1
|
Harnisch F, Deutzmann JS, Boto ST, Rosenbaum MA. Microbial electrosynthesis: opportunities for microbial pure cultures. Trends Biotechnol 2024; 42:1035-1047. [PMID: 38431514 PMCID: PMC11310912 DOI: 10.1016/j.tibtech.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Microbial electrosynthesis (MES) is an emerging technology that couples renewable electricity to microbial production processes. Although advances in MES performance have been driven largely by microbial mixed cultures, we see a great limitation in the diversity, and hence value, of products that can be achieved in undefined mixed cultures. By contrast, metabolic control of pure cultures and genetic engineering could greatly expand the scope of MES, and even of broader electrobiotechnology, to include targeted high-value products. To leverage this potential, we advocate for more efforts and activities to develop engineered electroactive microbes for synthesis, and we highlight the need for a standardized electrobioreactor infrastructure that allows the establishment and engineering of electrobioprocesses with these novel biocatalysts.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Santiago T Boto
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf Reichwein Strasse 23, 07745 Jena, Germany; Institute of Microbiology, Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Neugasse 23, 07743 Jena, Germany.
| |
Collapse
|
2
|
Llorente M, Tejedor‐Sanz S, Berná A, Manchón C, Esteve‐Núñez A. Novel electrochemical strategies for the microbial conversion of CO 2 into biomass and volatile fatty acids using a fluid-like bed electrode in a three-phase reactor. Microb Biotechnol 2024; 17:e14383. [PMID: 38231155 PMCID: PMC10832540 DOI: 10.1111/1751-7915.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024] Open
Abstract
Microbial electrosynthesis (MES) constitutes a bioelectrochemical process where bacteria uptake electrons extracellularly from a polarized electrode to incorporate them into their anabolic metabolism. However, the efficiency of current MES reactor designs can be lower than expected due to limitations regarding electron transfer and mass transport. One of the most promising bioreactor configurations to overcome these bottlenecks is the Microbial Electrochemical Fluidized Bed Reactor (ME-FBR). In this study, microbial CO2 fixation is investigated for the first time in a ME-FBR operated as a 3-phase reactor (solid-liquid-gas). An electroconductive carbon bed, acting as a working electrode, was fluidized with gas and polarized at different potentials (-0.6, -0.8 and -1 V vs. Ag/AgCl) so it could act as an electron donor (biocathode). Under these potentials, CO2 fixation and electron transfer were evaluated. Autotrophic electroactive microorganisms from anaerobic wastewater were enriched in a ME-FBR in the presence of 2-bromoethanosulfonic acid (BES) to inhibit the growth of methanogens. Cyclic voltammetry analysis revealed interaction between the microorganisms and the cathode. Furthermore, volatile fatty acids like propionate, formate and acetate were detected in the culture supernatant. Acetate production had a maximum rate of ca. 1 g L-1 day-1 . Planktonic cell biomass was produced under continuous culture at values as high as ca. 0.7 g L-1 dry weight. Overall, this study demonstrates the feasibility of employing a fluidized electrode with gaseous substrates and electricity as the energy source for generating biomass and carboxylic acids.
