1
|
Örn OE, Hagman A, Ismail M, Leiva Eriksson N, Hatti-Kaul R. Enhancing metabolic efficiency via novel constitutive promoters to produce protocatechuic acid in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:442. [PMID: 39153079 PMCID: PMC11330383 DOI: 10.1007/s00253-024-13256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
The antioxidant molecule protocatechuic acid (PCA) can also serve as a precursor for polymer building blocks. PCA can be produced in Escherichia coli overexpressing 3-dehydroshikimate dehydratase (DSD), an enzyme that catalyses the transformation of 3-dehydroshikimate to PCA. Nevertheless, optimizing the expression rate of recombinant enzymes is a key factor in metabolic engineering when producing biobased chemicals. In this study, a degenerate synthetic promoter approach was investigated to improve further the production of PCA. By limited screening of a randomized promoter library made using pSEVA221 plasmid in E. coli, three novel synthetic constitutive promoters were selected that increased the PCA yield from glucose by 10-21% compared to the inducible T7-promoter. RT-qPCR analysis showed that the DSD gene, regulated by the synthetic promoters, had high expression during the exponential phase, albeit the gene expression level dropped 250-fold during stationary phase. Besides the increased product yield, the synthetic promoters avoided the need for a costly inducer for gene expression. Screening of the entire promoter library is likely to provide more positive hits. The study also shows that E. coli transformed with the DSD gene on either pSEVA221 or pCDFDuet plasmids exhibit background PCA levels (~ 0.04 g/L) in the absence of a transcriptional regulatory element. KEY POINTS: • Degenerate synthetic promoters are remarkable tools to produce protocatechuic acid. • The constitutive synthetic promoters did not affect the growth rate of the bacterial host. • The use of constitutive synthetic promoters avoids the need for the costly inducer.
Collapse
Affiliation(s)
- Oliver Englund Örn
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Arne Hagman
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Mohamed Ismail
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Nélida Leiva Eriksson
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
2
|
Li Y, Zhao X, Yao M, Yang W, Han Y, Liu L, Zhang J, Liu J. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase. Microb Cell Fact 2023; 22:165. [PMID: 37644496 PMCID: PMC10466699 DOI: 10.1186/s12934-023-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
3-Hydroxybutanone (Acetoin, AC) and 2,3-butanediol (BD) are two essential four-carbon platform compounds with numerous pharmaceutical and chemical synthesis applications. AC and BD have two and three stereoisomers, respectively, while the application of the single isomer product in chemical synthesis is superior. AC and BD are glucose overflow metabolites produced by biological fermentation from a variety of microorganisms. However, the AC or BD produced by microorganisms using glucose is typically a mixture of various stereoisomers. This was discovered to be due to the simultaneous presence of multiple butanediol dehydrogenases (BDHs) in microorganisms, and AC and BD can be interconverted under BDH catalysis. In this paper, beginning with the synthesis pathways of microbial AC and BD, we review in detail the studies on the formation mechanisms of different stereoisomers of AC and BD, summarize the properties of different types of BDH that have been tabulated, and analyze the structural characteristics and affinities of different types of BDH by comparing them using literature and biological database data. Using microorganisms, recent research on the production of optically pure AC or BD was also reviewed. Limiting factors and possible solutions for chiral AC and BD production are discussed.
Collapse
Affiliation(s)
- Yuchen Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiangying Zhao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China.
