1
|
Komosa ER, Lin WH, Ogle BM. Toward robust and reproducible pluripotent stem cell expansion in bioprinted GelMA constructs. Int J Bioprint 2024; 11:363-381. [PMID: 40330989 PMCID: PMC12052315 DOI: 10.36922/ijb.4633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Combining the technologies of 3D bioprinting and human induced pluripotent stem cells (hiPSCs) has allowed for the creation of tissues with organ-level function in the lab, a promising technique for disease modeling and regenerative medicine. Expanding the stem cells in bioprinted tissues prior to differentiation allows for high cell density, which is important for the formation of cell-cell junctions necessary for macroscale function upon differentiation. Yet, stem cell expansion, critical to successful in situ differentiation, depends heavily on the composition of the bioprinted scaffold. Here, we demonstrate how a common bioink component, gelatin methacryloyl (GelMA), varies depending on the vendor and degree of functionalization. We found that the vendor/GelMA production technique played a greater role in dictating the mechanical properties of the bioprinted constructs than the degree of functionalization, emphasizing the importance of reporting detailed characterization of GelMA scaffolds. Furthermore, the ability of singularized hiPSCs to survive and expand in GelMA scaffolds greatly varied across batches from different vendors and degrees of functionalization, where expansion correlated with the mechanical properties of the scaffold. Yet, we found that using a commercial cloning supplement could restore the ability of single hiPSCs to survive and expand across GelMA types, thus compensating for the varied mechanical properties of the scaffolds. These findings provide a practical guide for the expansion of hiPSCs in GelMA constructs with various mechanical properties as required for successful in situ differentiation.
Collapse
Affiliation(s)
- Elizabeth R. Komosa
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Han Lin
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brenda M. Ogle
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
2
|
Yehya H, Raudins S, Padmanabhan R, Jensen J, Bukys MA. Addressing bioreactor hiPSC aggregate stability, maintenance and scaleup challenges using a design of experiment approach. Stem Cell Res Ther 2024; 15:191. [PMID: 38956608 PMCID: PMC11218057 DOI: 10.1186/s13287-024-03802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Stem cell-derived therapies hold the potential for treatment of regenerative clinical indications. Static culture has a limited ability to scale up thus restricting its use. Suspension culturing can be used to produce target cells in large quantities, but also presents challenges related to stress and aggregation stability. METHODS Utilizing a design of experiments (DoE) approach in vertical wheel bioreactors, we evaluated media additives that have versatile properties. The additives evaluated are Heparin sodium salt (HS), polyethylene glycol (PEG), poly (vinyl alcohol) (PVA), Pluronic F68 and dextran sulfate (DS). Multiple response variables were chosen to assess cell growth, pluripotency maintenance and aggregate stability in response to the additive inputs, and mathematical models were generated and tuned for maximal predictive power. RESULTS Expansion of iPSCs using 100 ml vertical wheel bioreactor assay for 4 days on 19 different media combinations resulted in models that can optimize pluripotency, stability, and expansion. The expansion optimization resulted in the combination of PA, PVA and PEG with E8. This mixture resulted in an expansion doubling time that was 40% shorter than that of E8 alone. Pluripotency optimizer highlighted the importance of adding 1% PEG to the E8 medium. Aggregate stability optimization that minimizes aggregate fusion in 3D culture indicated that the interaction of both Heparin and PEG can limit aggregation as well as increase the maintenance capacity and expansion of hiPSCs, suggesting that controlling fusion is a critical parameter for expansion and maintenance. Validation of optimized solution on two cell lines in bioreactors with decreased speed of 40 RPM, showed consistency and prolonged control over aggregates that have high frequency of pluripotency markers of OCT4 and SOX2 (> 90%). A doubling time of around 1-1.4 days was maintained after passaging as clumps in the optimized medium. Controlling aggregate fusion allowed for a decrease in bioreactor speed and therefore shear stress exerted on the cells in a large-scale expansion. CONCLUSION This study resulted in a control of aggregate size within suspension cultures, while informing about concomitant state control of the iPSC state. Wider application of this approach can address media optimization complexity and bioreactor scale-up challenges.