Collapse
Affiliation(s)
- María Llorente
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Sara Tejedor‐Sanz
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | | | - Carlos Manchón
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
| | - Abraham Esteve‐Núñez
- Department of Chemical EngineeringUniversidad de AlcaláAlcalá de HenaresMadridSpain
- IMDEA WATERAlcalá de HenaresMadridSpain
| |
Collapse
|
3
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Cheng J, Li S, Yang X, Huang X, Lu Z, Xu J, He Y. Regulating the dechlorination and methanogenesis synchronously to achieve a win-win remediation solution for γ-hexachlorocyclohexane polluted anaerobic environment. WATER RESEARCH 2021; 203:117542. [PMID: 34412017 DOI: 10.1016/j.watres.2021.117542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The wish for rapid degradation of chlorinated organic pollutants along with the increase concern with respect to greenhouse effect and bioenergy methane production have created urgent needs to explore synchronous regulation approach. Microbial electrolysis cell was established under four degressive cathode potential settings (from -0.15V to -0.60V) to regulate γ-hexachlorocyclohexane (γ-HCH) reduction while CH4 cumulation in this study. The synchronous facilitation of γ-HCH reduction and CH4 cumulation was occurred in -0.15V treatment while the facilitation of γ-HCH reductive removal together with the inhibition of CH4 cumulation was showed in -0.30V treatment. Electrochemical patterns via cyclic voltammetry and morphological performances via scanning electron microscopy illustrated bioelectrostimulation promoted redox reactions and helped to construct mature biofilms located on bioelectrodes. Also, bioelectrostimulated regulation pronouncedly affected the bacteria and archaeal communities and subsequently assembled distinctly core sensitive responders across bioanode, biocathode and plankton. Clostridum, Longilinea and Methanothrix relatively accumulated in the plankton, and Cupriavidus and Methanospirillum, and Perimonas and Nonoarcheaum in biocathode and bioanode, respectively; while Pseudomonas, Stenotrophomonas, Methanoculleus and Methanosarcina were diffusely enriched. Microbial interactions in the ecological network were more complicated in -0.15V and -0.30V cathodic potential treatments, coincident with the increasement of γ-HCH reduction. The co-existence between putative dechlorinators and methanogens was less significant in -0.30V treatment when compared to that in -0.15V treatment, relevant with the variations of CH4 cumulation. In all, this study firstly corroborated the availability to synchronously regulate γ-HCH reductive removal and methanogenesis. Besides, it paves an advanced approach controlling γ-HCH reduction in cooperation with CH4 cumulation, of which to achieve γ-HCH degradation facilitation along with biogas (CH4) production promotion with -0.15V cathode potential during anaerobic γ-HCH contaminated wastewater digestion, or to realize γ-HCH degradation facilitation with the inhibition of CH4 emission with -0.30V cathode potential for an all-win remediation in γ-HCH polluted anaerobic environment such as paddy soil.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Shuyao Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xueling Yang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaowei Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
5
|
Vassilev I, Averesch NJH, Ledezma P, Kokko M. Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnol Adv 2021; 48:107728. [PMID: 33705913 DOI: 10.1016/j.biotechadv.2021.107728] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
In nature as well as in industrial microbiology, all microorganisms need to achieve redox balance. Their redox state and energy conservation highly depend on the availability of a terminal electron acceptor, for example oxygen in aerobic production processes. Under anaerobic conditions in the absence of an electron acceptor, redox balance is achieved via the production of reduced carbon-compounds (fermentation). An alternative strategy to artificially stabilize microbial redox and energy state is the use of anodic electro-fermentation (AEF). This emerging biotechnology empowers respiration under anaerobic conditions using the anode of a bioelectrochemical system as an undepletable terminal electron acceptor. Electrochemical control of redox metabolism and energy conservation via AEF can steer the carbon metabolism towards a product of interest and avoid the need for continuous and cost-inefficient supply of oxygen as well as the production of mixed reduced by-products, as is the case in aerobic production and fermentation processes, respectively. The great challenge for AEF is to establish efficient extracellular electron transfer (EET) from the microbe to the anode and link it to central carbon metabolism to enhance the synthesis of a target product. This article reviews the advantages and challenges of AEF, EET mechanisms, microbial energy gain, and discusses the rational choice of substrate-product couple as well as the choice of microbial catalyst. Besides, it discusses the potential of the industrial model-organism Bacillus subtilis as a promising candidate for AEF, which has not been yet considered for such an application. This prospective review contributes to a better understanding of how industrial microbiology can benefit from AEF and analyses key-factors required to successfully implement AEF processes. Overall, this work aims to advance the young research field especially by critically revisiting the fundamental aspects of AEF.
Collapse
Affiliation(s)
- Igor Vassilev
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Nils J H Averesch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States.