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Mingjing Yao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Wenli Yang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yanlei Han
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Liping Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jianjun Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
3
|
Kou M, Cui Z, Fu J, Dai W, Wang Z, Chen T. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol. Microb Cell Fact 2022; 21:150. [PMID: 35879766 PMCID: PMC9310479 DOI: 10.1186/s12934-022-01875-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background 2,3-butanediol is an important platform compound which has a wide range of applications, involving in medicine, chemical industry, food and other fields. Especially the optically pure (2R,3R)-2,3-butanediol can be employed as an antifreeze agent and as the precursor for producing chiral compounds. However, some (2R,3R)-2,3-butanediol overproducing strains are pathogenic such as Enterobacter cloacae and Klebsiella oxytoca. Results In this study, a (3R)-acetoin overproducing C. glutamicum strain, CGS9, was engineered to produce optically pure (2R,3R)-2,3-butanediol efficiently. Firstly, the gene bdhA from B. subtilis 168 was integrated into strain CGS9 and its expression level was further enhanced by using a strong promoter Psod and ribosome binding site (RBS) with high translation initiation rate, and the (2R,3R)-2,3-butanediol titer of the resulting strain was increased by 33.9%. Then the transhydrogenase gene udhA from E. coli was expressed to provide more NADH for 2,3-butanediol synthesis, which reduced the accumulation of the main byproduct acetoin by 57.2%. Next, a mutant atpG was integrated into strain CGK3, which increased the glucose consumption rate by 10.5% and the 2,3-butanediol productivity by 10.9% in shake-flask fermentation. Through fermentation engineering, the most promising strain CGK4 produced a titer of 144.9 g/L (2R,3R)-2,3-butanediol with a yield of 0.429 g/g glucose and a productivity of 1.10 g/L/h in fed-batch fermentation. The optical purity of the resulting (2R,3R)-2,3-butanediol surpassed 98%. Conclusions To the best of our knowledge, this is the highest titer of optically pure (2R,3R)-2,3-butanediol achieved by GRAS strains, and the result has demonstrated that C. glutamicum is a competitive candidate for (2R,3R)-2,3-butanediol production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01875-5.
Collapse
|
4
|
Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 2021; 54:107783. [PMID: 34098005 DOI: 10.1016/j.biotechadv.2021.107783] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Ashish A Prabhu
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece.
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
5
|
Sathesh-Prabu C, Kim D, Lee SK. Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system. BIORESOURCE TECHNOLOGY 2020; 309:123361. [PMID: 32305846 DOI: 10.1016/j.biortech.2020.123361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 05/12/2023]
Abstract
A glucose-inducible gene expression system has been developed using HexR-Pzwf1 of Pseudomonas putida to induce the metabolic pathways. Since the system is controlled by an Entner-Doudoroff pathway (EDP) intermediate, the EDP of Escherichia coli was activated by deleting pfkA and gntR genes. Growth experiment with green fluorescent protein as a reporter indicated that the induction of this system was tightly controlled over a wide range of glucose in E. coli without adding any inducer. 2,3-butanediol (BDO) synthetic pathway genes were expressed by this system in the pfkA-gntR-deleted strain. The resultant engineered strain harbouring this system efficiently produced BDO with a 71% increased titer than the control strain. The strain was also able to produce BDO from a mixture of glucose and xylose which is comparable to glucose alone. Further, the strain produced 11 g/L of BDO at a yield of 0.48 g/g from the hydrolysate of empty palm fruit bunches. This system can also be applied in many other bio-production processes from lignocellulosic biomass.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyuk Kim
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Zhou J, Lian J, Rao CV. Metabolic engineering of Parageobacillus thermoglucosidasius for the efficient production of (2R, 3R)-butanediol. Appl Microbiol Biotechnol 2020; 104:4303-4311. [PMID: 32221689 DOI: 10.1007/s00253-020-10553-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 11/27/2022]
Abstract
High-temperature fermentation using thermophilic microorganisms may provide cost-effective processes for the industrial production of fuels and chemicals, due to decreased hygiene and cooling costs. In the present study, the genetically trackable thermophile Parageobacillus thermoglucosidasius DSM2542T was engineered to produce (2R, 3R)-butanediol (R-BDO), a valuable chemical with broad industrial applications. The R-BDO biosynthetic pathway was optimized by testing different combinations of pathway enzymes, with acetolactate synthase (AlsS) from Bacillus subtilis and acetolactate decarboxylase (AlsD) from Streptococcus thermophilus yielding the highest production in P. thermoglucosidasius DSM2542T. Following fermentation condition optimization, shake flask fermentation at 55 °C resulted in the production of 7.2 g/L R-BDO with ~ 72% theoretical yield. This study details the microbial production of R-BDO at the highest fermentation temperature reported to date and demonstrates that P. thermoglucosidasius DSM2542T is a promising cell factory for the production of fuels and chemicals using high-temperature fermentation.
Collapse
Affiliation(s)
- Jiewen Zhou
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd, 866 Moganshan Road, Hangzhou, 310011, China
| | - Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Hakizimana O, Matabaro E, Lee BH. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 25:e00397. [PMID: 31853445 PMCID: PMC6911977 DOI: 10.1016/j.btre.2019.e00397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023]
Abstract
2,3-Butanediol (2,3-BD) is a propitious compound with many industrial uses. 2,3-BD production has always been hampered by low fermentation yields and high production costs. 2,3-BD production may be enhanced by optimization of culture conditions and use of high-producing strains. TMetabolic engineering tools are currently used to generate high-yielding strains.