Collapse
Affiliation(s)
- Haneen Yehya
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
- Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Sofija Raudins
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | | | - Jan Jensen
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael A Bukys
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA.
| |
Collapse
|
3
|
Liu L, Zhang L, Zhang X, Dong X, Jiang X, Huang X, Li W, Xie X, Qiu X. Analysis of cellular response to drugs with a microfluidic single-cell platform based on hyperspectral imaging. Anal Chim Acta 2024; 1288:342158. [PMID: 38220290 DOI: 10.1016/j.aca.2023.342158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Cellular response to pharmacological action of drugs is significant for drug development. Traditional detection method for cellular response to drugs normally rely on cell proliferation assay and metabolomics examination. In principle, these analytical methods often required cell labeling, invasion analysis, and hours of co-culture with drugs, which are relatively complex and time-consuming. Moreover, these methods can only indicate the drug effectiveness on cell colony rather than single cells. Thus, to meet the requirements of personal precision medicine, the development of drug response analysis on the high resolution of single cell is demanded. RESULTS To provide precise result for drug response on single-cell level, a microfluidic platform coupled with the label-free hyperspectral imaging was developed. With the help of horizontal single-cell trapping sieves, hundreds of single cells were trapped independently in microfluidic channels for the purposes of real-time drug delivery and single-cell hyperspectral image recording. To significantly identify the cellular hyperspectral change after drug stimulation, the differenced single-cell spectrum was proposed. Compared with the deep learning classification method based on hyperspectral images, an optimal performance can be achieved by the classification strategy based on differenced spectra. And the cellular response to different reagents, for example, K+, Epidermal Growth Factor (EGF), and Gefitinib at different concentrations can be accurately characterized by the differenced single-cell spectra analysis. SIGNIFICANCE AND NOVELTY The high-throughput, rapid analysis of cellular response to drugs at the single-cell level can be accurately performed by our platform. After systematically analyzing the materials and the structures of the single-cell microfluidic chip, the optimal single-cell trapping method was proposed to contribute to the further application of hyperspectral imaging on microfluidic single-cell analysis. And the hyperspectral characterization of single-cell with cancer drug stimulation proved the application potential of our method in personal cancer medication.
Collapse
Affiliation(s)
- Luyao Liu
- Institute of Microfluidic Chip Development in Biomedical Engineering, School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lulu Zhang
- Institute of Microfluidic Chip Development in Biomedical Engineering, School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xueyu Zhang
- School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaobin Dong
- Institute of Microfluidic Chip Development in Biomedical Engineering, School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaodan Jiang
- Institute of Microfluidic Chip Development in Biomedical Engineering, School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoqi Huang
- School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoming Xie
- School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianbo Qiu
- Institute of Microfluidic Chip Development in Biomedical Engineering, School of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Iworima DG, Baker RK, Ellis C, Sherwood C, Zhan L, Rezania A, Piret JM, Kieffer TJ. Metabolic switching, growth kinetics and cell yields in the scalable manufacture of stem cell-derived insulin-producing cells. Stem Cell Res Ther 2024; 15:1. [PMID: 38167219 PMCID: PMC10762849 DOI: 10.1186/s13287-023-03574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Diabetes is a disease affecting over 500 million people globally due to insulin insufficiency or insensitivity. For individuals with type 1 diabetes, pancreatic islet transplantation can help regulate their blood glucose levels. However, the scarcity of cadaveric donor islets limits the number of people that could receive this therapy. To address this issue, human pluripotent stem cells offer a potentially unlimited source for generating insulin-producing cells through directed differentiation. Several protocols have been developed to make stem cell-derived insulin-producing cells. However, there is a lack of knowledge regarding the bioprocess parameters associated with these differentiation protocols and how they can be utilized to increase the cell yield. METHODS We investigated various bioprocess parameters and quality target product profiles that may influence the differentiation pipeline using a seven-stage protocol in a scalable manner with CellSTACKs and vertical wheel bioreactors (PBS-Minis). RESULTS Cells maintained > 80% viability through all stages of differentiation and appropriately expressed stage-specific markers. During the initial four stages leading up to the development of pancreatic progenitors, there was an increase in cell numbers. Following pancreatic progenitor stage, there was a gradual decrease in the percentage of proliferative cells, as determined by Ki67 positivity, and a significant loss of cells during the period of endocrine differentiation. By minimizing the occurrence of aggregate fusion, we were able to enhance cell yield during the later stages of differentiation. We suggest that glucose utilization and lactate production are cell quality attributes that should be considered during the characterization of insulin-producing cells derived from stem cells. Our findings also revealed a gradual metabolic shift from glycolysis, during the initial four stages of pancreatic progenitor formation, to oxidative phosphorylation later on during endocrine differentiation. Furthermore, the resulting insulin-producing cells exhibited a response to several secretagogues, including high glucose. CONCLUSION This study demonstrates process parameters such as glucose consumption and lactate production rates that may be used to facilitate the scalable manufacture of stem cell-derived insulin-producing cells.
