1
|
Ren X, Zhao L, Shen J, Zhou P, Zhao K, Yuan C, Xing R, Yan X. Engineered microbial platform confers resistance against heavy metals via phosphomelanin biosynthesis. Nat Commun 2025; 16:4836. [PMID: 40413165 PMCID: PMC12103612 DOI: 10.1038/s41467-025-60117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Environmental concerns are increasingly fueling interest in engineered living materials derived from microbial sources. Melanin biosynthesis in microbes, particularly facilitated by recombinant tyrosinase expression, offers sustainable protection for the habitat of microorganisms against severe environmental stressors. However, there exists a vast urgency to optimize these engineered microbial platforms, which will amplify their protective capabilities, integrate multifaceted functions, and thereby expand their utility and effectiveness. Here, we genetically engineer microbial platforms capable of endogenously biosynthesizing phosphomelanin, a unique phosphorus-containing melanin. The ability to heterogeneously biosynthesize phosphomelanin endows the microbes with enhanced resistance to heavy metals, thus safeguarding their survival in adverse conditions. Furthermore, we upgrade these engineered microbes by integrating PET-degrading enzymes, thereby achieving effective integrated management of metallized plastic waste. This engineered microbial platform, with its phosphomelanin biosynthetic capabilities, presents significant opportunities for microbes to engage in bioengineering manufacturing, potentially serving as the next-generation guardians against global ecological challenges.
Collapse
Affiliation(s)
- Xiaokang Ren
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyang Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jintao Shen
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Zhou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaili Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
2
|
Qi B, Zhang J, Ma W, Wu Y, Lv X, Liu L, Li J, Du G, Liu Y. Biosensor-Assisted Multitarget Gene Fine-Tuning for N-Acetylneuraminic Acid Production in Escherichia coli with Sole Carbon Source Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9793-9806. [PMID: 40207619 DOI: 10.1021/acs.jafc.5c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
N-Acetylneuraminic acid (NeuAc) is widely used in the food and medical industries. Microbial fermentation has become one of the most important approaches for NeuAc production. However, current research on NeuAc is confronted with challenges, including high production costs, interference from competitive pathways, and low conversion efficiency, all of which impede its efficient production. In this study, an engineered Escherichia coli capable of utilizing glucose as the sole carbon source for NeuAc production was constructed by optimizing the glucose utilization pathway, competitive pathways, and redox balance of NADH/NAD+. Subsequently, pathway genes were systematically upregulated to identify key target genes for improving NeuAc biosynthesis. The gene cluster glmSA*-glmM-SeglmU was identified as the key engineering target. To achieve multitarget coordinated optimization of this gene cluster in vivo, a highly responsive biosensor for NeuAc was developed, exhibiting a maximum response ratio of 10.62-fold. By the construction of random mutation libraries and integration of the NeuAc-responsive biosensor with high-throughput screening using flow cytometry, the expression levels of three key genes were synergistically optimized. As a result, highly efficient NeuAc-producing strain A39 was successfully obtained. In a 3-L bioreactor, the strain achieved a NeuAc titer of 58.26 g·L-1 with a productivity of 0.83 g·L-1·h-1, representing the highest reported production of NeuAc using glucose as the sole carbon source.
