1
|
Allard JL, Aguirre M, Gupta R, Chua SMH, Shields KA, Lua LHL. Effective parallel evaluation of molecular design, expression and bioactivity of novel recombinant butyrylcholinesterase medical countermeasures. Chem Biol Interact 2024; 403:111219. [PMID: 39222902 DOI: 10.1016/j.cbi.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.
Collapse
Affiliation(s)
- Joanne L Allard
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia; Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia.
| | - Miguel Aguirre
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Ruchi Gupta
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Sheena M H Chua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| | - Katherine A Shields
- Chemical, Biological, Radiological and Nuclear Defence Branch, Defence Science and Technology Group (DSTG), Victoria, 3027, Australia
| | - Linda H L Lua
- Protein Expression Facility, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
2
|
Allard JL, Shields KA, Munro T, Lua LHL. Design and production strategies for developing a recombinant butyrylcholinesterase medical countermeasure for Organophosphorus poisoning. Chem Biol Interact 2022; 363:109996. [PMID: 35654125 DOI: 10.1016/j.cbi.2022.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Organophosphorus nerve agents represent a serious chemical threat due to their ease of production and scale of impact. The recent use of the nerve agent Novichok has re-emphasised the need for broad-spectrum medical countermeasures (MCMs) to these agents. However, current MCMs are limited. Plasma derived human butyrylcholinesterase (huBChE) is a promising novel bioscavenger MCM strategy, but is prohibitively expensive to isolate from human plasma at scale. Efforts to produce recombinant huBChE (rBChE) in various protein expression platforms have failed to achieve key critical attributes of huBChE such as circulatory half-life. These proteins often lack critical features such as tetrameric structure and requisite post-translational modifications. This review evaluates previous attempts to generate rBChE and assesses recent advances in mammalian cell expression and protein engineering strategies that could be deployed to achieve the required half-life and yield for a viable rBChE MCM. This includes the addition of a proline-rich attachment domain, fusion proteins, post translational modifications, expression system selection and optimised downstream processes. Whilst challenges remain, a combinatorial approach of these strategies demonstrates potential as a technically feasible approach to achieving a bioactive and cost effective bioscavenger MCM.
Collapse
Affiliation(s)
- Joanne L Allard
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia; The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Katherine A Shields
- Defence Science and Technology Group, Fishermans Bend, Victoria, 3207, Australia
| | - TrentP Munro
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Linda H L Lua
- The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
3
|
Varma A, Gemeda HB, McNulty MJ, McDonald KA, Nandi S, Knipe JM. Immobilization of transgenic plant cells towards bioprinting for production of a recombinant biodefense agent. Biotechnol J 2021; 16:e2100133. [PMID: 34347377 DOI: 10.1002/biot.202100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022]
Abstract
Transgenic rice cells (Oryza sativa) producing recombinant butyrylcholinesterase (BChE) as a prophylactic/therapeutic against organophosphate nerve agent poisoning, cocaine toxicity, and neurodegenerative diseases like Alzheimer's were immobilized in a polyethylene glycol-based hydrogel. The cells were sustained for 14 days in the semi-solid matrix, undergoing a growth phase from days 0-6, a BChE production phase in sugar-free medium from days 6-12, and a growth/recovery phase from days 12-14. Throughout this period, the cells maintained similar viability to those in suspension cultures and displayed analogous sugar consumption trends. The rice cells in the hydrogel also produced a significant amount of active BChE, comparable to the levels produced in liquid cultures. A considerable fraction of this BChE was secreted into the media, allowing for easier product separation. To the best of our knowledge, this proof-of-concept is the first report of immobilization of recombinant plant cells for continuous production of high-value heterologous proteins. This work serves as a foundation for further investigation towards plant cell bioprinting and the development of a simple, efficient, robust, modular, and potentially field-deployable bioreactor system for the manufacture of biologics. GRAPHICAL ABSTRACT AND LAY SUMMARY: Transgenic rice cells were combined with a polyethylene glycol tetra-acrylate (PEGTA) and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) bioink and cured with UV light to construct an immobilized cell-based protein production system. The cells were maintained for 14 days in the hydrogel matrix and were induced to actively make and secrete recombinant butyrylcholinesterase, a complex enzyme that irreversibly binds to and can hydrolyze organophosphate. This proof-of-concept study showcases the use of immobilized and potentially bioprintable plant cells to produce high-value proteins with prophylactic and therapeutic applications.