Collapse
Affiliation(s)
- Diepiriye G Iworima
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Cara Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Chris Sherwood
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Lisa Zhan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | | | - James M Piret
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Iworima DG, Baker RK, Piret JM, Kieffer TJ. Analysis of the effects of bench-scale cell culture platforms and inoculum cell concentrations on PSC aggregate formation and culture. Front Bioeng Biotechnol 2023; 11:1267007. [PMID: 38107616 PMCID: PMC10722899 DOI: 10.3389/fbioe.2023.1267007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction: Human pluripotent stem cells (hPSCs) provide many opportunities for application in regenerative medicine due to their ability to differentiate into cells from all three germ layers, proliferate indefinitely, and replace damaged or dysfunctional cells. However, such cell replacement therapies require the economical generation of clinically relevant cell numbers. Whereas culturing hPSCs as a two-dimensional monolayer is widely used and relatively simple to perform, their culture as suspended three-dimensional aggregates may enable more economical production in large-scale stirred tank bioreactors. To be more relevant to this biomanufacturing, bench-scale differentiation studies should be initiated from aggregated hPSC cultures. Methods: We compared five available bench-scale platforms for generating undifferentiated cell aggregates of human embryonic stem cells (hESCs) using AggreWell™ plates, low attachment plates on an orbital shaker, roller bottles, spinner flasks, and vertical-wheel bioreactors (PBS-Minis). Thereafter, we demonstrated the incorporation of an hPSC aggregation step prior to directed differentiation to pancreatic progenitors and endocrine cells. Results and discussion: The AggreWell™ system had the highest aggregation yield. The initial cell concentrations had an impact on the size of aggregates generated when using AggreWell™ plates as well as in roller bottles. However, aggregates made with low attachment plates, spinner flasks and PBS-Minis were similar regardless of the initial cell number. Aggregate morphology was compact and relatively homogenously distributed in all platforms except for the roller bottles. The size of aggregates formed in PBS-Minis was modulated by the agitation rate during the aggregation. In all cell culture platforms, the net growth rate of cells in 3D aggregates was lower (range: -0.01-0.022 h-1) than cells growing as a monolayer (range: 0.039-0.045 h-1). Overall, this study describes operating ranges that yield high-quality undifferentiated hESC aggregates using several of the most commonly used bench-scale cell culture platforms. In all of these systems, methods were identified to obtain PSC aggregates with greater than 70% viability, and mean diameters between 60 and 260 mm. Finally, we showed the capacity of hPSC aggregates formed with PBS-Minis to differentiate into viable pancreatic progenitors and endocrine cell types.
Collapse
Affiliation(s)
- Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Robert K. Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - James M. Piret
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Teale MA, Schneider S, Eibl D, van den Bos C, Neubauer P, Eibl R. Mesenchymal and induced pluripotent stem cell-based therapeutics: a comparison. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12583-4. [PMID: 37246986 DOI: 10.1007/s00253-023-12583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Stem cell-based cell therapeutics and especially those based on human mesenchymal stem cells (hMSCs) and induced pluripotent stem cells (hiPSCs) are said to have enormous developmental potential in the coming years. Their applications range from the treatment of orthopedic disorders and cardiovascular diseases to autoimmune diseases and even cancer. However, while more than 27 hMSC-derived therapeutics are currently commercially available, hiPSC-based therapeutics have yet to complete the regulatory approval process. Based on a review of the current commercially available hMSC-derived therapeutic products and upcoming hiPSC-derived products in phase 2 and 3, this paper compares the cell therapy manufacturing process between these two cell types. Moreover, the similarities as well as differences are highlighted and the resulting impact on the production process discussed. Here, emphasis is placed on (i) hMSC and hiPSC characteristics, safety, and ethical aspects, (ii) their morphology and process requirements, as well as (iii) their 2- and 3-dimensional cultivations in dependence of the applied culture medium and process mode. In doing so, also downstream processing aspects are covered and the role of single-use technology is discussed. KEY POINTS: • Mesenchymal and induced pluripotent stem cells exhibit distinct behaviors during cultivation • Single-use stirred bioreactor systems are preferred for the cultivation of both cell types • Future research should adapt and modify downstream processes to available single-use devices.