2,3-Butanediol (2,3-BD) is a propitious compound with many industrial uses ranging from rubber, fuels, and cosmetics to food additives. Its microbial production has especially attracted as an alternative way to the petroleum-based production. However, 2,3-BD production has always been hampered by low yields and high production costs. The enhanced production of 2,3-butanediol requires screening of the best strains and a systematic optimization of fermentation conditions. Moreover, the metabolic pathway engineering is essential to achieve the best results and minimize the production costs by rendering the strains to use efficiently low cost substrates. This review is to provide up-to-date information on the current strategies and parameters for the enhanced microbial production of 2,3-BD.
Collapse
Key Words
- 2, 3-Butanediol
- 2,3-BD, 2,3-Butanediol
- AlsD, α-acetolactate decarboxylase
- AlsS, α-acetolactate synthase
- Butanediol dehydrogenase
- Klebsiella
- MEK, methyl ethyl ketone
- Metabolic engineering
- PUMAs, polyurethane-melamides
- Species
- ackA, acetate kinase-phosphotransacetylase
- adhE, alcohol dehydrogenase
- gldA, glycerophosphate dehydrogenase gene
- ldhA, lactate dehydrogenase
Collapse
Affiliation(s)
- Olivier Hakizimana
- School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu Prov, China
| | - Emmanuel Matabaro
- Department of Biology, Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland
| | - Byong H Lee
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A2B4, Canada
| |
Collapse
|
8
|
Gao J, Jiang RF, Cao C, Ni H, Zhang L, Deng LN, Xu H, Jiang RY. Effects of amino acids on the fermentation of inulin or glucose to produce R,R-2,3-butanediol using Paenibacillus polymyxa ZJ-9. Lett Appl Microbiol 2019; 69:424-430. [PMID: 31613992 DOI: 10.1111/lam.13234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/27/2022]
Abstract
This study investigated the effects of different amino acids on the fermentation of pure inulin and glucose using Paenibacillus polymyxa ZJ-9 in order to improve the production of R,R-2,3-butanediol (R,R-2,3-BD) respectively. The inulin extract from Jerusalem artichoke tubers contained 19 common amino acids, which were detected by HPLC. Arg featured the highest content (1290 mg l-1 ). A single add-back experiment of 20 common amino acids indicated that Asn, Ser, His and Arg are key amino acids in R,R-2,3-BD synthesis during inulin fermentation using P. polymyxa ZJ-9. The corresponding yields of R,R-2,3-BD reached 24·32, 22·32, 22·03 and 21·04 g l-1 after the four key amino acids (1·5 g l-1 each) and glucose were evaluated in this fermentation. The yields were considerably higher than that of the control group (12·11 g l-1 ). With the addition of the mixture of four amino acids (1·5 g l-1 each), the highest yields of R,R-2,3-BD (25·07 and 17·47 g l-1 ) were obtained with the increase of 107·0 and 89·1% during the fermentation of glucose and pure inulin respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Paenibacillus polymyxa is a micro-organism with a reported potential for industrialized production of R,R-2,3-butanediol. The nitrogen sources have a significant effect on R,R-2,3-butanediol formation using P. polymyxa. This study demonstrated a highly efficient new method to improve the yield of R,R-2,3-butanediol without adding other nitrogen sources except amino acids during the fermentation. This will therefore decrease the production cost of R,R-2,3-butanediol and provide a new strategy for promoting synthesis of amino acid-dependent products.