Collapse
Affiliation(s)
- Bin Qi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Jianing Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Wenlong Ma
- Jiangsu Provincial Key Laboratory for Probiotics and Dairy Deep Processing, College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| |
Collapse
|
3
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
4
|
Zhao M, Zhu Y, Wang H, Zhang W, Mu W. Recent advances on N-acetylneuraminic acid: Physiological roles, applications, and biosynthesis. Synth Syst Biotechnol 2023; 8:509-519. [PMID: 37502821 PMCID: PMC10369400 DOI: 10.1016/j.synbio.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
N-Acetylneuraminic acid (Neu5Ac), the most common type of Sia, generally acts as the terminal sugar in cell surface glycans, glycoconjugates, oligosaccharides, lipo-oligosaccharides, and polysaccharides, thus exerting numerous physiological functions. The extensive applications of Neu5Ac in the food, cosmetic, and pharmaceutical industries make large-scale production of this chemical desirable. Biosynthesis which is associated with important application potential and environmental friendliness has become an indispensable approach for large-scale synthesis of Neu5Ac. In this review, the physiological roles of Neu5Ac was first summarized in detail. Second, the safety evaluation, regulatory status, and applications of Neu5Ac were discussed. Third, enzyme-catalyzed preparation, whole-cell biocatalysis, and microbial de novo synthesis of Neu5Ac were comprehensively reviewed. In addition, we discussed the main challenges of Neu5Ac de novo biosynthesis, such as screening and engineering of key enzymes, identifying exporters of intermediates and Neu5Ac, and balancing cell growth and biosynthesis. The corresponding strategies and systematic strategies were proposed to overcome these challenges and facilitate Neu5Ac industrial-scale production.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong, 250010, PR China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| |
Collapse
|
5
|
Liu C, Lv X, Li J, Liu L, Du G, Liu Y. Metabolic Engineering of Escherichia coli for Increased Bioproduction of N-Acetylneuraminic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15859-15868. [PMID: 36475707 DOI: 10.1021/acs.jafc.2c05994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-Acetylneuraminic acid (NeuAc) is widely used in the food and pharmaceutical industries. Therefore, it is important to develop an efficient and eco-friendly method for NeuAc production. Here, we achieved de novo biosynthesis of NeuAc in an engineered plasmid-free Escherichia coli strain, which efficiently synthesizes NeuAc using glycerol as the sole carbon source, via clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-based genome editing. NeuAc key precursor, N-acetylmannosamine (ManNAc; 0.40 g/L), was produced by expressing UDP-N-acetylglucosamine-2-epimerase and glucosamine-6-phosphate synthase (GlmS) mutants and blocking the NeuAc catabolic pathway in E. coli BL21 (DE3). The expression levels of GlmM and GlmU-GlmSA metabolic modules were optimized, significantly increasing the ManNAc titer to 8.95 g/L. Next, the expression levels of NeuAc synthase from different microorganisms were optimized, leading to the production of 6.27 g/L of NeuAc. Blocking the competing pathway of NeuAc biosynthesis increased the NeuAc titer to 9.65 g/L. In fed-batch culture in a 3 L fermenter, NeuAc titer reached 23.46 g/L with productivity of 0.69 g/L/h, which is the highest level achieved by microbial synthesis using glycerol as the sole carbon source in E. coli. The strategies used in our study can aid in the efficient bioproduction of NeuAc and its derivatives.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
6
|
Du YH, Wang MY, Yang LH, Tong LL, Guo DS, Ji XJ. Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering (Basel) 2022; 9:bioengineering9090473. [PMID: 36135019 PMCID: PMC9495923 DOI: 10.3390/bioengineering9090473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of sustainable development, the use of cell factories to produce various compounds by fermentation has attracted extensive attention; however, industrial fermentation requires not only efficient production strains, but also suitable extracellular conditions and medium components, as well as scaling-up. In this regard, the use of biological models has received much attention, and this review will provide guidance for the rapid selection of biological models. This paper first introduces two mechanistic modeling methods, kinetic modeling and constraint-based modeling (CBM), and generalizes their applications in practice. Next, we review data-driven modeling based on machine learning (ML), and highlight the application scope of different learning algorithms. The combined use of ML and CBM for constructing hybrid models is further discussed. At the end, we also discuss the recent strategies for predicting bioreactor scale-up and culture behavior through a combination of biological models and computational fluid dynamics (CFD) models.