Collapse
Affiliation(s)
- Misha A Teale
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland.
| | - Samuel Schneider
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | | | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technical University of Berlin, ACK24, Ackerstraße 76, 13355, Berlin, Germany
| | - Regine Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
7
|
Wu H, Tang X, Wang Y, Wang N, Chen Q, Xie J, Liu S, Zhong Z, Qiu Y, Situ P, Zern MA, Wang J, Chen H, Duan Y. Dextran sulfate prevents excess aggregation of human pluripotent stem cells in 3D culture by inhibiting ICAM1 expression coupled with down-regulating E-cadherin through activating the Wnt signaling pathway. Stem Cell Res Ther 2022; 13:218. [PMID: 35619172 PMCID: PMC9137216 DOI: 10.1186/s13287-022-02890-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Human pluripotent stem cells (hPSCs) have great potential in applications for regenerative medicine and drug development. However, 3D suspension culture systems for clinical-grade hPSC large-scale production have been a major challenge. Accumulating evidence has demonstrated that the addition of dextran sulfate (DS) could prevent excessive adhesion of hPSCs from forming larger aggregates in 3D suspension culture. However, the signaling and molecular mechanisms underlying this phenomenon remain elusive. Methods By using a cell aggregate culture assay and separating big and small aggregates in suspension culture systems, the potential mechanism and downstream target genes of DS were investigated by mRNA sequence analysis, qRT-PCR validation, colony formation assay, and interference assay. Results Since cellular adhesion molecules (CAMs) play important roles in hPSC adhesion and aggregation, we assumed that DS might prevent excess adhesion through affecting the expression of CAMs in hPSCs. As expected, after DS treatment, we found that the expression of CAMs was significantly down-regulated, especially E-cadherin (E-cad) and intercellular adhesion molecule 1 (ICAM1), two highly expressed CAMs in hPSCs. The role of E-cad in the adhesion of hPSCs has been widely investigated, but the function of ICAM1 in hPSCs is hardly understood. In the present study, we demonstrated that ICAM1 exhibited the capacity to promote the adhesion in hPSCs, and this adhesion was suppressed by the treatment with DS. Furthermore, transcriptomic analysis of RNA-seq revealed that DS treatment up-regulated genes related to Wnt signaling resulting in the activation of Wnt signaling in which SLUG, TWIST, and MMP3/7 were highly expressed, and further inhibited the expression of E-cad. Conclusion Our results demonstrated that DS played an important role in controlling the size of hPSC aggregates in 3D suspension culture by inhibiting the expression of ICAM1 coupled with the down-regulation of E-cad through the activation of the Wnt signaling pathway. These results represent a significant step toward developing the expansion of hPSCs under 3D suspension condition in large-scale cultures. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02890-4.
Collapse
Affiliation(s)
- Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China.,Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Health Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, Guangxi, People's Republic of China.,Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Nanning, 530003, Guangxi, People's Republic of China
| | - Yiyu Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Zhiyong Zhong
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Ping Situ
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.,School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 510180, People's Republic of China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510180, People's Republic of China.
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, No. 382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510180, People's Republic of China. .,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510180, People's Republic of China.
| |
Collapse
|
8
|
Microwell bag culture for large-scale production of homogeneous islet-like clusters. Sci Rep 2022; 12:5221. [PMID: 35338209 PMCID: PMC8956638 DOI: 10.1038/s41598-022-09124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Pluripotent stem-cell derived cells can be used for type I diabetes treatment, but we require at least 105–106 islet-like clusters per patient. Although thousands of uniform cell clusters can be produced using a conventional microwell plate, numerous obstacles need to be overcome for its clinical use. In this study, we aimed to develop a novel bag culture method for the production of uniform cell clusters on a large scale (105–106 clusters). We prepared small-scale culture bags (< 105 clusters) with microwells at the bottom and optimized the conditions for producing uniform-sized clusters in the bag using undifferentiated induced pluripotent stem cells (iPSCs). Subsequently, we verified the suitability of the bag culture method using iPSC-derived pancreatic islet cells (iPICs) and successfully demonstrate the production of 6.5 × 105 uniform iPIC clusters using a large-scale bag. In addition, we simplified the pre- and post-process of the culture—a degassing process before cell seeding and a cluster harvesting process. In conclusion, compared with conventional methods, the cluster production method using bags exhibits improved scalability, sterility, and operability for both clinical and research use.
