1
|
Smith MSR, Mohan H, Ajaykumar A, Hsieh AYY, Martineau L, Patel R, Gadawska I, Sherwood C, Serghides L, Piret JM, Côté HCF. Second-Generation Human Immunodeficiency Virus Integrase Inhibitors Induce Differentiation Dysregulation and Exert Toxic Effects in Human Embryonic Stem Cell and Mouse Models. J Infect Dis 2022; 226:1992-2001. [PMID: 36124861 DOI: 10.1093/infdis/jiac386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Each year, approximately 1.1 million children are exposed in utero to human immunodeficiency virus antiretrovirals, yet their safety is often not well characterized during pregnancy. The Tsepamo study reported a neural tube defect signal in infants exposed to the integrase strand transfer inhibitor (InSTI) dolutegravir from conception, suggesting that exposure during early fetal development may be detrimental. METHODS The effects of InSTIs on 2 human embryonic stem cell (hESC) lines were characterized with respect to markers of pluripotency, early differentiation, and cellular health. In addition, fetal resorptions after exposure to InSTIs from conception were analyzed in pregnant mice. RESULTS At subtherapeutic concentrations, second-generation InSTIs bictegravir, cabotegravir, and dolutegravir decreased hESC counts and pluripotency and induced dysregulation of genes involved in early differentiation. At therapeutic concentrations, bictegravir induced substantial hESC death and fetal resorptions. It is notable that first-generation InSTI raltegravir did not induce any hESC toxicity or differentiation, at any concentration tested. CONCLUSIONS Exposure to some InSTIs, even at subtherapeutic concentrations, can induce adverse effects in hESCs and pregnant mice. Given the increasingly prevalent use of second-generation InSTIs, including in women of reproductive age, it is imperative to further elucidate the effect of InSTIs on embryonic development, as well as their long-term safety after in utero exposure.
Collapse
Affiliation(s)
- Marie-Soleil R Smith
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Abhinav Ajaykumar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Anthony Y Y Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Lou Martineau
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ronil Patel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Izabella Gadawska
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | | | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Women's College Research Institute, Toronto, Canada
| | - James M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada.,School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Hélène C F Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Women's Health Research Institute, Vancouver, Canada
| |
Collapse
|
2
|
Erener S, Ellis CE, Ramzy A, Glavas MM, O’Dwyer S, Pereira S, Wang T, Pang J, Bruin JE, Riedel MJ, Baker RK, Webber TD, Lesina M, Blüher M, Algül H, Kopp JL, Herzig S, Kieffer TJ. Deletion of pancreas-specific miR-216a reduces beta-cell mass and inhibits pancreatic cancer progression in mice. Cell Rep Med 2021; 2:100434. [PMID: 34841287 PMCID: PMC8606901 DOI: 10.1016/j.xcrm.2021.100434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/08/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, β-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of β-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-β signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how β-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.
Collapse
Affiliation(s)
- Suheda Erener
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Cara E. Ellis
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Adam Ramzy
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Maria M. Glavas
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shannon O’Dwyer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Pereira
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tom Wang
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Janice Pang
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer E. Bruin
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Michael J. Riedel
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Robert K. Baker
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Travis D. Webber
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marina Lesina
- Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Hana Algül
- Comprehensive Cancer Center Munich, Technical University of Munich, Munich, Germany
| | - Janel L. Kopp
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- Technical University Munich, 85764 Neuherberg, Germany
- Deutsches Zentrum für Diabetesforschung, 85764 Neuherberg, Germany
| | - Timothy J. Kieffer
- Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
The Role of ARX in Human Pancreatic Endocrine Specification. PLoS One 2015; 10:e0144100. [PMID: 26633894 PMCID: PMC4669132 DOI: 10.1371/journal.pone.0144100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022] Open
Abstract
The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.