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
6
|
Simplified Reactor Design for Mixed Culture-Based Electrofermentation toward Butyric Acid Production. Processes (Basel) 2021. [DOI: 10.3390/pr9030417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mixed microbial culture (MMC) electrofermentation (EF) represents a promising tool to drive metabolic pathways toward the production of a specific compound. Here, the MMC-EF process has been exploited to obtain butyric acid in simplified membrane-less reactors operated by applying a difference of potential between two low-cost graphite electrodes. Ten values of voltage difference, from −0.60 V to −1.5 V, have been tested and compared with the experiment under open circuit potential (OCP). In all the tested conditions, an enhancement in the production rate of butyric acid (from a synthetic mixture of glucose, acetate, and ethanol) was observed, ranging from 1.3- to 2.7-fold relative to the OCP. Smaller enhancements in the production rate resulted in higher values of the calculated specific energy consumption. However, at all applied voltages, a low flow of current was detected in the one-chamber reactors, accounting for an average value of approximately −100 µA. These results hold a substantial potential with respect to the scalability of the electrofermentation technology, since they pinpoint the possibility to control MMC-based bioprocesses by simply inserting polarized electrodes into traditional fermenters.
Collapse
|
7
|
Jiang Y, Liang Q, Chu N, Hao W, Zhang L, Zhan G, Li D, Zeng RJ. A slurry electrode integrated with membrane electrolysis for high-performance acetate production in microbial electrosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140198. [PMID: 32574921 DOI: 10.1016/j.scitotenv.2020.140198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrosynthesis (MES) technology employs electrotrophic microbes as biocatalysts to produce chemicals from CO2. The application of a slurry electrode can enlarge the surface area to volume ratio, and membrane electrolysis (ME) for on-line extraction can solve the problem of product inhibition. This study constructed a novel dual-chamber ME-MES integrated system equipped with a slurry electrode, and the effect of concentration of powder-activated carbon (AC) in the catholyte on chemical production was also evaluated. The integrated system amended with 5 g L-1 AC produced up to 13.4 g L-1 acetate, showing a 179% increase compared with the control group without AC (4.8 g L-1). However, further increasing the AC concentration to 10 and 20 g L-1 resulted in decreased acetate production. A high concentration of AC showed higher antimicrobial activity to methanogens, as compared to acetogens. Amending AC exacerbated the process of electroosmosis. Also, amending AC with 0 to 10 g L-1 decreased the electrochemical losses via both the membrane and electrolyte. The chemical production using H2 or the electrode as electron donors showed a similar trend when amending AC. The present study provided important information for guiding future research to construct an efficient configuration of an MES bioreactor.
Collapse
Affiliation(s)
- Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
8
|
Fruehauf HM, Enzmann F, Harnisch F, Ulber R, Holtmann D. Microbial Electrosynthesis—An Inventory on Technology Readiness Level and Performance of Different Process Variants. Biotechnol J 2020; 15:e2000066. [DOI: 10.1002/biot.202000066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Hanna M. Fruehauf
- Industrial Biotechnology DECHEMA Research Institute Theodor‐Heuss‐Allee 25 Frankfurt am Main 60486 Germany
| | - Franziska Enzmann
- Technology and Infrastructure Evonik Industries Rodenbacher Chaussee 4 Hanau 63457 Germany
| | - Falk Harnisch
- Department of Environmental Microbiology Helmholtz‐Centre for Environmental Research GmbH ‐ UFZ Permoserstraße 15 Leipzig 04318 Germany
| | - Roland Ulber
- Bioprocess Engineering University of Kaiserslautern Erwin‐Schrödinger‐Straße 52 Kaiserslautern 64663 Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology University of Applied Sciences Mittelhessen Wiesenstraße 14 Giessen 35390 Germany
| |
Collapse
|
9
|
Chu N, Liang Q, Jiang Y, Zeng RJ. Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosens Bioelectron 2020; 150:111922. [DOI: 10.1016/j.bios.2019.111922] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
|
10
|
Stöckl M, Teubner NC, Holtmann D, Mangold KM, Sand W. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8961-8968. [PMID: 30730701 DOI: 10.1021/acsami.8b14340] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioelectrochemical systems (BESs) are hybrid systems using electroactive bacteria and solid electrodes, which serve as electron donor or acceptor for microorganisms. When forming a biofilm on the electrode, bacteria secrete extracellular polymeric substances (EPSs). However, EPS excretion of electroactive biofilms in BES has been rarely studied so far. Consequently, the aim of this study is to develop a routine including the electrochemical cultivation, biofilm harvesting, fractionation, and biochemical analysis of the EPS secreted by Geobacter sulfurreducens under electroactive conditions. G. sulfurreducens was cultivated in microbial fuel cell mode on graphite-based electrodes polarized to +400 mV versus Ag/AgCl for 8 d. A maximum current density of 172 ± 29 μA cm-2 was reached after 7 d. The EPS secreted from the biofilms were harvested and fractioned into soluble, loosely bound, and tightly bound EPS and biochemically analyzed. Electroactive cultures secreted significantly more EPSs compared to cells grown under standard heterotrophic conditions (fumarate respiration). With 116 pg per cell, the highest amount of EPSs was measured for the soluble EPS fraction of G. sulfurreducens using anodic respiration, followed by the tightly bound (18 pg cell-1) and loosely bound (11 pg cell-1) fractions of the EPS. Proteins were found to dominate all EPS fractions of the biofilms grown under electrochemical conditions. To the best of the authors' knowledge, these experiments are the first approach toward a complete analysis of the main EPS components of G. sulfurreducens under anode-respiring conditions.