Collapse
|
9
|
Miranda CC, Akenhead ML, Silva TP, Derr MA, Vemuri MC, Cabral JMS, Fernandes TG. A Dynamic 3D Aggregate-Based System for the Successful Expansion and Neural Induction of Human Pluripotent Stem Cells. Front Cell Neurosci 2022; 16:838217. [PMID: 35308123 PMCID: PMC8928726 DOI: 10.3389/fncel.2022.838217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The demand for large cell numbers for cellular therapies and drug screening applications requires the development of scalable platforms capable of generating high-quality populations of tissue-specific cells derived from human pluripotent stem cells (hPSCs). Here, we studied the ability of Gibco StemScale PSC Suspension Medium to promote the efficient expansion of hPSC cultures as aggregates grown in suspension. We tested human induced pluripotent stem cell (hiPSC) growth in 6-well plates (on orbital shaker platforms) and single-use vertical-wheel bioreactors for a total of three consecutive passages. Up to a 9-fold increase in cell number was observed over 5 days per passage, with a cumulative fold change up to 600 in 15 days. Additionally, we compared neural induction of hiPSCs by using a dual SMAD inhibition protocol with a commercially available neural induction medium, which can potentially yield more than a 30-fold change, including neural progenitor induction and expansion. This system can also be adapted toward the generation of floor plate progenitors, which yields up to an 80-fold change in cell number and generates FOXA2-positive populations. In summary, we developed platforms for hiPSC expansion and neural induction into different brain regions that provide scalability toward producing clinically relevant cell numbers.
Collapse
Affiliation(s)
- Cláudia C. Miranda
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Michael L. Akenhead
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, MD, United States
| | - Teresa P. Silva
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Michael A. Derr
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, MD, United States
| | - Mohan C. Vemuri
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, MD, United States
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Tiago G. Fernandes,
| |
Collapse
|
10
|
Rivera-Ordaz A, Peli V, Manzini P, Barilani M, Lazzari L. Critical Analysis of cGMP Large-Scale Expansion Process in Bioreactors of Human Induced Pluripotent Stem Cells in the Framework of Quality by Design. BioDrugs 2021; 35:693-714. [PMID: 34727354 PMCID: PMC8561684 DOI: 10.1007/s40259-021-00503-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 10/28/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are manufactured as advanced therapy medicinal products for tissue replacement applications. With this aim, the feasibility of hiPSC large-scale expansion in existing bioreactor systems under current good manufacturing practices (cGMP) has been tested. Yet, these attempts have lacked a paradigm shift in culture settings and technologies tailored to hiPSCs, which jeopardizes their clinical translation. The best approach for industrial scale-up of high-quality hiPSCs is to design their manufacturing process by following quality-by-design (QbD) principles: a scientific, risk-based framework for process design based on relating product and process attributes to product quality. In this review, we analyzed the hiPSC expansion manufacturing process implementing the QbD approach in the use of bioreactors, stressing the decisive role played by the cell quantity, quality and costs, drawing key QbD concepts directly from the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.