Collapse
Affiliation(s)
- Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min-Yu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| |
Collapse
|
7
|
Zhang X, Wang C, Lv X, Liu L, Li J, Du G, Wang M, Liu Y. Engineering of Synthetic Multiplexed Pathways for High-Level N-Acetylneuraminic Acid Bioproduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14868-14877. [PMID: 34851104 DOI: 10.1021/acs.jafc.1c06017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-Acetylneuraminic acid (NeuAc) is widely used as a supplement to promote brain health and enhance immunity. However, the low efficiency of de novo NeuAc synthesis limits its cost-efficient bioproduction. Herein, a synthetic multiplexed pathway engineering (SMPE) strategy is proposed to improve NeuAc synthesis. First, we compare the key enzyme sources and optimize the expression levels of three NeuAc synthesis pathways in Bacillus subtilis; the AGE, NeuC, and NanE pathways, for which NeuAc production reached 3.94, 5.67, and 0.19 g/L, respectively. Next, these synthesis pathways were combined and modularly optimized via the SMPE strategy, with production reaching 7.87 g/L. Finally, fed-batch fermentation in a 5 L fermenter reached 30.10 g/L NeuAc production, the highest reported production using glucose as the sole carbon source. Using a generally regarded as safe strain as a production host, the developed NeuAc-producing approach should be favorable for efficient bioproduction, without the need for plasmids, antibiotics, or chemical inducers.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Miao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| |
Collapse
|
8
|
Cao Y, Tian R, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Inducible Population Quality Control of Engineered Bacillus subtilis for Improved N-Acetylneuraminic Acid Biosynthesis. ACS Synth Biol 2021; 10:2197-2209. [PMID: 34404207 DOI: 10.1021/acssynbio.1c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Biosynthesis by microorganisms using renewable feedstocks is an important approach for realizing sustainable chemical manufacturing. However, cell-to-cell variation in biosynthesis capability during fermentation restricts the robustness and efficiency of bioproduction, hampering the industrialization of biosynthesis. Herein, we developed an inducible population quality control system (iPopQC) for dynamically modulating the producing and nonproducing subpopulations of engineered Bacillus subtilis, which was constructed via inducible promoter- and metabolite-responsive biosensor-based genetic circuit for regulating essential genes. Moreover, iPopQC achieved a 1.97-fold increase in N-acetylneuraminic acid (NeuAc) titer by enriching producing cell subpopulation during cultivation, representing 52% higher than that of previous PopQC. Strains with double-output iPopQC cocoupling the expression of double essential genes with NeuAc production improved production robustness further, retaining NeuAc production throughout 96 h of fermentation, upon which the strains cocoupling one essential gene expression with NeuAc production abolished the production ability.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Naz R, Okla MK, Fatima U, Mohsin M, Soufan WH, Alaraidh IA, Abdel-Maksoud MA, Ahmad A. Designing and Development of FRET-Based Nanosensor for Real Time Analysis of N-Acetyl-5-Neuraminic Acid in Living Cells. Front Nutr 2021; 8:621273. [PMID: 34136513 PMCID: PMC8200523 DOI: 10.3389/fnut.2021.621273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
N-acetyl-5-neuraminic acid (NeuAc) plays crucial role in improving the growth, brain development, brain health maintenance, and immunity enhancement of infants. Commercially, it is used in the production of antiviral drugs, infant milk formulas, cosmetics, dietary supplements, and pharmaceutical products. Because of the rapidly increasing demand, metabolic engineering approach has attracted increasing attention for NeuAc biosynthesis. However, knowledge of metabolite flux in biosynthetic pathways is one of the major challenges in the practice of metabolic engineering. So, an understanding of the flux of NeuAc is needed to determine its cellular level at real time. The analysis of the flux can only be performed using a tool that has the capacity to measure metabolite level in cells without affecting other metabolic processes. A Fluorescence Resonance Energy Transfer (FRET)-based genetically-encoded nanosensor has been generated in this study to monitor the level of NeuAc in prokaryotic and eukaryotic cells. Sialic acid periplasmic binding protein (SiaP) from Haemophilus influenzae was exploited as a sensory element for the generation of nanosensor. The enhanced cyan fluorescent protein (ECFP) and Venus were used as Fluroscence Resonance Energy Transfer (FRET) pair. The nanosensor, which was termed fluorescent indicator protein for sialic acid (FLIP-SA), was successfully transformed into, and expressed in Escherichia coli BL21 (DE3) cells. The expressed protein of the nanosensor was isolated and purified. The purified nanosensor protein was characterized to assess the affinity, specificity, and stability in the pH range. The developed nanosensor exhibited FRET change after addition to NeuAc. The developed nanosensor was highly specific, exhibited pH stability, and detected NeuAc levels in the nanomolar to milimolar range. FLIP-SA was successfully introduced in bacterial and yeast cells and reported the real-time intracellular levels of NeuAc non-invasively. The FLIP-SA is an excellent tool for the metabolic flux analysis of the NeuAc biosynthetic pathway and, thus, may help unravel the regulatory mechanism of the metabolic pathway of NeuAc. Furthermore, FLIP-SA can be used for the high-throughput screening of E. coli mutant libraries for varied NeuAc production levels.
