1
|
Chandrasekar M, Collins JL, Habibi S, Ong RG. Microfluidic reactor designed for time-lapsed imaging of pretreatment and enzymatic hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2024; 393:129989. [PMID: 37931765 DOI: 10.1016/j.biortech.2023.129989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The effect of tissue-specific biochemical heterogeneities of lignocellulosic biomass on biomass deconstruction is best understood through confocal laser scanning microscopy (CLSM) combined with immunohistochemistry. However, this process can be challenging, given the fragility of plant materials, and is generally not able to observe changes in the same section of biomass during both pretreatment and enzymatic hydrolysis. To overcome this challenge, a custom polydimethylsiloxane (PDMS) microfluidic imaging reactor was constructed using standard photolithographic techniques. As proof of concept, CLSM was performed on 60 μm-thick corn stem sections during pretreatment and enzymatic hydrolysis using the imaging reactor. Based on the fluorescence images, the less lignified parenchyma cell walls were more susceptible to pretreatment than the lignin-rich vascular bundles. During enzymatic hydrolysis, the highly lignified protoxylem cell wall was the most resistant, remaining unhydrolyzed even after 48 h. Therefore, imaging thin whole biomass sections was useful to obtain tissue-specific changes during biomass deconstruction.
Collapse
Affiliation(s)
- Meenaa Chandrasekar
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Jeana L Collins
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Sanaz Habibi
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA
| | - Rebecca G Ong
- Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA; DOE Great Lakes Bioenergy Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, 49931, MI, USA.
| |
Collapse
|
2
|
Nair LG, Agrawal K, Verma P. Organosolv pretreatment: an in-depth purview of mechanics of the system. BIORESOUR BIOPROCESS 2023; 10:50. [PMID: 38647988 PMCID: PMC10991910 DOI: 10.1186/s40643-023-00673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/03/2023] [Indexed: 04/25/2024] Open
Abstract
The concept of biorefinery has been advancing globally and organosolv pretreatment strategy has seen an upsurge in research due to its efficiency in removing the recalcitrant lignin and dissolution of cellulose. The high-performance organosolv system uses green solvents and its reusability contributes concurrently to the biorefinery sector and sustainability. The major advantage of the current system involves the continuous removal of lignin to enhance cellulose accessibility, thereby easing the later biorefinery steps, which were immensely restricted due to the recalcitrant lignin. The current system process can be further explored and enhanced via the amalgamation of new technologies, which is still a work in progress. Thus, the current review summarizes organosolv pretreatment and the range of solvents used, along with a detailed mechanistic approach that results in efficient pretreatment of LCB. The latest developments for designing high-performance pretreatment systems, their pitfalls, and advanced assessments such as Life Cycle Assessment along with Techno-Economic Assessment have also been deliberated to allow an insight into its diverse potential applicability towards a sustainable future.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Microbiology, School of Bio Engineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
3
|
Leroy A, Devaux MF, Fanuel M, Chauvet H, Durand S, Alvarado C, Habrant A, Sandt C, Rogniaux H, Paës G, Guillon F. Real-time imaging of enzymatic degradation of pretreated maize internodes reveals different cell types have different profiles. BIORESOURCE TECHNOLOGY 2022; 353:127140. [PMID: 35405211 DOI: 10.1016/j.biortech.2022.127140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
This work presents a dynamic view of the enzymatic degradation of maize cell walls, and sheds new light on the recalcitrance of hot water pretreated maize stem internodes. Infra-red microspectrometry, mass spectrometry, fluorescence recovery after photobleaching and fluorescence imaging were combined to investigate enzymatic hydrolysis at the cell scale. Depending on their polymer composition and organisation, cell types exhibits different extent and rate of enzymatic degradation. Enzymes act sequentially from the cell walls rich in accessible cellulose to the most recalcitrant cells. This phenomenon can be linked to the heterogeneous distribution of enzymes in the liquid medium and the adsorption/desorption mechanisms that differ with the type of cell.