Collapse
Affiliation(s)
- Araceli Rivera-Ordaz
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Paolo Manzini
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Mario Barilani
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| |
Collapse
|
11
|
Tang X, Wu H, Xie J, Wang N, Chen Q, Zhong Z, Qiu Y, Wang J, Li X, Situ P, Lai L, Zern MA, Chen H, Duan Y. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Prolif 2021; 54:e13112. [PMID: 34390064 PMCID: PMC8450127 DOI: 10.1111/cpr.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES For clinical applications of cell-based therapies, a large quantity of human pluripotent stem cells (hPSCs) produced in standardized and scalable culture processes is required. Currently, microcarrier-free suspension culture shows potential for large-scale expansion of hPSCs; however, hPSCs tend to aggregate during culturing leading to a negative effect on cell yield. To overcome this problem, we developed a novel protocol to effectively control the sizes of cell aggregates and enhance the cell proliferation during the expansion of hPSCs in suspension. MATERIALS AND METHODS hPSCs were expanded in suspension culture supplemented with polyvinyl alcohol (PVA) and dextran sulphate (DS), and 3D suspension culture of hPSCs formed cell aggregates under static or dynamic conditions. The sizes of cell aggregates and the cell proliferation as well as the pluripotency of hPSCs after expansion were assessed using cell counting, size analysis, real-time quantitative polymerase chain reaction, flow cytometry analysis, immunofluorescence staining, embryoid body formation, teratoma formation and transcriptome sequencing. RESULTS Our results demonstrated that the addition of DS alone effectively prevented hPSC aggregation, while the addition of PVA significantly enhanced hPSC proliferation. The combination of PVA and DS not only promoted cell proliferation of hPSCs but also produced uniform and size-controlled cell aggregates. Moreover, hPSCs treated with PVA, or DS or a combination, maintained the pluripotency and were capable of differentiating into all three germ layers. mRNA-seq analysis demonstrated that the combination of PVA and DS significantly promoted hPSC proliferation and prevented cell aggregation through improving energy metabolism-related processes, regulating cell growth, cell proliferation and cell division, as well as reducing the adhesion among hPSC aggregates by affecting expression of genes related to cell adhesion. CONCLUSIONS Our results represent a significant step towards developing a simple and robust approach for the expansion of hPSCs in large scale.
Collapse
Affiliation(s)
- Xianglian Tang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinghe Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Qicong Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiyong Zhong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiajing Li
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Situ
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Iworima DG, Rieck S, Kieffer TJ. Process parameter development for the scaled generation of stem cell-derived pancreatic endocrine cells. Stem Cells Transl Med 2021; 10:1459-1469. [PMID: 34387389 PMCID: PMC8550703 DOI: 10.1002/sctm.21-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a debilitating disease characterized by high blood glucose levels. The global prevalence of this disease has been projected to reach 700 million adults by the year 2045. Type 1 diabetes represents about 10% of the reported cases of diabetes. Although islet transplantation can be a highly effective method to treat type 1 diabetes, its widespread application is limited by the paucity of cadaveric donor islets. The use of pluripotent stem cells as an unlimited cell source to generate insulin‐producing cells for implant is a promising alternative for treating diabetes. However, to be clinically relevant, it is necessary to manufacture these stem cell‐derived cells at sufficient scales. Significant advances have been made in differentiation protocols used to generate stem cell‐derived cells capable of reversing diabetes in animal models and for testing in clinical trials. We discuss the potential of both stem cell‐derived pancreatic progenitors and more matured insulin‐producing cells to treat diabetes. We discuss the need for rigorous bioprocess parameter optimization and identify some critical process parameters and strategies that may influence the critical quality attributes of the cells with the goal of facilitating scalable manufacturing of human pluripotent stem cell‐derived pancreatic endocrine cells.
Collapse
Affiliation(s)
- Diepiriye G Iworima
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Timothy J Kieffer
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Nogueira DES, Rodrigues CAV, Hashimura Y, Jung S, Lee B, Cabral JMS. Suspension Culture of Human Induced Pluripotent Stem Cells in Single-Use Vertical-Wheel™ Bioreactors Using Aggregate and Microcarrier Culture Systems. Methods Mol Biol 2021; 2286:167-178. [PMID: 33381855 DOI: 10.1007/7651_2020_287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have the potential to be used in a variety of biomedical applications, including drug discovery and Regenerative Medicine. The success of these approaches is, however, limited by the difficulty of generating the large quantities of cells required in a reproducible and controlled system. Bioreactors, widely used for industrial manufacture of biological products, constitute a viable strategy for large-scale production of stem cell derivatives. In this chapter, we describe the expansion of hiPSCs using the Vertical-Wheel™ bioreactor, a novel bioreactor configuration specifically designed for the culture of shear-sensitive cells. We provide protocols for the expansion of hiPSCs in suspension, both as floating aggregates and using microcarriers for cell adhesion. These methods may be important for the establishment of a scalable culture of hiPSCs, allowing the manufacturing of industrial- or clinical-scale cell numbers.