Collapse
Affiliation(s)
- Ruphi Naz
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Urooj Fatima
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mohsin
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Walid H Soufan
- Department of Plant Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Altaf Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Cai MZ, Chen PT. Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis. J Biosci Bioeng 2021; 132:113-119. [PMID: 33994114 DOI: 10.1016/j.jbiosc.2021.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
To improve the stability and expand applications of genome editing in Bacillus subtilis, we propose a new concept of the Cre-Cas system, which combines Cre-lox72 and CRISPR-Cas9 into an effective and convenient method. Single homologous recombination is used to introduce the integration vector into the chromosome via appropriate guide DNA to inactivate and/or insert genes of interest. The Cre recombinase then removes the region of a selection marker that is no longer needed, and the Escherichia coli replicon between the lox66 and lox71 sites are recombined to a single lox72 site. The CRISPR-Cas9 system can then be applied to remove the inserted foreign gene by targeted cutting. After Cas9 cutting, B. subtilis self-repairs the broken region to its original state without the aid of additional DNA templates. To validate this system, we used T7 and keratinase expression cassettes; self-repair efficiency was evaluated based on the loss or maintenance of the antibiotic resistance gene, as analyzed on selective media. Our results demonstrated that the insertion position in the chromosome is a more critical factor than the insertion length of the gene for efficient self-repair in the B. subtilis genome. This concept can provide the applicability of chromosomal editing in B. subtilis.
Collapse
Affiliation(s)
- Ming-Zhi Cai
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., 710 Tainan City, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., 710 Tainan City, Taiwan.
| |
Collapse
|
11
|
Zu TNK, Liu S, Gerlach ES, Mojadedi W, Sund CJ. Co-feeding glucose with either gluconate or galacturonate during clostridial fermentations provides metabolic fine-tuning capabilities. Sci Rep 2021; 11:29. [PMID: 33420096 PMCID: PMC7794554 DOI: 10.1038/s41598-020-76761-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridium acetobutylicum ATCC 824 effectively utilizes a wide range of substrates to produce commodity chemicals. When grown on substrates of different oxidation states, the organism exhibits different recycling needs of reduced intracellular electron carrying co-factors. Ratios of substrates with different oxidation states were used to modulate the need to balance electron carriers and demonstrate fine-tuned control of metabolic output. Three different oxidized substrates were first fed singularly, then in different ratios to three different strains of Clostridium sp. Growth was most robust when fed glucose in exclusive fermentations. However, the use of the other two more oxidized substrates was strain-dependent in exclusive feeds. In glucose-galacturonate mixed fermentation, the main products (acetate and butyrate) were dependant on the ratios of the substrates. Exclusive fermentation on galacturonate was nearly homoacetic. Co-utilization of galacturonate and glucose was observed from the onset of fermentation in growth conditions using both substrates combined, with the proportion of galacturonate present dictating the amount of acetate produced. For all three strains, increasing galacturonate content (%) in a mixture of galacturonate and glucose from 0 to 50, and 100, resulted in a corresponding increase in the amount of acetate produced. For example, C. acetobutylicum increased from ~ 10 mM to ~ 17 mM, and then ~ 23 mM. No co-utilization was observed when galacturonate was replaced with gluconate in the two substrate co-feed.
Collapse
Affiliation(s)
- Theresah N K Zu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA.
| | - Sanchao Liu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Elliot S Gerlach
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Wais Mojadedi
- Oak Ridge Associated Universities, Belcamp, MD, 21017, USA
| | - Christian J Sund
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| |
Collapse
|
12
|
Liu Z, Zhu Z, Tang J, He H, Wan Q, Luo Y, Huang W, Yu Z, Hu Y, Ding X, Xia L. RNA-Seq-Based Transcriptomic Analysis of Saccharopolyspora spinosa Revealed the Critical Function of PEP Phosphonomutase in the Replenishment Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14660-14669. [PMID: 33258371 DOI: 10.1021/acs.jafc.0c04443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of novel biological insecticides. Although the complete genome sequence of S. spinosa has been published, the transcriptome of S. spinosa remains poorly characterized. In this study, high-throughput RNA sequencing (RNA-seq) technology was applied to dissect the transcriptome of S. spinosa. Through transcriptomic analysis of different periods of S. spinosa growth, we found large numbers of differentially expressed genes and classified them according to their different functions. Based on the RNA-seq data, the CRISPR-Cas9 method was used to knock out the PEP phosphonomutase gene (orf 06952-4171). The yield of spinosyns A and D in S. spinosa-ΔPEP was 178.91 mg/L and 42.72 mg/L, which was 2.14-fold and 1.76-fold higher than that in the wild type (83.51 and 24.34 mg/L), respectively. The analysis of the mutant strains also verified the validity of the transcriptome data. The deletion of the PEP phosphonomutase gene leads to an increase in pyruvate content and affects the biosynthesis of spinosad. The replenishment of phosphoenol pyruvate in S. spinosa provides the substrate for the production of spinosad. We envision that these transcriptomic analysis results will contribute to the further study of secondary metabolites in actinomycetes.