Collapse
Affiliation(s)
- Amandine Leroy
- INRAE, UR 1268 BIA, 44316 Nantes, France; Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100 Reims, France
| | | | - Mathieu Fanuel
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France
| | - Hugo Chauvet
- DISCO Beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-sur-Yvette CEDEX, France
| | | | | | - Anouck Habrant
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100 Reims, France
| | - Christophe Sandt
- SMIS Beamline, SOLEIL Synchrotron, BP48, l'Orme des Merisiers, 91192 Gif-sur-Yvette CEDEX, France
| | - Hélène Rogniaux
- INRAE, UR 1268 BIA, 44316 Nantes, France; INRAE, BIBS Facility, 44316 Nantes, France
| | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A614, 51100 Reims, France
| | | |
Collapse
|
4
|
Rodrigues RCLB, Green Rodrigues B, Vieira Canettieri E, Acosta Martinez E, Palladino F, Wisniewski A, Rodrigues D. Comprehensive approach of methods for microstructural analysis and analytical tools in lignocellulosic biomass assessment - A review. BIORESOURCE TECHNOLOGY 2022; 348:126627. [PMID: 34958907 DOI: 10.1016/j.biortech.2021.126627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The trend in the modern world is to replace fossil fuels with green energy sources in order to reduce their environmental impact. The biorefinery industry, within this premise, needs to establish quantitative and qualitative analytical methods to better understand lignocellulosic biomass composition and structure. This paper presents chemical techniques (chromatography, thermal analysis, HRMS, FTIR, NIR, and NMR) and physicochemical techniques (XRD, optical and electron microscopy techniques - Confocal fluorescence, Raman, SPM, AFM, SEM, and TEM) for the microstructural characterization of lignocellulosic biomass and its derivatives. Each of these tools provides different and complementary information regarding molecular and microstructural composition of lignocellulosic biomass. Understanding these properties is essential for the design and operation of associated biomass conversion processing facilities. PAT, monitored in real-time, ensures an economical and balanced mass-energy process. This review aimed to help researchers select the most suitable analytical technique with which to investigate biomass feedstocks with recalcitrant natures.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil.
| | - Bruna Green Rodrigues
- Departament of Biotechnology, Lorena Engineering School, University of São Paulo (USP),12600-970, Lorena, SP, Brazil
| | - Eliana Vieira Canettieri
- Chemistry and Energy Department, Guaratinguetá Engineering Faculty, São Paulo State University (UNESP), 12516-410, Guaratinguetá, SP, Brazil
| | - Ernesto Acosta Martinez
- Department of Technology, State University of Feira de Santana (UEFS), 44036-900 Feira de Santana, BA, Brazil
| | - Fernanda Palladino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
| | - Alberto Wisniewski
- Department of Chemistry, Federal University of Sergipe (UFS), 49100-000 São Cristovão, SE, Brazil
| | - Durval Rodrigues
- Department of Materials Engineering, Lorena Engineering School, University of São Paulo (USP), Lorena, SP, Brazil
| |
Collapse
|
5
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Arnaud B, Durand S, Fanuel M, Guillon F, Méchin V, Rogniaux H. Imaging Study by Mass Spectrometry of the Spatial Variation of Cellulose and Hemicellulose Structures in Corn Stalks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4042-4050. [PMID: 32125840 DOI: 10.1021/acs.jafc.9b07579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study used mass spectrometry imaging (MSI) to map the distribution of enzymatically degraded cell wall polysaccharides in maize stems for two genotypes and at several stages of development. The context was the production of biofuels, and the overall objective was to better describe the structural determinants of recalcitrance of grasses in bioconversion. The selected genotypes showed contrasting characteristics in bioconversion assays as well as in their lignin deposition pattern. We compared the pattern of cell wall polysaccharide degradation observed by MSI following the enzymatic degradation of tissues with that of lignin deposition. Several enzymes targeting the main families of wall polysaccharides were used. In the early stages of development, cellulose and mixed-linked β-glucans appeared as the main polysaccharides degraded from the walls, while heteroxylan products were barely detected, suggesting subsequent deposition of heteroxylans in the walls. At all stages and for both genotypes, enzymatic degradation occurred preferentially in nonlignified walls for all structural families of polysaccharides studied here. However, our results showed heterogeneity in the distribution of heteroxylan products according to their chemical structure: arabinosylated products were mostly represented in the pith center, while glucuronylated products were found at the pith periphery. The conclusions of our work are in agreement with those of previous studies. The MSI approach presented here is unique and attractive for addressing the histological and biochemical aspects of biomass recalcitrance to conversion, as it allows for a simultaneous interpretation of cell wall degradation and lignification patterns at the scale of an entire stem section.
