast Res 2015; 15:fov075. [DOI: 10.1093/femsyr/fov075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 11/15/2022] Open
|
26
|
Thies S, Santiago-Schübel B, Kovačić F, Rosenau F, Hausmann R, Jaeger KE. Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol 2014; 181:27-30. [DOI: 10.1016/j.jbiotec.2014.03.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 10/25/2022]
|
27
|
Geys R, Soetaert W, Van Bogaert I. Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol 2014; 30:66-72. [PMID: 24995572 DOI: 10.1016/j.copbio.2014.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/27/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
Abstract
In the recent years, biosurfactants proved to be an interesting alternative to petrochemically derived surfactants. Two classes of biosurfactants, namely glycolipids and lipopeptides, have attracted significant commercial interest. Despite their environmental advantages and equal performance, commercialization of these molecules remains a challenge due to missing acquaintance of the applicants, higher price and lack of structural variation. The latter two issues can partially be tackled by screening for novel and better wild-type producers and optimizing the fermentation process. Yet, these traditional approaches cannot overcome all hurdles. In this review, an overview is given on how biotechnology offers opportunities for increased biosurfactant production and the creation of new types of molecules, in this way enhancing their commercial potential.
Collapse
Affiliation(s)
- Robin Geys
- Centre of Expertise for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Wim Soetaert
- Centre of Expertise for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Inge Van Bogaert
- Centre of Expertise for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| |
Collapse
|