Collapse
Affiliation(s)
| | | | | | | | - Wolfgang Sand
- Biofilm Centre , University of Duisburg-Essen , Universitätsstr. 5 , 45141 Essen , Germany
- College of Environmental Science and Engineering , Donghua University , Shanghai 201620 , China
- Technical Universtiy and Mining Academy , 09599 Freiberg , Germany
| |
Collapse
|
11
|
Enzmann F, Stöckl M, Zeng AP, Holtmann D. Same but different-Scale up and numbering up in electrobiotechnology and photobiotechnology. Eng Life Sci 2019; 19:121-132. [PMID: 32624994 DOI: 10.1002/elsc.201800160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
Facing energy problems, there is a strong demand for new technologies dealing with the replacement of fossil fuels. The emerging fields of biotechnology, photobiotechnology and electrobiotechnology, offer solutions for the production of fuels, energy, or chemicals using renewable energy sources (light or electrical current e.g. produced by wind or solar power) or organic (waste) substrates. From an engineering point of view both technologies have analogies and some similar challenges, since both light and electron transfer are primarily surface-dependent. In contrast to that, bioproduction processes are typically volume dependent. To allow large scale and industrially relevant applications of photobiotechnology and electrobiotechnology, this opinion first gives an overview over the current scales reached in these areas. We then try to point out the challenges and possible methods for the scale up or numbering up of the reactors used. It is shown that the field of photobiotechnology is by now much more advanced than electrobiotechnology and has achieved industrial applications in some cases. We argue that transferring knowledge from photobiotechnology to electrobiotechnology can speed up the development of the emerging field of electrobiotechnology. We believe that a combination of scale up and numbering up, as it has been shown for several photobiotechnological reactors, may well lead to industrially relevant scales in electrobiotechnological processes allowing an industrial application of the technology in near future.
Collapse
Affiliation(s)
- Franziska Enzmann
- Industrial Biotechnology DECHEMA Research Institute Frankfurt am Main Germany
| | - Markus Stöckl
- Electrochemistry DECHEMA Research Institute Frankfurt am Main Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering Technische Universität Hamburg Hamburg Germany
| | - Dirk Holtmann
- Industrial Biotechnology DECHEMA Research Institute Frankfurt am Main Germany
| |
Collapse
|
12
|
Enzmann F, Mayer F, Stöckl M, Mangold KM, Hommel R, Holtmann D. Transferring bioelectrochemical processes from H-cells to a scalable bubble column reactor. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.08.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Simon RG, Stöckl M, Becker D, Steinkamp AD, Abt C, Jungfer C, Weidlich C, Track T, Mangold KM. Current to Clean Water - Electrochemical Solutions for Groundwater, Water, and Wastewater Treatment. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ramona G. Simon
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Markus Stöckl
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Dennis Becker
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | | | - Christian Abt
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Christina Jungfer
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Claudia Weidlich
- DECHEMA-Forschungsinstitut; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | - Thomas Track
- DECHEMA e.V.; Theodor-Heuss-Allee 25 60486 Frankfurt am Main Germany
| | | |
Collapse
|