1
|
Cools L, Dastjerd MK, Smout A, Merens V, Yang Y, Reynaert H, Messaoudi N, Smet VD, Kumar M, Verhulst S, Verfaillie C, van Grunsven LA. Human iPSC-derived liver co-culture spheroids to model liver fibrosis. Biofabrication 2024; 16:035032. [PMID: 38865994 DOI: 10.1088/1758-5090/ad5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The lack of adequate humanin vitromodels that recapitulate the cellular composition and response of the human liver to injury hampers the development of anti-fibrotic drugs. The goal of this study was to develop a human spheroid culture model to study liver fibrosis by using induced pluripotent stem cell (iPSC)-derived liver cells. iPSCs were independently differentiated towards hepatoblasts (iHepatoblasts), hepatic stellate cells (iHSCs), endothelial cells (iECs) and macrophages (iMΦ), before assembly into free floating spheroids by culturing cells in 96-well U-bottom plates and orbital shaking for up to 21 days to allow further maturation. Through transcriptome analysis, we show further maturation of iECs and iMΦ, the differentiation of the iHepatoblasts towards hepatocyte-like cells (iHeps) and the inactivation of the iHSCs by the end of the 3D culture. Moreover, these cultures display a similar expression of cell-specific marker genes (CYP3A4, PDGFRβ, CD31andCD68) and sensitivity to hepatotoxicity as spheroids made using freshly isolated primary human liver cells. Furthermore, we show the functionality of the iHeps and the iHSCs by mimicking liver fibrosis through iHep-induced iHSC activation, using acetaminophen. In conclusion, we have established a reproducible human iPSC-derived liver culture model that can be used to mimic fibrosisin vitroas a replacement of primary human liver derived 3D models. The model can be used to investigate pathways involved in fibrosis development and to identify new targets for chronic liver disease therapy.
Collapse
Affiliation(s)
- Laura Cools
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mina Kazemzadeh Dastjerd
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ayla Smout
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Vincent Merens
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yuwei Yang
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hendrik Reynaert
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Nouredin Messaoudi
- Department of Hepatobiliary Surgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Vincent De Smet
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Gastroenterology and Hepatology, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Manoj Kumar
- Stem Cell Institute Leuven, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute Leuven, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
2
|
Lee HJ, Mun SJ, Jung CR, Kang HM, Kwon JE, Ryu JS, Ahn HS, Kwon OS, Ahn J, Moon KS, Son MJ, Chung KS. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng 2023; 120:1241-1253. [PMID: 36639871 DOI: 10.1002/bit.28333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Hepatic stellate cells (HSCs) play an important role in liver fibrosis; however, owing to the heterogeneity and limited supply of primary HSCs, the development of in vitro liver fibrosis models has been impeded. In this study, we established and characterized a novel human HSC line (LSC-1), and applied it to various types of three-dimensional (3D) co-culture systems with differentiated HepaRG cells. Furthermore, we compared LSC-1 with a commercially available HSC line on conventional monolayer culture. LSC-1 exhibited an overall upregulation of the expression of fibrogenic genes along with increased levels of matrix and adhesion proteins, suggesting a myofibroblast-like or transdifferentiated state. However, activated states reverted to a quiescent-like phenotype when cultured in different 3D culture formats with a relatively soft microenvironment. Additionally, LSC-1 exerted an overall positive effect on co-cultured differentiated HepaRG, which significantly increased hepatic functionality upon long-term cultivation compared with that achieved with other HSC line. In 3D spheroid culture, LSC-1 exhibited enhanced responsiveness to transforming growth factor beta 1 exposure that is caused by a different matrix-related protein expression mechanism. Therefore, the LSC-1 line developed in this study provides a reliable candidate model that can be used to address unmet needs, such as development of antifibrotic therapies.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Hyun-Mi Kang
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jae-Eun Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jae-Sung Ryu
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyo-Suk Ahn
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ok-Seon Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jiwon Ahn
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyung-Sik Moon
- General and Applied Toxicology Research Center, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
3
|
Assessment of long-term functional maintenance of primary human hepatocytes to predict drug-induced hepatoxicity in vitro. Arch Toxicol 2021; 95:2431-2442. [PMID: 33852043 DOI: 10.1007/s00204-021-03050-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Hepatocytes are the main cell components of the liver and perform metabolic, detoxification, and endocrine functions. Functional hepatocytes are of great value in drug development, toxicity evaluation, and cell therapy for liver diseases. In recent years, an increasing number of in vitro models have been developed to screen drugs and test their toxicity. However, maintaining hepatocyte function in vitro for a long time is a serious challenge. Even freshly isolated liver cells cultured for a short time may lose function via spontaneous dedifferentiation. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long-term in vitro studies are required. In this study, we developed a conditioned culture system composed of a small-molecule combination that can maintain hepatocyte morphology and functions over the long term. Two-month culture of primary human hepatocytes showed that the conditioned medium was able to stably preserve hepatic functions such as albumin and α-antitrypsin secretion, hepatic transport activity, urea synthesis, and ammonia elimination. Furthermore, this culture model can be used to assess drug-induced hepatotoxicity in vitro. In summary, our work suggests a feasible approach to maintain hepatocyte function in vitro and proposes a promising model for long-term toxicological studies and drug development.