Collapse
Affiliation(s)
- Diogo E S Nogueira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | | | | | | | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Expansion processes for cell-based therapies. Biotechnol Adv 2019; 37:107455. [PMID: 31629791 DOI: 10.1016/j.biotechadv.2019.107455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Living cells are emerging as therapeutic entities for the treatment of patients affected with severe and chronic diseases where no conventional drug can provide a definitive cure. At the same time, the promise of cell-based therapies comes with several biological, regulatory, economic, logistical, safety and engineering challenges that need to be addressed before translating into clinical practice. Among the complex operations required for their manufacturing, cell expansion occupies a significant part of the entire process and largely determines the number, the phenotype and several other critical quality attributes of the final cell therapy products (CTPs). This review aims at characterizing the main culture systems and expansion processes used for CTP production, highlighting the need to implement scalable, cost-efficient technologies together with process optimization strategies to bridge the gap between basic scientific research and commercially available therapies.
Collapse
|
15
|
Nogueira DES, Rodrigues CAV, Carvalho MS, Miranda CC, Hashimura Y, Jung S, Lee B, Cabral JMS. Strategies for the expansion of human induced pluripotent stem cells as aggregates in single-use Vertical-Wheel™ bioreactors. J Biol Eng 2019; 13:74. [PMID: 31534477 PMCID: PMC6744632 DOI: 10.1186/s13036-019-0204-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Since their inception, human induced pluripotent stem cells (hiPSCs) have held much promise for pharmacological applications and cell-based therapies. However, their potential can only be realised if large numbers of cells can be produced reproducibly on-demand. While bioreactors are ideal systems for this task, due to providing agitation and control of the culture parameters, the common impeller geometries were not designed for the expansion of mammalian cells, potentially leading to sub-optimal results. Results This work reports for the first time the usage of the novel Vertical-Wheel single-use bioreactors for the expansion of hiPSCs as floating aggregates. Cultures were performed in the PBS MINI 0.1 bioreactor with 60 mL of working volume. Two different culture media were tested, mTeSR1 and mTeSR3D, in a repeated batch or fed-batch mode, respectively, as well as dextran sulfate (DS) supplementation. mTeSR3D was shown to sustain hiPSC expansion, although with lower maximum cell density than mTeSR1. Dextran sulfate supplementation led to an increase in 97 and 106% in maximum cell number when using mTeSR1 or mTeSR3D, respectively. For supplemented media, mTeSR1 + DS allowed for a higher cell density to be obtained with one less day of culture. A maximum cell density of (2.3 ± 0.2) × 106 cells∙mL− 1 and a volumetric productivity of (4.6 ± 0.3) × 105 cells∙mL− 1∙d− 1 were obtained after 5 days with mTeSR1 + DS, resulting in aggregates with an average diameter of 346 ± 11 μm. The generated hiPSCs were analysed by flow cytometry and qRT-PCR and their differentiation potential was assayed, revealing the maintenance of their pluripotency after expansion. Conclusions The results here described present the Vertical-Wheel bioreactor as a promising technology for hiPSC bioprocessing. The specific characteristics of this bioreactor, namely in terms of the innovative agitation mechanism, can make it an important system in the development of hiPSC-derived products under current Good Manufacturing Practices.
Collapse
Affiliation(s)
- Diogo E S Nogueira
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Marta S Carvalho
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia C Miranda
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | - Joaquim M S Cabral
- 1Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,2The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Human Pluripotent Stem Cells: Applications and Challenges for Regenerative Medicine and Disease Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:189-224. [PMID: 31740987 DOI: 10.1007/10_2019_117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, human pluripotent stem (hPS) cells have started to emerge as a potential tool with application in fields such as regenerative medicine, disease modeling, and drug screening. In particular, the ability to differentiate human-induced pluripotent stem (hiPS) cells into different cell types and to mimic structures and functions of a specific target organ, resourcing to organoid technology, has introduced novel model systems for disease recapitulation while offering a powerful tool to provide a faster and reproducible approach in the process of drug discovery. All these technologies are expected to improve the overall quality of life of the humankind. Here, we highlight the main applications of hiPS cells and the main challenges associated with the translation of hPS cell derivatives into clinical settings and other biomedical applications, such as the costs of the process and the ability to mimic the complexity of the in vivo systems. Moreover, we focus on the bioprocessing approaches that can be applied towards the production of high numbers of cells as well as their efficient differentiation into the final product and further purification.