Collapse
Affiliation(s)
- J Gao
- School of Marine and Bioengineering, Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments, Yancheng Institute of Technology, Yancheng, China
| | - R F Jiang
- School of Marine and Bioengineering, Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments, Yancheng Institute of Technology, Yancheng, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - C Cao
- School of Marine and Bioengineering, Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments, Yancheng Institute of Technology, Yancheng, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - H Ni
- School of Marine and Bioengineering, Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments, Yancheng Institute of Technology, Yancheng, China
| | - L Zhang
- School of Marine and Bioengineering, Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments, Yancheng Institute of Technology, Yancheng, China
| | - L N Deng
- School of Marine and Bioengineering, Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments, Yancheng Institute of Technology, Yancheng, China
| | - H Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - R Y Jiang
- School of Marine and Bioengineering, Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
9
|
Yang B, Liang S, Liu H, Liu J, Cui Z, Wen J. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol. BIORESOURCE TECHNOLOGY 2018; 267:599-607. [PMID: 30056370 DOI: 10.1016/j.biortech.2018.07.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
In this study, the engineered E. coli was constructed for efficient transformation of glycerol to 1,3-propanediol (1,3-PDO). To regenerate NADPH, the key bottleneck in 1,3-PDO production, heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDN, encoded by gapN) pathway was introduced, and the gapN expression level was fine-tuned with specific 5'-untranslated regions (5'-UTR) to balance the carbon flux distribution between the metabolic pathways of NADPH regeneration and 1,3-PDO biosynthesis. Additionally, glucose was added to the medium to promote glycerol utilization and cell growth. To elevate the utilization of glycerol in the presence of glucose, E. coli JA11 was constructed through destroying PEP-dependent glucose transport system while strengthening the ATP-dependent transport system. Subsequent optimization of nitrogen sources further improved 1,3-PDO production. Finally, under the optimal fermentation condition, E. coli JA11 produced 13.47 g/L 1,3-PDO, with a yield of 0.64 mol/mol, increased by 325% and 100% compared with the original engineered E. coli JA03, respectively.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Tianjin 300457, China; Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, China
| | - Jiao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhenzhen Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
11
|
Zhang L, Cao C, Jiang R, Xu H, Xue F, Huang W, Ni H, Gao J. Production of R,R-2,3-butanediol of ultra-high optical purity from Paenibacillus polymyxa ZJ-9 using homologous recombination. BIORESOURCE TECHNOLOGY 2018; 261:272-278. [PMID: 29673996 DOI: 10.1016/j.biortech.2018.04.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The present study describes the use of metabolic engineering to achieve the production of R,R-2,3-butanediol (R,R-2,3-BD) of ultra-high optical purity (>99.99%). To this end, the diacetyl reductase (DAR) gene (dud A) of Paenibacillus polymyxa ZJ-9 was knocked out via homologous recombination between the genome and the previously constructed targeting vector pRN5101-L'C in a process based on homologous single-crossover. PCR verification confirmed the successful isolation of the dud A gene disruption mutant P. polymyxa ZJ-9-△dud A. Moreover, fermentation results indicated that the optical purity of R,R-2,3-BD increased from about 98% to over 99.99%, with a titer of 21.62 g/L in Erlenmeyer flasks. The latter was further increased to 25.88 g/L by fed-batch fermentation in a 5-L bioreactor.
Collapse
Affiliation(s)
- Li Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Can Cao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Ruifan Jiang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Weiwei Huang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hao Ni
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
12
|
Production of optically pure 2,3-butanediol from Miscanthus floridulus hydrolysate using engineered Bacillus licheniformis strains. World J Microbiol Biotechnol 2018; 34:66. [PMID: 29687256 DOI: 10.1007/s11274-018-2450-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 01/02/2023]
Abstract
2,3-Butanediol (2,3-BD) can be produced by fermentation of natural resources like Miscanthus. Bacillus licheniformis mutants, WX-02ΔbudC and WX-02ΔgldA, were elucidated for the potential to use Miscanthus as a cost-effective biomass to produce optically pure 2,3-BD. Both WX-02ΔbudC and WX-02ΔgldA could efficiently use xylose as well as mixed sugars of glucose and xylose to produce optically pure 2,3-BD. Batch fermentation of M. floridulus hydrolysate could produce 21.6 g/L D-2,3-BD and 23.9 g/L meso-2,3-BD in flask, and 13.8 g/L D-2,3-BD and 13.2 g/L meso-2,3-BD in bioreactor for WX-02ΔbudC and WX-02ΔgldA, respectively. Further fed-batch fermentation of hydrolysate in bioreactor showed both of two strains could produce optically pure 2,3-BD, with 32.2 g/L D-2,3-BD for WX-02ΔbudC and 48.5 g/L meso-2,3-BD for WX-02ΔgldA, respectively. Collectively, WX-02ΔbudC and WX-02ΔgldA can efficiently produce optically pure 2,3-BD with M. floridulus hydrolysate, and these two strains are candidates for industrial production of optical purity of 2,3-BD with M. floridulus hydrolysate.