Collapse
|
4
|
Wang T, Wang L, Wang G, Zhuang Y. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00325-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Lee H, Ahn J, Jung C, Jeung Y, Cho H, Son MJ, Chung K. Optimization of 3D hydrogel microenvironment for enhanced hepatic functionality of primary human hepatocytes. Biotechnol Bioeng 2020; 117:1864-1876. [DOI: 10.1002/bit.27328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/03/2020] [Accepted: 03/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ho‐Joon Lee
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Jiwon Ahn
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Cho‐Rock Jung
- Gene Therapy UnitKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
| | - Yun‐Ji Jeung
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Hyun‐Soo Cho
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
| | - Kyung‐Sook Chung
- Stem Cell Convergence Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
- Department of Functional GenomicsKorea University of Science and Technology (UST) Daejeon Republic of Korea
- Biomedical Translational Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB) Daejeon Republic of Korea
| |
Collapse
|
6
|
Ghaemi RV, Siang LC, Yadav VG. Improving the Rate of Translation of Tissue Engineering Products. Adv Healthc Mater 2019; 8:e1900538. [PMID: 31386306 DOI: 10.1002/adhm.201900538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/04/2019] [Indexed: 12/18/2022]
Abstract
Over 100 000 research articles and 9000 patents have been published on tissue engineering (TE) in the past 20 years. Yet, very few TE products have made their way to the market during the same period. Experts have proposed a variety of strategies to address the lack of translation of TE products. However, since these proposals are guided by qualitative insights, they are limited in scope and impact. Machine learning is utilized in the current study to analyze the entire body of patents that have been published over the past twenty years and understand patenting trends, topics, areas of application, and exemplifications. This analysis yields surprising and little-known insights about the differences in research priorities and perceptions of innovativeness of tissue engineers in academia and industry, as well as aids to chart true advances in the field during the past twenty years. It is hoped that this analysis and subsequent proposal to improve translational rates of TE products will spur much needed dialogue about this important pursuit.
Collapse
Affiliation(s)
- Roza Vaez Ghaemi
- Department of Chemical and Biological Engineeringand School of Biomedical EngineeringThe University of British Columbia Vancouver V6T 1Z3 Canada
| | - Lim C. Siang
- Department of Chemical and Biological Engineeringand School of Biomedical EngineeringThe University of British Columbia Vancouver V6T 1Z3 Canada
| | - Vikramaditya G. Yadav
- Department of Chemical and Biological Engineeringand School of Biomedical EngineeringThe University of British Columbia Vancouver V6T 1Z3 Canada
| |
Collapse
|
7
|
Ryu JS, Lee M, Mun SJ, Hong SH, Lee HJ, Ahn HS, Chung KS, Kim GH, Son MJ. Targeting CYP4A attenuates hepatic steatosis in a novel multicellular organotypic liver model. J Biol Eng 2019; 13:69. [PMID: 31406506 PMCID: PMC6686528 DOI: 10.1186/s13036-019-0198-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) begins as simple hepatic steatosis, but further progress to chronic liver diseases results in severe liver damage and hepatic failure. However, therapeutic options are scarce due to the lack of reliable human in vitro liver models for understanding disease progression mechanisms and developing therapies. Results We describe here a novel method for generating 3D hepatic spheroids using HepaRG cells, vascular endothelial cells, and mesenchymal stem cells cultured on a thick layer of soft matrix in a narrow conical tube; this method improved self-organization efficiency and functional competence. We further developed a 3D hepatic steatosis model with excess glucose and palmitate, accurately recapitulating steatosis phenotypes such as neutral lipid accumulation, enhanced expression of lipogenesis and gluconeogenesis markers, increased intracellular triglyceride content, and reduced glucose uptake. The expression and activity of cytochrome P450 4A (CYP4A), a hepatic glucose and lipid homeostasis enzyme, that is highly expressed in liver tissues from NAFLD patients, was induced in our in vitro steatosis model, and inhibiting CYP4A with the selective inhibitor HET0016 or a specific siRNA ameliorated steatosis-related pathology through reduced ER stress and improved insulin signaling. Conclusions We provide here a novel 3D human cell-based hepatic model that can be easily generated and reliably simulate hepatic steatosis pathology. We have experimentally validated its potential for target validation and drug evaluation by focusing on CYP4A, which may serve as a translational platform for drug development.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Minji Lee
- 2Drug and Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungcheong 28119 Republic of Korea.,3Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Seon Ju Mun
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea.,4Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Sin-Hyoung Hong
- 2Drug and Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungcheong 28119 Republic of Korea.,3Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Ho-Joon Lee
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Hyo-Suk Ahn
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Kyung-Sook Chung
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea.,4Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113 Republic of Korea.,5Biomedical Translational Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Gun-Hwa Kim
- 2Drug and Disease Target Team, Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungcheong 28119 Republic of Korea.,3Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, 34113 Republic of Korea.,6Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Myung Jin Son
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea.,4Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| |
Collapse
|