Collapse
|
18
|
Bejoy J, Wang Z, Bijonowski B, Yang M, Ma T, Sang QX, Li Y. Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomater Sci Eng 2018; 4:4354-4366. [PMID: 31572767 PMCID: PMC6768405 DOI: 10.1021/acsbiomaterials.8b01142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lack of well-established animal models that can efficiently represent human brain pathology has led to the development of human induced pluripotent stem cell (hiPSC)-derived brain tissues. Brain organoids have enhanced our ability to understand the developing human brain and brain disorders (e.g., Schizophrenia, microcephaly), but the organoids still do not accurately recapitulate the anatomical organization of the human brain. Therefore, it is important to evaluate and optimize induction and signaling factors in order to engineer the next generation of brain organoids. In this study, the impact of hyaluronic acid (HA), a major brain extracellular matrix (ECM) component that interacts with cells through ligand-binding receptors, on the patterning of brain organoids from hiPSCs was evaluated. To mediate HA- binding capacity of signaling molecules, heparin was added in addition to HA or conjugated to HA to form hydrogels (with two different moduli). The neural cortical spheroids derived from hiPSCs were treated with either HA or heparin plus HA (Hep- HA) and were analyzed for ECM impacts on neural patterning. The results indicate that Hep-HA has a caudalizing effect on hiPSC-derived neural spheroids, in particular for stiff Hep-HA hydrogels. Wnt and Hippo/Yes-associated protein (YAP) signaling was modulated (using Wnt inhibitor IWP4 or actin disruption agent Cytochalasin D respectively) to understand the underlying mechanism. IWP4 and cytochalasin D promote forebrain identity. The results from this study should enhance the understanding of influence of biomimetic ECM factors for brain organoid generation.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Brent Bijonowski
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
19
|
Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering (Basel) 2018; 5:bioengineering5030049. [PMID: 29933623 PMCID: PMC6163436 DOI: 10.3390/bioengineering5030049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
A low percentage of novel drug candidates succeed and reach the end of the drug discovery pipeline, mainly due to poor initial screening and assessment of the effects of the drug and its metabolites over various tissues in the human body. For that, emerging technologies involving the production of organoids from human pluripotent stem cells (hPSCs) and the use of organ-on-a-chip devices are showing great promise for developing a more reliable, rapid and cost-effective drug discovery process when compared with the current use of animal models. In particular, the possibility of virtually obtaining any type of cell within the human body, in combination with the ability to create patient-specific tissues using human induced pluripotent stem cells (hiPSCs), broadens the horizons in the fields of drug discovery and personalized medicine. In this review, we address the current progress and challenges related to the process of obtaining organoids from different cell lineages emerging from hPSCs, as well as how to create devices that will allow a precise examination of the in vitro effects generated by potential drugs in different organ systems.
Collapse
|
20
|
Lipsitz YY, Tonge PD, Zandstra PW. Chemically controlled aggregation of pluripotent stem cells. Biotechnol Bioeng 2018; 115:2061-2066. [PMID: 29679475 PMCID: PMC6055717 DOI: 10.1002/bit.26719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/28/2018] [Accepted: 04/17/2018] [Indexed: 01/18/2023]
Abstract
Heterogeneity in pluripotent stem cell (PSC) aggregation leads to variability in mass transfer and signaling gradients between aggregates, which results in heterogeneous differentiation and therefore variability in product quality and yield. We have characterized a chemical‐based method to control aggregate size within a specific, tunable range with low heterogeneity, thereby reducing process variability in PSC expansion. This method enables controlled, scalable, stirred suspension‐based manufacturing of PSC cultures that are critical for the translation of regenerative medicine strategies to clinical products.
Collapse
Affiliation(s)
- Yonatan Y. Lipsitz
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Peter D. Tonge
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Centre for Commercialization of Regenerative MedicineTorontoOntarioCanada
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Centre for Commercialization of Regenerative MedicineTorontoOntarioCanada
- The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
- Medicine by Design: A Canada First Research Excellence Fund ProgramUniversity of TorontoTorontoOntarioCanada
- School of Biomedical EngineeringUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|