Collapse
|
13
|
Yang Z, Zhang Z. Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol Adv 2018; 37:569-578. [PMID: 29608949 DOI: 10.1016/j.biotechadv.2018.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/17/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022]
Abstract
As a significant platform chemical, 2, 3-butanediol (2, 3-BD) has found wide applications in industry. The success of microbial 2, 3-BD production was limited by the use of pathogenic microorganisms and low titer in engineered hosts. The utilization of cheaply available feedstock such as lignocellulose was another major challenge to achieve economic production of 2, 3-BD. To address those issues, engineering strategies including both genetic modifications and process optimization have been employed. In this review, we summarized the state-of-the-art progress in the biotechnological production of 2, 3-BD. Metabolic engineering and process engineering strategies were discussed.
Collapse
Affiliation(s)
- Zhiliang Yang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada.
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
14
|
Yang Z, Zhang Z. Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:35. [PMID: 29449883 PMCID: PMC5808657 DOI: 10.1186/s13068-018-1031-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND 2,3-butanediol (2,3-BD) is a bulk platform chemical with various potential applications such as aviation fuel. 2,3-BD has three optical isomers: (2R, 3R)-, (2S, 3S)- and meso-2,3-BD. Optically pure 2,3-BD is a crucial precursor for the chiral synthesis and it can also be used as anti-freeze agent due to its low freezing point. 2,3-BD has been produced in both native and non-native hosts. Several pathogenic bacteria were reported to produce 2,3-BD in mixture of its optical isomers including Klebsiella pneumoniae and Klebsiella oxytoca. Engineered hosts based on episomal plasmid expression such as Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis are not ideal for industrial fermentation due to plasmid instability. RESULTS Pichia pastoris is generally regarded as safe and a well-established host for high-level heterologous protein production. To produce pure (2R, 3R)-2,3-BD enantiomer, we developed a P. pastoris strain by introducing a synthetic pathway. The alsS and alsD genes from B. subtilis were codon-optimized and synthesized. The BDH1 gene from S. cerevisiae was cloned. These three pathway genes were integrated into the genome of P. pastoris and expressed under the control of GAP promoter. Production of (2R, 3R)-2,3-BD was achieved using glucose as feedstock. The optical purity of (2R, 3R)-2,3-BD was more than 99%. The titer of (2R, 3R)-2,3-BD reached 12 g/L with 40 g/L glucose as carbon source in shake flask fermentation. The fermentation conditions including pH, agitation speeds and aeration rates were optimized in batch cultivations. The highest titer of (2R, 3R)-2,3-BD achieved in fed-batch fermentation using YPD media was 45 g/L. The titer of 2,3-BD was enhanced to 74.5 g/L through statistical medium optimization. CONCLUSIONS The potential of engineering P. pastoris into a microbial cell factory for biofuel production was evaluated in this work using (2R, 3R)-2,3-BD as an example. Engineered P. pastoris could be a promising workhorse for the production of optically pure (2R, 3R)-2,3-BD.
Collapse
Affiliation(s)
- Zhiliang Yang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5 Canada
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, ON K1N 6N5 Canada
| |
Collapse
|
15
|
Liang K, Shen CR. Engineering cofactor flexibility enhanced 2,3-butanediol production in Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1605-1612. [PMID: 29116429 DOI: 10.1007/s10295-017-1986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022]
Abstract
Enzymatic reduction of acetoin into 2,3-butanediol (2,3-BD) typically requires the reduced nicotinamide adenine dinucleotide (NADH) or its phosphate form (NADPH) as electron donor. Efficiency of 2,3-BD biosynthesis, therefore, is heavily influenced by the enzyme specificity and the cofactor availability which varies dynamically. This work describes the engineering of cofactor flexibility for 2,3-BD production by simultaneous overexpression of an NADH-dependent 2,3-BD dehydrogenase from Klebsiella pneumoniae (KpBudC) and an NADPH-specific 2,3-BD dehydrogenase from Clostridium beijerinckii (CbAdh). Co-expression of KpBudC and CbAdh not only enabled condition versatility for 2,3-BD synthesis via flexible utilization of cofactors, but also improved production stereo-specificity of 2,3-BD without accumulation of acetoin. With optimization of medium and fermentation condition, the co-expression strain produced 92 g/L of 2,3-BD in 56 h with 90% stereo-purity for (R,R)-isoform and 85% of maximum theoretical yield. Incorporating cofactor flexibility into the design principle should benefit production of bio-based chemical involving redox reactions.