Collapse
Affiliation(s)
- B Arnaud
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, F-44316 Nantes, France
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, F-78000 Versailles, France
| | - S Durand
- INRAE, UR BIA, F-44316 Nantes, France
| | - M Fanuel
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - F Guillon
- INRAE, UR BIA, F-44316 Nantes, France
| | - V Méchin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, F-78000 Versailles, France
| | - H Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, BIBS Facility, F-44316 Nantes, France
| |
Collapse
|
7
|
Mobility of pectin methylesterase in pectin/cellulose gels is enhanced by the presence of cellulose and by its catalytic capacity. Sci Rep 2019; 9:12551. [PMID: 31467440 PMCID: PMC6715659 DOI: 10.1038/s41598-019-49108-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme’s diffusion within it. The enzyme mobility was followed by synchrotron microscopy thanks to its auto-fluorescence after deep-UV excitation. Time-lapse imaging and quantification of intensity signal by image analysis revealed that the diffusion of the enzyme was impacted by at least two criteria: (i) only the active enzyme was able to diffuse, showing that the mobility was related to the catalytic ability, and (ii) the diffusion was improved by the presence of cellulose in the gel.
Collapse
|
8
|
Catalytic potency of ionic liquid-stabilized metal nanoparticles towards greening biomass processing: Insights, limitations and prospects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Poly dimethyl diallyl ammonium chloride assisted cellulase pretreatment for pulp refining efficiency enhancement. Carbohydr Polym 2018; 203:342-348. [PMID: 30318221 DOI: 10.1016/j.carbpol.2018.09.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 11/20/2022]
Abstract
The use of poly (diallyldimethylammonium chloride) (PDADMAC) as an additive in the cellulase pretreatment process (the PDADMAC-assisted cellulase pretreatment process) prior to pulp refining, was investigated, with the objective of decreasing the energy consumption and/or cellulase dosage in the pulp refining process. Results showed that PDADMAC significantly improved the cellulase adsorption onto pulp fibers, which is responsible for enhancement in the cellulase treatment efficiency. The low molecular weight PDADMAC is more effective than the high molecular weight counterpart, because it is capable of infiltrating into the fiber pores to attack the fiber internal structure, while the high molecular weight PDADMAC just stays on the fiber surfaces. The developed pretreatment process facilitates the subsequent pulp refining process. The addition of PDADMAC has negligible effect on the strength properties of pulp while reducing the energy consumption with less cellulase dosage. One version of this process concept is proposed.