Collapse
Affiliation(s)
- Zhudong Liu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zirong Zhu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jianli Tang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Haocheng He
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Qianqian Wan
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuewen Luo
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Weitao Huang
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ziquan Yu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yibo Hu
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xuezhi Ding
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Liqiu Xia
- State Key Laboratory of Development Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
13
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
15
|
Pang Q, Han H, Xu Y, Liu X, Qi Q, Wang Q. Exploring Amino Sugar and Phosphoenolpyruvate Metabolism to Improve Escherichia coli N-Acetylneuraminic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11758-11764. [PMID: 32960055 DOI: 10.1021/acs.jafc.0c04725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
N-acetyl-d-neuraminic acid (NeuAc) has attracted considerable attention because of its wide-ranging applications. The use of cheap carbon sources such as glucose without the addition of any precursor in microbial NeuAc production has many advantages. In this study, improved NeuAc production was attained through the optimization of amino sugar metabolism pathway kinetics and reservation of a phosphoenolpyruvate (PEP) pool in Escherichia coli. N-acylglucosamine 2-epimerase and N-acetylneuraminate synthase from different sources and their best combinations were used to obtain optimized enzyme kinetics and expression intensity, which resulted in a significant increase in NeuAc production. Next, after a design was engineered for enabling the PEP metabolic pathway to retain the PEP pool, the production of NeuAc reached 16.7 g/L, which is the highest NeuAc production rate that has been reported from using glucose as the sole carbon source.
Collapse
Affiliation(s)
- Qingxiao Pang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Hao Han
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Ya Xu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Xiaoqin Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
16
|
Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Nat Commun 2020; 11:5078. [PMID: 33033266 PMCID: PMC7544899 DOI: 10.1038/s41467-020-18960-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic engineering facilitates chemical biosynthesis by rewiring cellular resources to produce target compounds. However, an imbalance between cell growth and bioproduction often reduces production efficiency. Genetic code expansion (GCE)-based orthogonal translation systems incorporating non-canonical amino acids (ncAAs) into proteins by reassigning non-canonical codons to ncAAs qualify for balancing cellular metabolism. Here, GCE-based cell growth and biosynthesis balance engineering (GCE-CGBBE) is developed, which is based on titrating expression of cell growth and metabolic flux determinant genes by constructing ncAA-dependent expression patterns. We demonstrate GCE-CGBBE in genome-recoded Escherichia coli Δ321AM by precisely balancing glycolysis and N-acetylglucosamine production, resulting in a 4.54-fold increase in titer. GCE-CGBBE is further expanded to non-genome-recoded Bacillus subtilis to balance growth and N-acetylneuraminic acid bioproduction by titrating essential gene expression, yielding a 2.34-fold increase in titer. Moreover, the development of ncAA-dependent essential gene expression regulation shows efficient biocontainment of engineered B. subtilis to avoid unintended proliferation in nature. An imbalance between cell growth and bioproduction of engineered microbes often reduces production efficiency. Here, the authors report genetic code expansion-based cell growth and biosynthesis balance engineering to achieve high levels production of N-acetylglucosamine in E. coli and N-acetylneuraminic acid in B. subtilis.