Collapse
Affiliation(s)
- Keming Liang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Claire R Shen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| |
Collapse
|
16
|
Reshamwala SMS, Deb SS, Lali AM. A shortened, two-enzyme pathway for 2,3-butanediol production in Escherichia coli. ACTA ACUST UNITED AC 2017; 44:1273-1277. [DOI: 10.1007/s10295-017-1957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/18/2017] [Indexed: 01/27/2023]
Abstract
Abstract
The platform chemical 2,3-butanediol (2,3-BDO) is produced by a number of microorganisms via a three-enzyme pathway starting from pyruvate. Here, we report production of 2,3-BDO via a shortened, two-enzyme pathway in Escherichia coli. A synthetic operon consisting of the acetolactate synthase (ALS) and acetoin reductase (AR) genes from Enterobacter under control of the T7 promoter was cloned in an episomal plasmid. E. coli transformed with this plasmid produced 2,3-BDO and the pathway intermediate acetoin, demonstrating that the shortened pathway was functional. To assemble a synthetic operon for inducer- and plasmid-free production of 2,3-BDO, ALS and AR genes were integrated in the E. coli genome under control of the constitutive ackA promoter. Shake flask-level cultivation led to accumulation of ~1 g/L acetoin and ~0.66 g/L 2,3-BDO in the medium. The novel biosynthetic route for 2,3-BDO biosynthesis described herein provides a simple and cost-effective approach for production of this important chemical.
Collapse
Affiliation(s)
- Shamlan M S Reshamwala
- 0000 0001 0668 0201 grid.44871.3e DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
| | - Shalini S Deb
- 0000 0001 0668 0201 grid.44871.3e DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
| | - Arvind M Lali
- 0000 0001 0668 0201 grid.44871.3e DBT-ICT Centre for Energy Biosciences Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
- 0000 0001 0668 0201 grid.44871.3e Department of Chemical Engineering Institute of Chemical Technology Matunga (East) 400019 Mumbai Maharashtra India
| |
Collapse
|
17
|
Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 2017; 37:990-1005. [DOI: 10.1080/07388551.2017.1299680] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu Province, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu Province, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Yi HS, Ahn YR, Song GC, Ghim SY, Lee S, Lee G, Ryu CM. Impact of a Bacterial Volatile 2,3-Butanediol on Bacillus subtilis Rhizosphere Robustness. Front Microbiol 2016; 7:993. [PMID: 27446033 PMCID: PMC4923110 DOI: 10.3389/fmicb.2016.00993] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/09/2016] [Indexed: 12/16/2022] Open
Abstract
Volatile compounds, such as short chain alcohols, acetoin, and 2,3-butanediol, produced by certain strains of root-associated bacteria (rhizobacteria) elicit induced systemic resistance in plants. The effects of bacterial volatile compounds (BVCs) on plant and fungal growth have been extensively studied; however, the impact of bacterial BVCs on bacterial growth remains poorly understood. In this study the effects of a well-characterized bacterial volatile, 2,3-butanediol, produced by the rhizobacterium Bacillus subtilis, were examined in the rhizosphere. The nature of 2,3-butanediol on bacterial cells was assessed, and the effect of the molecule on root colonization was also determined. Pepper roots were inoculated with three B. subtilis strains: the wild type, a 2,3-butanediol overexpressor, and a 2,3-butanediol null mutant. The B. subtilis null strain was the first to be eliminated in the rhizosphere, followed by the wild-type strain. The overexpressor mutant was maintained at roots for the duration of the experiment. Rhizosphere colonization by a saprophytic fungus declined from 14 days post-inoculation in roots treated with the B. subtilis overexpressor strain. Next, exudates from roots exposed to 2,3-butanediol were assessed for their impact on fungal and bacterial growth in vitro. Exudates from plant roots pre-treated with the 2,3-butanediol overexpressor were used to challenge various microorganisms. Growth was inhibited in a saprophytic fungus (Trichoderma sp.), the 2,3-butanediol null B. subtilis strain, and a soil-borne pathogen, Ralstonia solanacearum. Direct application of 2,3-butanediol to pepper roots, followed by exposure to R. solanacearum, induced expression of Pathogenesis-Related (PR) genes such as CaPR2, CaSAR8.2, and CaPAL. These results indicate that 2,3-butanediol triggers the secretion of root exudates that modulate soil fungi and rhizosphere bacteria. These data broaden our knowledge regarding bacterial volatiles in the rhizosphere and their roles in bacterial fitness and as important inducers of plant defenses.