Collapse
|
10
|
Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis. ENERGIES 2018. [DOI: 10.3390/en11040886] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Li T, Liu N, Ou X, Zhao X, Qi F, Huang J, Liu D. Visualizing cellulase adsorption and quantitatively determining cellulose accessibility with an updated fungal cellulose-binding module-based fluorescent probe protein. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:105. [PMID: 29657580 PMCID: PMC5890345 DOI: 10.1186/s13068-018-1105-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cellulose accessibility to cellulases (CAC) is a direct factor determining the enzymatic digestibility of lignocellulosic cellulose. Improving CAC by pretreatment is a prerequisite step for the efficient release of fermentable sugars from biomass cell wall. However, conventional methods to study the porosimetry of solid materials showed some limitations to be used for investigating CAC. In this work, an updated novel fusion protein comprising a fungal cellulose-binding module (CBM) from Cel7A cellobiohydrolase I (CBH I) of Trichoderma reesei QM6 and a di-green fluorescent protein (GFP2) was constructed for quantitative determination of CAC. RESULTS The obtained probe protein had similar molecular size (e.g., weight) with that of Cel7A and could give detectable signal for quantitative analysis. Several construction strategies were compared with regard to the site of His-tag and order of CBM and GFP2 modules in the protein sequence, in order to achieve good expression quantity and usability of the probe protein. His6-CBM-GFP2 has been identified as the best probe protein for investigating the effects of structural features of cellulosic substrates on cellulose accessibility. Substrate samples with different contents of xylan, lignin, and degree of substitution of cellulose -OH by formyl group were obtained, respectively, by mild H2SO4 pre-hydrolysis, NaClO2 selective delignification, and treatment of filter paper cellulose with concentrated formic acid. The determined CAC was in a wide range of 0.6-20.4 m2/g depending on the contents of hemicelluloses, lignin, and formyl group as well as cellulose degree of crystallization. CONCLUSIONS The obtained fusion probe protein could be used as a versatile tool to quantitatively investigate the impacts of biomass structural features on CAC and hydrolyzability of cellulose substrates, as well as nonproductive adsorption of cellulase enzymes on lignin.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Nan Liu
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Xianjin Ou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xuebing Zhao
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Dehua Liu
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
12
|
Devaux MF, Jamme F, André W, Bouchet B, Alvarado C, Durand S, Robert P, Saulnier L, Bonnin E, Guillon F. Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29515611 PMCID: PMC5826215 DOI: 10.3389/fpls.2018.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation.
Collapse
Affiliation(s)
- Marie-Françoise Devaux
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
- *Correspondence: Marie-Françoise Devaux
| | | | | | - Brigitte Bouchet
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
| | - Camille Alvarado
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
| | - Sylvie Durand
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
| | - Paul Robert
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
| | - Luc Saulnier
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
| | - Estelle Bonnin
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
| | - Fabienne Guillon
- UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France
| |
Collapse
|
13
|
Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type. Sci Rep 2017; 7:17792. [PMID: 29259205 PMCID: PMC5736606 DOI: 10.1038/s41598-017-17938-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/28/2017] [Indexed: 11/08/2022] Open
Abstract
Lignocellulosic biomass bioconversion is hampered by the structural and chemical complexity of the network created by cellulose, hemicellulose and lignin. Biological conversion of lignocellulose involves synergistic action of a large array of enzymes including the recently discovered lytic polysaccharide monooxygenases (LPMOs) that perform oxidative cleavage of cellulose. Using in situ imaging by synchrotron UV fluorescence, we have shown that the addition of AA9 LPMO (from Podospora anserina) to cellulases cocktail improves the progression of enzymes in delignified Miscanthus x giganteus as observed at tissular levels. In situ chemical monitoring of cell wall modifications performed by synchrotron infrared spectroscopy during enzymatic hydrolysis demonstrated that the boosting effect of the AA9 LPMO was dependent on the cellular type indicating contrasted recalcitrance levels in plant tissues. Our study provides a useful strategy for investigating enzyme dynamics and activity in plant cell wall to improve enzymatic cocktails aimed at expanding lignocelluloses biorefinery.
Collapse
|
14
|
Li X, Zheng Y. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 2017; 35:466-489. [DOI: 10.1016/j.biotechadv.2017.03.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 01/23/2023]
|
15
|
Donaldson L, Vaidya A. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy. Sci Rep 2017; 7:44386. [PMID: 28281670 PMCID: PMC5345003 DOI: 10.1038/srep44386] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/07/2017] [Indexed: 11/08/2022] Open
Abstract
Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.