Collapse
|
17
|
Liu Y, Su A, Li J, Ledesma-Amaro R, Xu P, Du G, Liu L. Towards next-generation model microorganism chassis for biomanufacturing. Appl Microbiol Biotechnol 2020; 104:9095-9108. [DOI: 10.1007/s00253-020-10902-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
18
|
Tian R, Wang M, Shi J, Qin X, Guo H, Jia X, Li J, Liu L, Du G, Chen J, Liu Y. Cell-free synthesis system-assisted pathway bottleneck diagnosis and engineering in Bacillus subtilis. Synth Syst Biotechnol 2020; 5:131-136. [PMID: 32637666 PMCID: PMC7320236 DOI: 10.1016/j.synbio.2020.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Metabolic engineering is a key technology for cell factories construction by rewiring cellular resources to achieve efficient production of target chemicals. However, the existence of bottlenecks in synthetic pathway can seriously affect production efficiency, which is also one of the core issues for metabolic engineers to solve. Therefore, developing an approach for diagnosing potential metabolic bottlenecks in a faster and simpler manner is of great significance to accelerate cell factories construction. The cell-free reaction system based on cell lysates can transfer metabolic reactions from in vivo to in vitro, providing a flexible access to directly change protein and metabolite variables, thus provides a potential solution for rapid identification of bottlenecks. Here, bottleneck diagnosis of the N-acetylneuraminic acid (NeuAc) biosynthesis pathway in industrially important chassis microorganism Bacillus subtilis was performed using cell-free synthesis system. Specifically, a highly efficient B. subtilis cell-free system for NeuAc de novo synthesis was firstly constructed, which had a 305-fold NeuAc synthesis rate than that in vivo and enabled fast pathway dynamics analysis. Next, through the addition of all potential key intermediates in combination with substrate glucose respectively, it was found that insufficient phosphoenolpyruvate supply was one of the NeuAc pathway bottlenecks. Rational in vivo metabolic engineering of NeuAc-producing B. subtilis was further performed to eliminate the bottleneck. By down-regulating the expression level of pyruvate kinase throughout the growth phase or only in the stationary phase using inhibitory N-terminal coding sequences (NCSs) and growth-dependent regulatory NCSs respectively, the maximal NeuAc titer increased 2.0-fold. Our study provides a rapid method for bottleneck diagnosis, which may help to accelerate the cycle of design, build, test and learn cycle for metabolic engineering.
Collapse
Affiliation(s)
- Rongzhen Tian
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Minghu Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jintian Shi
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiaolong Qin
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Haoyu Guo
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xuanjie Jia
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
19
|
Developing rapid growing Bacillus subtilis for improved biochemical and recombinant protein production. Metab Eng Commun 2020; 11:e00141. [PMID: 32874915 PMCID: PMC7452210 DOI: 10.1016/j.mec.2020.e00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Bacillus subtilis is a model Gram-positive bacterium, which has been widely used as industrially important chassis in synthetic biology and metabolic engineering. Rapid growth of chassis is beneficial for shortening the fermentation period and enhancing production of target product. However, engineered B. subtilis with faster growth phenotype is lacking. Here, fast-growing B. subtilis were constructed through rational gene knockout and adaptive laboratory evolution using wild type strain B. subtilis 168 (BS168) as starting strain. Specifically, strains BS01, BS02, and BS03 were obtained through gene knockout of oppD, hag, and flgD genes, respectively, resulting 15.37%, 24.18% and 36.46% increases of specific growth rate compared with BS168. Next, strains A28 and A40 were obtained through adaptive laboratory evolution, whose specific growth rates increased by 39.88% and 43.53% compared to BS168, respectively. Then these two methods were combined via deleting oppD, hag, and flgD genes respectively on the basis of evolved strain A40, yielding strain A4003 with further 7.76% increase of specific growth rate, reaching 0.75 h-1 in chemical defined M9 medium. Finally, bioproduction efficiency of intracellular product (ribonucleic acid, RNA), extracellular product (acetoin), and recombinant proteins (green fluorescent protein (GFP) and ovalbumin) by fast-growing strain A4003 was tested. And the production of RNA, acetoin, GFP, and ovalbumin increased 38.09%, 5.40%, 9.47% and 19.79% using fast-growing strain A4003 as chassis compared with BS168, respectively. The developed fast-growing B. subtilis strains and strategies used for developing these strains should be useful for improving bioproduction efficiency and constructing other industrially important bacterium with faster growth phenotype. Fast-growing Bacillus subtilis were constructed through rational gene knockout and adaptive laboratory evolution. Specific growth rate of engineered B. subtilis increased 53.06% compared with B. subtilis 168, reaching 0.75 h-1 in M9 medium. Production of RNA, acetoin, and ovalbumin increased 38.09%, 5.40%, and 19.79% using fast-growing strain as chassis.