Collapse
|
4
|
Konorov SO, Schulze HG, Gage BK, Kieffer TJ, Piret JM, Blades MW, Turner RFB. Process Analytical Utility of Raman Microspectroscopy in the Directed Differentiation of Human Pancreatic Insulin-Positive Cells. Anal Chem 2015; 87:10762-9. [DOI: 10.1021/acs.analchem.5b03295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stanislav O. Konorov
- Michael
Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC Canada, V6T 1Z4
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC Canada, V6T 1Z1
| | - H. Georg Schulze
- Michael
Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC Canada, V6T 1Z4
| | - Blair K. Gage
- Department
of Cellular and Physiological Sciences, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC Canada, V6T 1Z3
| | - Timothy J. Kieffer
- Department
of Cellular and Physiological Sciences, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC Canada, V6T 1Z3
- Department
of Surgery, The University of British Columbia, 910 West 10th Avenue, Vancouver, BC Canada, V5Z 4E3
| | - James M. Piret
- Michael
Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC Canada, V6T 1Z4
- Department
of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC Canada, V6T 1Z3
| | - Michael W. Blades
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC Canada, V6T 1Z1
| | - Robin F. B. Turner
- Michael
Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC Canada, V6T 1Z4
- Department
of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC Canada, V6T 1Z1
- Department
of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, BC Canada, V6T 1Z4
| |
Collapse
|
5
|
Sikorski DJ, Caron NJ, VanInsberghe M, Zahn H, Eaves CJ, Piret JM, Hansen CL. Clonal analysis of individual human embryonic stem cell differentiation patterns in microfluidic cultures. Biotechnol J 2015; 10:1546-54. [PMID: 26059045 DOI: 10.1002/biot.201500035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/04/2015] [Accepted: 06/05/2015] [Indexed: 01/23/2023]
Abstract
Heterogeneity in the clonal outputs of individual human embryonic stem cells (hESCs) confounds analysis of their properties in studies of bulk populations and how to manipulate them for clinical applications. To circumvent this problem we developed a microfluidic device that supports the robust generation of colonies derived from single ESCs. This microfluidic system contains 160 individually addressable chambers equipped for perfusion culture of individual hESCs that could be shown to match the growth rates, marker expression and colony morphologies obtained in conventional cultures. Use of this microfluidic device to analyze the clonal growth kinetics of multiple individual hESCs induced to differentiation revealed variable shifts in the growth rate, area per cell and expression of OCT4 in the progeny of individual hESCs. Interestingly, low OCT4 expression, a slower growth rate and low nuclear to cytoplasmic ratios were found to be correlated responses. This study demonstrates how microfluidic systems can be used to enable large scale live-cell imaging of isolated hESCs exposed to changing culture conditions, to examine how different aspects of their variable responses are correlated.
Collapse
Affiliation(s)
- Darek J Sikorski
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Nicolas J Caron
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michael VanInsberghe
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Hans Zahn
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - James M Piret
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Carl L Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada. .,Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Chapman AG, Cotton AM, Kelsey AD, Brown CJ. Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding. BMC Genet 2014; 15:89. [PMID: 25200388 PMCID: PMC4363909 DOI: 10.1186/s12863-014-0089-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/18/2014] [Indexed: 11/30/2022] Open
Abstract
Background X-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome, the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates, triggering silencing of the chromosome. In mouse, an alternative Xist promoter, P2 is also the site of YY1 binding, which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation, including absence of a functional antisense regulator Tsix, and absence of strictly paternal inactivation in extraembryonic tissues, prompting us to examine regulatory regions for the human XIST gene. Results We demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However, YY1 binding is insufficient to drive P2 expression or establish the DHS, which may require a development-specific factor. Furthermore, reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST. Conclusions The differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter, P2, that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition, this region binds YY1 on the unmethylated inactive X chromosome, and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST.