Collapse
Affiliation(s)
- Anika Varma
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Hawi B Gemeda
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare Initiative, University of California, Davis, California, USA
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare Initiative, University of California, Davis, California, USA
| | - Jennifer M Knipe
- Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
4
|
Macharoen K, Du M, Jung S, McDonald KA, Nandi S. Production of recombinant butyrylcholinesterase from transgenic rice cell suspension cultures in a pilot-scale bioreactor. Biotechnol Bioeng 2020; 118:1431-1443. [PMID: 33241854 DOI: 10.1002/bit.27638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Producing recombinant proteins in transgenic plant cell suspension cultures in bioreactors provides controllability, reproducibility, scalability, and low-cost production, although low yields remain the major challenge. The studies on scaling-up to pilot-scale bioreactors, especially in conventional stainless-steel stirred tank bioreactors (STB), to produce recombinant proteins in plant cell suspension cultures are very limited. In this study, we scaled-up the production of rice recombinant butyrylcholinesterase (rrBChE), a complex hydrolase enzyme that can be used to prophylactically and therapeutically treat against organophosphorus nerve agents and pesticide exposure, from metabolically regulated transgenic rice cell suspension cultures in a 40-L pilot-scale STB. Employing cyclical operation together with a simplified-process operation (controlling gas sparging rate rather than dissolved oxygen and allowing natural sugar depletion) identified in lab-scale (5 L) bioreactor studies, we found a consistent maximum total active rrBChE production level of 46-58 µg/g fresh weight in four cycles over 82 days of semicontinuous operation. Additionally, maintaining the overall volumetric oxygen mass transfer coefficient (kL a) in the pilot-scale STB to be equivalent to the lab-scale STB improves the maximum total active rrBChE production level and the maximum volumetric productivity to 85 µg/g fresh weight and 387 µg L-1 day-1 , respectively, which are comparable to the lab-scale culture. Here, we demonstrate pilot-scale bioreactor performance using a metabolically regulated transgenic rice cell culture for long-term, reproducible, and sustained production of rrBChE.
Collapse
Affiliation(s)
| | - Min Du
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Seongwon Jung
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare® Initiative, University of California, Davis, California, USA
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California, USA.,Global HealthShare® Initiative, University of California, Davis, California, USA
| |
Collapse
|
5
|
Simplified bioreactor processes for recombinant butyrylcholinesterase production in transgenic rice cell suspension cultures. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Macharoen K, Li Q, Márquez-Escobar VA, Corbin JM, Lebrilla CB, Nandi S, McDonald KA. Effects of Kifunensine on Production and N-Glycosylation Modification of Butyrylcholinesterase in a Transgenic Rice Cell Culture Bioreactor. Int J Mol Sci 2020; 21:ijms21186896. [PMID: 32962231 PMCID: PMC7555773 DOI: 10.3390/ijms21186896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The production and N-glycosylation of recombinant human butyrylcholinesterase (BChE), a model highly glycosylated therapeutic protein, in a transgenic rice cell suspension culture treated with kifunensine, a strong α-mannosidase I inhibitor, was studied in a 5 L bioreactor. A media exchange was performed at day 7 of cultivation by removing spent sugar-rich medium (NB+S) and adding fresh sugar-free (NB-S) medium to induce the rice α-amylase 3D (RAmy3D) promoter to produce rice recombinant human BChE (rrBChE). Using a 1.25X-concentrated sugar-free medium together with an 80% reduced working volume during the media exchange led to a total active rrBChE production level of 79 ± 2 µg (g FW)-1 or 7.5 ± 0.4 mg L-1 in the presence of kifunensine, which was 1.5-times higher than our previous bioreactor runs using normal sugar-free (NB-S) media with no kifunensine treatment. Importantly, the amount of secreted active rrBChE in culture medium was enhanced in the presence of kifunensine, comprising 44% of the total active rrBChE at day 5 following induction. Coomassie-stained SDS-PAGE gel and Western blot analyses revealed different electrophoretic migration of purified rrBChE bands with and without kifunensine treatment, which was attributed to different N-glycoforms. N-Glycosylation analysis showed substantially increased oligomannose glycans (Man5/6/7/8) in rrBChE treated with kifunensine compared to controls. However, the mass-transfer limitation of kifunensine was likely the major reason for incomplete inhibition of α-mannosidase I in this bioreactor study.
Collapse
Affiliation(s)
- Kantharakorn Macharoen
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Veronica A. Márquez-Escobar
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Jasmine M. Corbin
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA; (Q.L.); (C.B.L.)
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA; (K.M.); (V.A.M.-E.); (J.M.C.); (S.N.)