Collapse
Affiliation(s)
- Hwe-Su Yi
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, DaejeonSouth Korea; School of Life Science, Kyungpook National University, DaeguSouth Korea
| | - Yeo-Rim Ahn
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, DaejeonSouth Korea; Department of Biological Science, Korea Advanced Institute of Science and Technology, DaejeonSouth Korea
| | - Geun C Song
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon South Korea
| | - Sa-Youl Ghim
- School of Life Science, Kyungpook National University, Daegu South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon South Korea
| | - Gahyung Lee
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, DaejeonSouth Korea; Biosystems and Bioengineering Program, School of Science, University of Science and Technology, DaejeonSouth Korea
| |
Collapse
|
19
|
Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:90. [PMID: 27099629 PMCID: PMC4837526 DOI: 10.1186/s13068-016-0502-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BD) with low toxicity to microbes, could be a promising alternative for biofuel production. However, most of the 2,3-BD producers are opportunistic pathogens that are not suitable for industrial-scale fermentation. In our previous study, wild-type Bacillus subtilis 168, as a class I microorganism, was first found to generate only d-(-)-2,3-BD (purity >99 %) under low oxygen conditions. RESULTS In this work, B. subtilis was engineered to produce chiral pure meso-2,3-BD. First, d-(-)-2,3-BD production was abolished by deleting d-(-)-2,3-BD dehydrogenase coding gene bdhA, and acoA gene was knocked out to prevent the degradation of acetoin (AC), the immediate precursor of 2,3-BD. Next, both pta and ldh gene were deleted to decrease the accumulation of the byproducts, acetate and l-lactate. We further introduced the meso-2,3-BD dehydrogenase coding gene budC from Klebsiella pneumoniae CICC10011, as well as overexpressed alsSD in the tetra-mutant (ΔacoAΔbdhAΔptaΔldh) to achieve the efficient production of chiral meso-2,3-BD. Finally, the pool of NADH availability was further increased to facilitate the conversion of meso-2,3-BD from AC by overexpressing udhA gene (coding a soluble transhydrogenase) and low dissolved oxygen control during the cultivation. Under microaerobic oxygen conditions, the best strain BSF9 produced 103.7 g/L meso-2,3-BD with a yield of 0.487 g/g glucose in the 5-L batch fermenter, and the titer of the main byproduct AC was no more than 1.1 g/L. CONCLUSION This work offered a novel strategy for the production of chiral pure meso-2,3-BD in B. subtilis. To our knowledge, this is the first report indicating that metabolic engineered B. subtilis could produce chiral meso-2,3-BD with high purity under limited oxygen conditions. These results further demonstrated that B. subtilis as a class I microorganism is a competitive industrial-level meso-2,3-BD producer.
Collapse
Affiliation(s)
- Jing Fu
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Guangxin Huo
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Lili Feng
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Yufeng Mao
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiwen Wang
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hongwu Ma
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Tao Chen
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- />Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, 430068 China
| | - Xueming Zhao
- />Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
20
|
Yang S, Mohagheghi A, Franden MA, Chou YC, Chen X, Dowe N, Himmel ME, Zhang M. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:189. [PMID: 27594916 PMCID: PMC5010730 DOI: 10.1186/s13068-016-0606-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/26/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. RESULTS 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. CONCLUSIONS This study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically.
Collapse
Affiliation(s)
- Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Ali Mohagheghi
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Mary Ann Franden
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Yat-Chen Chou
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Nancy Dowe
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| |
Collapse
|
21
|
Zhao C, Su H, Liu Y. Catalytic mechanism of acetolactate decarboxylase from Brevibacillus brevis towards both enantiomers of α-acetolactate. RSC Adv 2016. [DOI: 10.1039/c6ra18264j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
QM/MM calculations detail the conversion of both enantiomers of α-acetolactate to (R)-acetoin. (S)-α-acetolactate can be directly converted, whereas (R)-α-acetolactate has to firstly rearrange to the natural (S)-enantiomer through a carboxylate migration.