Collapse
|
20
|
Liu J, Wu X, Yao M, Xiao W, Zha J. Chassis engineering for microbial production of chemicals: from natural microbes to synthetic organisms. Curr Opin Biotechnol 2020; 66:105-112. [PMID: 32738762 DOI: 10.1016/j.copbio.2020.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
Chassis provides a setting for the expression of heterologous pathway genes, which often requires extensive engineering to achieve complete functions. Traditionally, chassis engineering relies on gene deletion/overexpression for the regulation of precursor/cofactor supply and product transportation, which has generated thousands of high-performance strains. With the development of synthetic biology, chassis modifications have expanded to the synthesis of artificial cellular machineries, creating synthetic cells for the biosynthesis of bioproducts. In this review, we will discuss the development of chassis engineering technologies, termed the first-generation and second-generation technologies, and their applications in the creation of chassis for the production of valued-added chemicals, with an emphasis on synthetic chassis and their applications and potential. The development of chassis engineering technologies will advance rational design and construction of customized chassis for the manufacturing of target bioproducts.
Collapse
Affiliation(s)
- Jingyi Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China; Frontier Technology Research Institute, Tianjin University, Tianjin 301700, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
21
|
Zhang X, Cao Y, Liu Y, Liu L, Li J, Du G, Chen J. Development and optimization of N-acetylneuraminic acid biosensors in Bacillus subtilis. Biotechnol Appl Biochem 2020; 67:693-705. [PMID: 32400021 DOI: 10.1002/bab.1942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Transcriptional factor (TF)-based metabolite-responsive biosensors are important tools for screening engineered enzymes with desired properties and for the dynamic regulation of biosynthetic pathways. However, TF-based biosensor construction is often constrained by undesired effects of TF-binding site sequence insertion on gene expression and unpredictable optimal TF expression levels. In the present study, a stepwise TF-based biosensor construction approach was developed using an N-acetylneuraminic acid (NeuAc) biosensor for Bacillus subtilis, as a case study. Specifically, 12 promoters with various strengths were selected as the first promoter library. Next, binding site sequences for the NanR were inserted into various positions of the selected promoter sequences to develop the second promoter library, resulting in 6 engineered promoters containing TF-binding site sequences (NanO), without major effects on promoter strength. NanR expression cassettes with different expression levels were further integrated to construct the biosensor library, yielding 9 NeuAc biosensors with efficient repression in the absence of NeuAc. Finally, biosensor activation was characterized by testing fold changes in expression levels of the green fluorescent protein reporter in the presence of NeuAc in vivo, which revealed 61-fold activation when NeuAc was present. The NeuAc biosensor developed in this study can be used for screening engineered enzymes for enhanced NeuAc biosynthesis in B. subtilis.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
22
|
Yang H, Liu Y, Li J, Liu L, Du G, Chen J. Systems metabolic engineering of
Bacillus subtilis
for efficient biosynthesis of 5‐methyltetrahydrofolate. Biotechnol Bioeng 2020; 117:2116-2130. [DOI: 10.1002/bit.27332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Han Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of EducationJiangnan University Wuxi China
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University Wuxi China
| |
Collapse
|
23
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
24
|
Tian R, Liu Y, Chen J, Li J, Liu L, Du G, Chen J. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metab Eng 2019; 55:131-141. [DOI: 10.1016/j.ymben.2019.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/22/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
25
|
Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnol Adv 2019; 37:787-800. [DOI: 10.1016/j.biotechadv.2019.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
|
26
|
Deng J, Chen C, Gu Y, Lv X, Liu Y, Li J, Ledesma-Amaro R, Du G, Liu L. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis. Metab Eng 2019; 55:179-190. [PMID: 31336181 DOI: 10.1016/j.ymben.2019.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/16/2022]
Abstract
Aptamer-based regulatory biosensors can dynamically regulate the expression of target genes in response to ligands and could be used in dynamic metabolic engineering for pathway optimization. However, the existing aptamer-ligand biosensors can only function with non-complementary DNA elements that cannot replicate in growing cells. Here, we construct an aptamer-based synthetic regulatory circuit that can dynamically upregulate and downregulate the expression of target genes in response to the ligand thrombin at transcriptional and translational levels, respectively, and further used this system to dynamically engineer the synthesis of 2'-fucosyllactose (2'-FL) in Bacillus subtilis. First, we demonstrated the binding of ligand molecule thrombin with the aptamer can induce the unwinding of fully complementary double-stranded DNA. Based on this finding, we constructed a bifunctional gene expression regulatory circuit using ligand thrombin-bound aptamers. The expression of the reporter gene ranged from 0.084- to 48.1-fold. Finally, by using the bifunctional regulatory circuit, we dynamically upregulated the expression of key genes fkp and futC and downregulated the expression of gene purR, resulting in the significant increase of 2'-FL titer from 24.7 to 674 mg/L. Compared with the other pathway-specific dynamic engineering systems, here the constructed aptamer-based regulatory circuit is independent of pathways, and can be generally used to fine-tune gene expression in other microbes.