- Global HealthShare® Initiative, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
7
|
Cao J, Wang M, Yu H, She Y, Cao Z, Ye J, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Lao S. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7298-7315. [PMID: 32551623 DOI: 10.1021/acs.jafc.0c01962] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acetylcholinesterase inactivating compounds, such as organophosphate (OP) and carbamate (CM) pesticides, are widely used in agriculture to ensure sustainable production of food and feed. As a consequence of their applications, they would result in neurotoxicity, even death. In this essence, the development of enzyme inhibition methods still shows great significance as rapid detection techniques for on-site large-scale screening of OPs and CMs. Initially, mechanisms and applications of various enzyme-inhibition-based methods and devices, including optical colorimetric assay, fluorometric assays, electrochemical biosensors, rapid test card, and microfluidic device, are highlighted in the present overview. Further, to enhance the enzyme sensitivity for detection; alternative enzyme sources or high yield enrichment methods (such as abzyme, artificial enzyme, and recombinant enzyme), as well as enzyme reactivation and identification, are also addressed in this comprehensive overview.
Collapse
Affiliation(s)
- Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - He Yu
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
| | - Jiaming Ye
- Yangtze Delta Region Institute of Tsinghua University, 314006, Jiaxing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100193, Beijing, China
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| | - Shuibing Lao
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003, Nanning, China
| |
Collapse
|
8
|
Corbin JM, McNulty MJ, Macharoen K, McDonald KA, Nandi S. Technoeconomic analysis of semicontinuous bioreactor production of biopharmaceuticals in transgenic rice cell suspension cultures. Biotechnol Bioeng 2020; 117:3053-3065. [PMID: 32592492 DOI: 10.1002/bit.27475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Biopharmaceutical protein production using transgenic plant cell bioreactor processes offers advantages over microbial and mammalian cell culture platforms in its ability to produce complex biologics with simple chemically defined media and reduced biosafety concerns. A disadvantage of plant cells from a traditional batch bioprocessing perspective is their slow growth rate which has motivated us to develop semicontinuous and/or perfusion processes. Although the economic benefits of plant cell culture bioprocesses are often mentioned in the literature, to our knowledge no rigorous technoeconomic models or analyses have been published. Here we present technoeconomic models in SuperPro Designer® for the large-scale production of recombinant butyrylcholinesterase (BChE), a prophylactic/therapeutic bioscavenger against organophosphate nerve agent poisoning, in inducible transgenic rice cell suspension cultures. The base facility designed to produce 25 kg BChE per year utilizing two-stage semicontinuous bioreactor operation manufactures a single 400 mg dose of BChE for $263. Semicontinuous operation scenarios result in 4-11% reduction over traditional two-stage batch operation scenarios. In addition to providing a simulation tool that will be useful to the plant-made pharmaceutical community, the model also provides a computational framework that can be used for other semicontinuous or batch bioreactor-based processes.
Collapse
Affiliation(s)
- Jasmine M Corbin
- Department of Chemical Engineering, University of California, Davis, California
| | - Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, California
| | | | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, California.,Department of Molecular and Cellular Biology, Global HealthShare Initiative, University of California, Davis, California
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, California.,Department of Molecular and Cellular Biology, Global HealthShare Initiative, University of California, Davis, California
| |
Collapse
|
9
|
Braid LR, Wood CA, Ford BN. Human umbilical cord perivascular cells: A novel source of the organophosphate antidote butyrylcholinesterase. Chem Biol Interact 2019; 305:66-78. [PMID: 30926319 DOI: 10.1016/j.cbi.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Human butyrylcholinesterase (BChE) is a well-characterized bioscavenger with significant potential as a prophylactic or post-exposure treatment for organophosphate poisoning. Despite substantial efforts, BChE has proven technically challenging to produce in recombinant systems. Recombinant BChE tends to be insufficiently or incorrectly glycosylated, and consequently exhibits a truncated half-life, compromised activity, or is immunogenic. Thus, expired human plasma remains the only reliable source of the benchmark BChE tetramer, but production is costly and time intensive and presents possible blood-borne disease hazards. Here we report a human BChE production platform that produces functionally active, tetrameric BChE enzyme, without the addition of external factors such as polyproline peptides or chemical or gene modification required by other systems. Human umbilical cord perivascular cells (HUCPVCs) are a rich population of mesenchymal stromal cells (MSCs) derived from Wharton's jelly. We show that HUCPVCs naturally and stably secrete BChE during culture in xeno- and serum-free media, and can be gene-modified to increase BChE output. However, BChE secretion from HUCPVCs is limited by innate feedback mechanisms that can be interrupted by addition of miR 186 oligonucleotide mimics or by competitive inhibition of muscarinic cholinergic signalling receptors by addition of atropine. By contrast, adult bone marrow-derived mesenchymal stromal cells neither secrete measurable levels of BChE naturally, nor after gene modification. Further work is required to fully characterize and disable the intrinsic ceiling of HUCPVC-mediated BChE secretion to achieve commercially relevant enzyme output. However, HUCPVCs present a unique opportunity to produce both native and strategically engineered recombinant BChE enzyme in a human platform with the innate capacity to secrete the benchmark human plasma form.