Collapse
Affiliation(s)
- Lloyd Donaldson
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3010, New Zealand
| | - Alankar Vaidya
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3010, New Zealand
| |
Collapse
|
16
|
Eibinger M, Zahel T, Ganner T, Plank H, Nidetzky B. Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:56. [PMID: 26962329 PMCID: PMC4784381 DOI: 10.1186/s13068-016-0463-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Enzymatic hydrolysis of cellulose involves the spatiotemporally correlated action of distinct polysaccharide chain cleaving activities confined to the surface of an insoluble substrate. Because cellulases differ in preference for attacking crystalline compared to amorphous cellulose, the spatial distribution of structural order across the cellulose surface imposes additional constraints on the dynamic interplay between the enzymes. Reconstruction of total system behavior from single-molecule activity parameters is a longstanding key goal in the field. RESULTS We have developed a stochastic, cellular automata-based modeling approach to describe degradation of cellulosic material by a cellulase system at single-molecule resolution. Substrate morphology was modeled to represent the amorphous and crystalline phases as well as the different spatial orientations of the polysaccharide chains. The enzyme system model consisted of an internally chain-cleaving endoglucanase (EG) as well as two processively acting, reducing and non-reducing chain end-cleaving cellobiohydrolases (CBHs). Substrate preference (amorphous: EG, CBH II; crystalline: CBH I) and characteristic frequencies for chain cleavage, processive movement, and dissociation were assigned from biochemical data. Once adsorbed, enzymes were allowed to reach surface-exposed substrate sites through "random-walk" lateral diffusion or processive motion. Simulations revealed that slow dissociation of processive enzymes at obstacles obstructing further movement resulted in local jamming of the cellulases, with consequent delay in the degradation of the surface area affected. Exploiting validation against evidence from atomic force microscopy imaging as a unique opportunity opened up by the modeling approach, we show that spatiotemporal characteristics of cellulose surface degradation by the system of synergizing cellulases were reproduced quantitatively at the nanometer resolution of the experimental data. This in turn gave useful prediction of the soluble sugar release rate. CONCLUSIONS Salient dynamic features of cellulose surface degradation by different cellulases acting in synergy were reproduced in simulations in good agreement with evidence from high-resolution visualization experiments. Due to the single-molecule resolution of the modeling approach, the utility of the presented model lies not only in predicting system behavior but also in elucidating inherently complex (e.g., stochastic) phenomena involved in enzymatic cellulose degradation. Thus, it creates synergy with experiment to advance the mechanistic understanding for improved application.
Collapse
Affiliation(s)
- Manuel Eibinger
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Thomas Zahel
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
| | - Thomas Ganner
- />Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Harald Plank
- />Institute for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
- />Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Bernd Nidetzky
- />Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010 Graz, Austria
- />Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
17
|
Shuai L, Luterbacher J. Organic Solvent Effects in Biomass Conversion Reactions. CHEMSUSCHEM 2016; 9:133-155. [PMID: 26676907 DOI: 10.1002/cssc.201501148] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes.
Collapse
Affiliation(s)
- Li Shuai
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), Station 6, CH.H2.545, 1015, Lausanne, Switzerland
| | - Jeremy Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL), Station 6, CH.H2.545, 1015, Lausanne, Switzerland.
| |
Collapse
|
18
|
Kurašin M, Kuusk S, Kuusk P, Sørlie M, Väljamäe P. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases. J Biol Chem 2015; 290:29074-85. [PMID: 26468285 DOI: 10.1074/jbc.m115.684977] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils.
Collapse
Affiliation(s)
| | - Silja Kuusk
- From the Institutes of Molecular and Cell Biology and
| | - Piret Kuusk
- Physics, University of Tartu, 51010 Tartu, Estonia and
| | - Morten Sørlie
- the Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1432, Norway
| | | |
Collapse
|
19
|
Malinowska KH, Rind T, Verdorfer T, Gaub HE, Nash MA. Quantifying Synergy, Thermostability, and Targeting of Cellulolytic Enzymes and Cellulosomes with Polymerization-Based Amplification. Anal Chem 2015; 87:7133-40. [DOI: 10.1021/acs.analchem.5b00936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Klara H. Malinowska
- Lehrstuhl für Angewandte
Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Thomas Rind
- Lehrstuhl für Angewandte
Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Tobias Verdorfer
- Lehrstuhl für Angewandte
Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Hermann E. Gaub
- Lehrstuhl für Angewandte
Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Michael A. Nash
- Lehrstuhl für Angewandte
Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| |
Collapse
|