Collapse
Affiliation(s)
- Jieying Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chunmei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yang Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | | | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
27
|
Gao X, Zhang F, Wu M, Wu Z, Shang G. Production of N-Acetyl-d-neuraminic Acid by Whole Cells Expressing Bacteroides thetaiotaomicron N-Acetyl-d-glucosamine 2-Epimerase and Escherichia coli N-Acetyl-d-neuraminic Acid Aldolase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6285-6291. [PMID: 31117501 DOI: 10.1021/acs.jafc.9b01839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
N-Acetyl-d-neuraminic acid (Neu5Ac) is a potential baby nutrient and the key precursor of antiflu medicine Zanamivir. The Neu5Ac chemoenzymatic synthesis consists of N-acetyl-d-glucosamine epimerase (AGE)-catalyzed epimerization of N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc) and aldolase-catalyzed condensation between ManNAc and pyruvate. Herein, we cloned and characterized BT0453, a novel AGE, from a human gut symbiont Bacteroides thetaiotaomicron. BT0453 shows the highest soluble fraction among the AGEs tested. With GlcNAc and sodium pyruvate as substrates, Neu5Ac production by coupling whole cells expressing BT0453 and Escherichia coli N-acetyl-d-neuraminic acid aldolase was explored. After 36 h, a 53.6% molar yield, 3.6 g L-1 h-1 productivity and 42.9 mM titer of Neu5Ac were obtained. Furthermore, for the first time, the T7- BT0453-T7- nanA polycistronic unit was integrated into the E. coli genome, generating a chromosome-based biotransformation system. BT0453 protein engineering and metabolic engineering studies hold potential for the industrial production of Neu5Ac.
Collapse
Affiliation(s)
- Xinyue Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Feifei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Meng Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Zhixin Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
28
|
Zhao L, Tian R, Shen Q, Liu Y, Liu L, Li J, Du G. Pathway Engineering of
Bacillus subtilis
for Enhanced
N
‐Acetylneuraminic Acid Production via Whole‐Cell Biocatalysis. Biotechnol J 2019; 14:e1800682. [DOI: 10.1002/biot.201800682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Qingyang Shen
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| |
Collapse
|
29
|
Dong X, Li N, Liu Z, Lv X, Li J, Du G, Wang M, Liu L. Modular pathway engineering of key precursor supply pathways for lacto- N-neotetraose production in Bacillus subtilis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:212. [PMID: 31516551 PMCID: PMC6732834 DOI: 10.1186/s13068-019-1551-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/24/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lacto-N-neotetraose (LNnT) is one of the important ingredients of human milk oligosaccharides, which can enhance immunity, regulate intestinal bacteria and promote cell maturation. RESULTS In this study, the synthetic pathway of LNnT was constructed by co-expressing the lactose permease (LacY) β-1,3-N-acetylglucosaminyltransferase (LgtA) and β-1,4-galactostltransferase (LgtB) in Bacillus subtilis, resulting in an LNnT titer of 0.61 g/L. Then, by fine-tuning the expression level of LgtB, the growth inhibition was reduced and the LNnT titer was increased to 1.31 g/L. In addition, by modular pathway engineering, the positive-acting enzymes of the UDP-GlcNAc and UDP-Gal pathways were strengthened to balance the two key precursors supply, and the LNnT titer was improved to 1.95 g/L. Finally, the LNnT titer reached 4.52 g/L in a 3-L bioreactor with an optimal glucose and lactose feeding strategy. CONCLUSIONS In general, this study showed that the LNnT biosynthesis could be significantly increased by optimizing enzymes expression levels and modular pathway engineering for balancing the precursors supply in B. subtilis.
Collapse
Affiliation(s)
- Xiaomin Dong
- Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co, Ltd, Shanghai, 200436 China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co, Ltd, Shanghai, 200436 China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Miao Wang
- Key Laboratory of Food Science and Technology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|