Collapse
Affiliation(s)
- Chenxiao Zhao
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Hao Su
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
22
|
Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production. Appl Microbiol Biotechnol 2015; 100:637-47. [PMID: 26428232 DOI: 10.1007/s00253-015-7013-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
Many microorganisms could naturally produce (R, R)-2,3-butanediol ((R, R)-2,3-BD), which has unique applications due to its special chiral group and spatial configuration. But the low enantio-purity of the product hindered the development of large-scale production. In this work, a synthetic constitutive metabolic pathway for enantiomerically pure (R, R)-2,3-BD biosynthesis was constructed in Escherichia coli with vector pUC6S, which does not contain any lac sequences. The expression of this artificial constructed gene cluster was optimized by using two different strength of promoters (AlperPLTet01 (P01) and AlperBB (PBB)). The strength of P01 is twice stronger than PBB. The fermentation results suggested that the yield of (R, R)-2,3-BD was higher when using the stronger promoter. Compared with the wild type, the recombinant strain E. coli YJ2 produced a small amount of acetic acid and showed higher glucose consumption rate and higher cell density, which indicated a protection against acetic acid inhibition. In order to further increase the (R, R)-2,3-BD production by reducing the accumulation of its precursor acetoin, the synthetic operon was reconstructed by adding the strong promoter P01 in front of the gene ydjL coding for the enzyme of (R, R)-2,3-BD dehydrogenase which catalyzes the conversion of acetoin to (R, R)-2,3-BD. The engineered strain E. coli YJ3 showed a 20 % decrease in acetoin production compared with that of E. coli YJ2. After optimization the fermentation conditions, 30.5 g/L of (R, R)-2,3-BD and 3.2 g/L of acetoin were produced from 80 g/L of glucose within 18 h, with an enantio-purity over 99 %.
Collapse
|
23
|
Putative carotenoid genes expressed under the regulation of Shine–Dalgarno regions in Escherichia coli for efficient lycopene production. Biotechnol Lett 2015; 37:2303-10. [DOI: 10.1007/s10529-015-1922-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/13/2015] [Indexed: 11/26/2022]
|
24
|
Chu H, Xin B, Liu P, Wang Y, Li L, Liu X, Zhang X, Ma C, Xu P, Gao C. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:143. [PMID: 26379775 PMCID: PMC4570510 DOI: 10.1186/s13068-015-0324-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Butane-2,3-diol (2,3-BD) is a fuel and platform biochemical with various industrial applications. 2,3-BD exists in three stereoisomeric forms: (2R,3R)-2,3-BD, meso-2,3-BD and (2S,3S)-2,3-BD. Microbial fermentative processes have been reported for (2R,3R)-2,3-BD and meso-2,3-BD production. RESULTS The production of (2S,3S)-2,3-BD from glucose was acquired by whole cells of recombinant Escherichia coli coexpressing the α-acetolactate synthase and meso-butane-2,3-diol dehydrogenase of Enterobacter cloacae subsp. dissolvens strain SDM. An optimal biocatalyst for (2S,3S)-2,3-BD production, E. coli BL21 (pETDuet-PT7-budB-PT7-budC), was constructed and the bioconversion conditions were optimized. With the addition of 10 mM FeCl3 in the bioconversion system, (2S,3S)-2,3-BD at a concentration of 2.2 g/L was obtained with a stereoisomeric purity of 95.0 % using the metabolically engineered strain from glucose. CONCLUSIONS The engineered E. coli strain is the first one that can be used in the direct production of (2S,3S)-2,3-BD from glucose. The results demonstrated that the method developed here would be a promising process for efficient (2S,3S)-2,3-BD production.
Collapse
Affiliation(s)
- Haipei Chu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Bo Xin
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Peihai Liu
- />Rizhao Entry-Exit Inspection and Quarantine Bureau, Rizhao, 276800 People’s Republic of China
| | - Yu Wang
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Lixiang Li
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Xiuxiu Liu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Xuan Zhang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Cuiqing Ma
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ping Xu
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Chao Gao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|