Collapse
Affiliation(s)
- Andrew G Chapman
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Allison M Cotton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Angela D Kelsey
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Abstract
Human embryonic stem cells (hESCs) are pluripotent and capable of generating new β-cells, but current in vitro differentiation protocols generally fail to produce mature, glucose-responsive, unihormonal β-cells. Instead, these methods tend to produce immature polyhormonal endocrine cells which mature in vivo into glucagon-positive α-cells. PAX4 is an established transcription factor in β-cell development and function, and is capable of converting glucagon-positive cells to insulin-positive cells in mice. Work in human and mouse ESCs has shown that constitutive PAX4 expression promotes the development of insulin-positive cells, but whether acute PAX4 expression is sufficient to guide specific endocrine cell fates has not been addressed in hESCs. In this study, we applied recombinant adenovirus to ectopically express human PAX4 in hESC-derived pancreatic progenitors, with the aim of influencing the endocrine developmental cascade away from polyhormonal cells toward unihormonal insulin-positive cells. Gene delivery to pancreatic progenitors was efficient and dose-dependent. By the end of in vitro differentiation, PAX4 reduced ARX expression, but only the high dose tested significantly reduced glucagon release. Single cell analysis revealed that while PAX4 did not alter the proportion of endocrine cells, it did reduce the number of glucagon-positive cells and increased the number of unihormonal insulin-positive cells. These data suggest that acute PAX4 overexpression can reduce expression of ARX and glucagon resulting in improved numbers of unihormonal insulin-positive cells.
Collapse
Affiliation(s)
- Blair K Gage
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
- Correspondence to: Timothy J Kieffer,
| |
Collapse
|
8
|
Gage BK, Webber TD, Kieffer TJ. Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells. PLoS One 2013; 8:e82076. [PMID: 24324748 PMCID: PMC3852888 DOI: 10.1371/journal.pone.0082076] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 10(4) cells/cm(2) to 5.3 x 10(4) cells/cm(2) followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.
Collapse
Affiliation(s)
- Blair K. Gage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis D. Webber
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
9
|
Bruin JE, Erener S, Vela J, Hu X, Johnson JD, Kurata HT, Lynn FC, Piret JM, Asadi A, Rezania A, Kieffer TJ. Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 2013; 12:194-208. [PMID: 24257076 DOI: 10.1016/j.scr.2013.10.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 01/12/2023] Open
Abstract
Human embryonic stem cells (hESCs) were used as a model system of human pancreas development to study characteristics of the polyhormonal cells that arise during fetal pancreas development. HESCs were differentiated into fetal-like pancreatic cells in vitro using a 33-day, 7-stage protocol. Cultures were ~90-95% PDX1-positive by day (d) 11 and 70-75% NKX6.1-positive by d17. Polyhormonal cells were scattered at d17, but developed into islet-like clusters that expressed key transcription factors by d33. Human C-peptide and glucagon secretion were first detected at d17 and increased thereafter in parallel with INS and GCG transcript levels. HESC-derived cells were responsive to KCl and arginine, but not glucose in perifusion studies. Compared to adult human islets, hESC-derived cells expressed ~10-fold higher levels of glucose transporter 1 (GLUT1) mRNA, but similar levels of glucokinase (GCK). In situ hybridization confirmed the presence of GLUT1 transcript within endocrine cells. However, GLUT1 protein was excluded from this population and was instead observed predominantly in non-endocrine cells, whereas GCK was co-expressed in insulin-positive cells. In rubidium efflux assays, hESC-derived cells displayed mild potassium channel activity, but no responsiveness to glucose, metabolic inhibitors or glibenclamide. Western blotting experiments revealed that the higher molecular weight SUR1 band was absent in hESC-derived cells, suggesting a lack of functional KATP channels at the cell surface. In addition, KATP channel subunit transcript levels were not at a 1:1 ratio, as would be expected (SUR1 levels were ~5-fold lower than KIR6.2). Various ratios of SUR1:KIR6.2 plasmids were transfected into COSM6 cells and rubidium efflux was found to be particularly sensitive to a reduction in SUR1. These data suggest that an impaired ratio of SUR1:KIR6.2 may contribute to the observed KATP channel defects in hESC-derived islet endocrine cells, and along with lack of GLUT1, may explain the absence of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Jennifer E Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Suheda Erener
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Javier Vela
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoke Hu
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - James D Johnson
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Francis C Lynn
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - James M Piret
- Department of Chemical & Biological Engineering, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|