Collapse
Affiliation(s)
- Lorena R Braid
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada.
| | - Catherine A Wood
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada
| | - Barry N Ford
- DRDC Suffield Research Centre, Casualty Management Section, Box 4000 Station Main, Medicine Hat, AB, T1A 8K6, Canada
| |
Collapse
|
10
|
Alkanaimsh S, Corbin JM, Kailemia MJ, Karuppanan K, Rodriguez RL, Lebrilla CB, McDonald KA, Nandi S. Purification and site-specific N-glycosylation analysis of human recombinant butyrylcholinesterase from Nicotiana benthamiana. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Purification of recombinant human butyrylcholinesterase on Hupresin®. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102-1103:109-115. [PMID: 30384187 DOI: 10.1016/j.jchromb.2018.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
Affinity chromatography on procainamide-Sepharose has been an important step in the purification of butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) since its introduction in 1978. The procainamide affinity gel has limitations. In the present report a new affinity gel called Hupresin® was evaluated for its ability to purify truncated, recombinant human butyrylcholinesterase (rHuBChE) expressed in a stably transfected Chinese Hamster Ovary cell line. We present a detailed example of the purification of rHuBChE secreted into 3940 mL of serum-free culture medium. The starting material contained 13,163 units of BChE activity (20.9 mg). rHuBChE was purified to homogeneity in a single step by passage over 82 mL of Hupresin® eluted with 0.1 M tetramethylammonium bromide in 20 mM TrisCl pH 7.5. The fraction with the highest specific activity of 630 units/mg contained 11 mg of BChE. Hupresin® is superior to procainamide-Sepharose for purification of BChE, but is not suitable for purifying native AChE because Hupresin® binds AChE so tightly that AChE is not released with buffers, but is desorbed with denaturing solvents such as 50% acetonitrile or 1% trifluoroacetic acid. Procainamide-Sepharose will continue to be useful for purification of AChE.
Collapse
|
12
|
Sukenik SC, Karuppanan K, Li Q, Lebrilla CB, Nandi S, McDonald KA. Transient Recombinant Protein Production in Glycoengineered Nicotiana benthamiana Cell Suspension Culture. Int J Mol Sci 2018; 19:E1205. [PMID: 29659495 PMCID: PMC5979281 DOI: 10.3390/ijms19041205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022] Open
Abstract
Transient recombinant protein production is a promising alternative to stable transgenic systems, particularly for emergency situations in which rapid production of novel therapeutics is needed. In plants, Agrobacterium tumefaciens can be used as a gene delivery vector for transient expression. A potential barrier for plant-based production of human therapeutics is that different glycosylation patterns are found on plant and mammalian proteins. Since glycosylation can affect the efficacy, safety and stability of a therapeutic protein, methods to control glycan structures and distributions in plant-based systems would be beneficial. In these studies, we performed Agrobacterium-mediated transient expression in glycoengineered plant cell suspension cultures. To reduce the presence of plant-specific glycans on the product, we generated and characterized cell suspension cultures from β-1,2-xylosyltransferase and α-1,3-fucosyltransferase knockdown Nicotiana benthamiana. An anthrax decoy fusion protein was transiently produced in these glycoengineered plant cell suspension cultures through co-culture with genetically engineered Agrobacterium. The mass ratio of Agrobacterium to plant cells used was shown to impact recombinant protein expression levels. N-glycosylation analysis on the anthrax decoy fusion protein produced in glycoengineered N. benthamiana showed a dramatic reduction in plant-specific N-glycans. Overall, the results presented here demonstrate the feasibility of a simple, rapid and scalable process for transient production of recombinant proteins without plant-specific glycans in a glycoengineered plant cell culture host.
Collapse
Affiliation(s)
- Sara C Sukenik
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA.
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA.
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA.
- Foods for Health Institute, University of California, Davis, CA 95616, USA.
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA.
- Global HealthShare Initiative, University of California, Davis, CA 95616, USA.
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA.
- Global HealthShare Initiative, University of California, Davis, CA 95616, USA.
| |
Collapse
|