1
|
Imran M, Alotaibi NM, Thabet HK, Alruwaili JA, Asdaq SMB, Eltaib L, Alshehri A, Alsaiari AA, Almehmadi M, Alshammari ABH, Alshammari AM. QcrB inhibition as a potential approach for the treatment of tuberculosis: A review of recent developments, patents, and future directions. J Infect Public Health 2023; 16:928-937. [PMID: 37086552 DOI: 10.1016/j.jiph.2023.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
The unmet medical need for drug-resistant tuberculosis (DRTB) is a significant concern. Accordingly, identifying new drug targets for tuberculosis (TB) treatment and developing new therapies based on these drug targets is one of the strategies to tackle DRTB. QcrB is an innovative drug target to create treatments for DRTB. This article highlights QcrB inhibitors and their therapeutic compositions for treating TB. The literature for this article was gathered from PubMed and free patent databases utilizing different keywords related to QcrB inhibitor-based inventions. The data was collected from the conceptualization of telacebec (2010) QcrB to December 2022. A little interesting and encouraging research has been performed on QcrB inhibitors. Telacebec and TB47 are established QcrB inhibitors in the clinical trial. The inventive QcrB inhibitor-based drug combinations can potentially handle DRTB and reduce the TB therapy duration. The authors anticipate great opportunities in fostering QcrB inhibitor-based patentable pharmaceutical inventions against TB. Drug repurposing can be a promising strategy to get safe and effective QcrB inhibitors. However, developing drug resistance, drug tolerance, and selectivity of QcrB inhibitors for Mtb will be the main challenges in developing effective QcrB inhibitors. In conclusion, QcrB is a promising drug target for developing effective treatments for active, latent, and drug-resistant TB. Many inventive and patentable combinations and compositions of QcrB inhibitors with other anti-TB drugs are anticipated as future treatments for TB.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Nawaf M Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Chemistry Department, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hamdy K Thabet
- Chemistry Department, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia
| | - Jamal A Alruwaili
- College of Applied Medical Sciences, Medical Lab Technology Department, Northern Border University, Arar 91431, Saudi Arabia
| | - Syed M B Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Ahad A Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | | | | |
Collapse
|
2
|
Tembe N, Machaba KE, Ndagi U, Kumalo HM, Mhlongo NN. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective. J Mol Model 2022; 28:35. [PMID: 35022913 DOI: 10.1007/s00894-021-04993-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023]
Abstract
The escalating burden of tuberculosis disease and drastic effects of current medicine has stimulated a search for alternative drugs. A medicinal plant Warburgia salutaris has been reported to possess inhibitory properties against M. tuberculosis. In this study, we apply computational methods to investigate the probability of W. salutaris compounds as potential inhibitors of M. tuberculosis QcrB protein. We performed molecular docking, molecular dynamics simulations, radius of gyration, principal component analysis (PCA), and molecular mechanics-generalized born surface area (MM-GBSA) binding-free energy calculations in explicit solvent to achieve our objective. The results suggested that ursolic acid (UA) and ursolic acid acetate (UAA) could serve as preferred potential inhibitors of mycobacterial QcrB compared to lansoprazole sulphide (LSPZ) and telacebec (Q203)-UA and UAA have a higher binding affinity to QcrB compared to LSPZ and Q203 drugs. UA binding affinity is attributed to hydrogen bond formation with Val120, Arg364 and Arg366, and largely resonated from van der Waals forces resulting from UA interactions with hydrophobic amino acids in its vicinity. UAA binds to the porphyrin ring binding site with higher binding affinity compared to LSPZ. The binding affinity results primarily from van der Waals forces between UAA and hydrophobic residues of QcrB in the porphyrin ring binding site where UAA binds competitively. UA and UAA formed stable complexes with the protein with reduced overall residue mobility, consequently supporting the magnitude of binding affinity of the respective ligands. UAA could potentially compete with the porphyrin ring for the binding site and deprive the mycobacterial cell from oxygen, consequently disturbing mycobacterial oxygen-dependent metabolic processes. Therefore, discovery of a compound that competes with porphyrin ring for the binding site may be useful in QcrB pharmocological studies. UA proved to be a superior compound, although its estimated toxicity profile revealed UA to be hepatotoxic within acceptable parameters. Although preliminary findings of this report still warrant experimental validation, they could serve as a baseline for the development of new anti-tubercular drugs from natural resources that target QcrB.
Collapse
Affiliation(s)
- Ntombikayise Tembe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kgothatso E Machaba
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Umar Ndagi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Hezekiel M Kumalo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Ndumiso N Mhlongo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
3
|
The QcrB Inhibitors TB47 and Telacebec Do Not Potentiate the Activity of Clofazimine in Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:e0096421. [PMID: 34543090 DOI: 10.1128/aac.00964-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antituberculosis drug telacebec is ineffective against Mycobacterium abscessus. A recent study suggested that TB47, a telacebec analogue, potentiated the efficacy of clofazimine against M. abscessus. Here, we report that TB47 not only is ineffective against M. abscessus in vitro but also does not potentiate the activity of clofazimine.
Collapse
|
4
|
Wani MA, Dhaked DK. Targeting the cytochrome bc 1 complex for drug development in M. tuberculosis: review. Mol Divers 2021; 26:2949-2965. [PMID: 34762234 DOI: 10.1007/s11030-021-10335-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The terminal oxidases of the oxidative phosphorylation pathway play a significant role in the survival and growth of M. tuberculosis, targeting these components lead to inhibition of M. tuberculosis. Many drug candidates targeting various components of the electron transport chain in M. tuberculosis have recently been discovered. The cytochrome bc1-aa3 supercomplex is one of the most important components of the electron transport chain in M. tuberculosis, and it has emerged as the novel target for several promising candidates. There are two cryo-electron microscopy structures (PDB IDs: 6ADQ and 6HWH) of the cytochrome bc1-aa3 supercomplex that aid in the development of effective and potent inhibitors for M. tuberculosis. In recent years, a number of potential candidates targeting the QcrB subunit of the cytochrome bc1 complex have been developed. In this review, we describe the recently identified inhibitors that target the electron transport chain's terminal oxidase enzyme in M. tuberculosis, specifically the QcrB subunit of the cytochrome bc1 complex.
Collapse
Affiliation(s)
- Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
5
|
Abdullahi M, Das N, Adeniji SE, Usman AK, Sani AM. In-silico design and ADMET predictions of some new imidazo[1,2-a]pyridine-3-carboxamides (IPAs) as anti-tubercular agents. J Clin Tuberc Other Mycobact Dis 2021; 25:100276. [PMID: 34568589 PMCID: PMC8450222 DOI: 10.1016/j.jctube.2021.100276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Tuberculosis (TB) is one of the leading infectious diseases worldwide even with the ravaging COVID-19 pandemic in recent times. This mandated further search and exploration of more possible anti-TB drug candidates against M. tuberculosis strains. As an extension of our previous work on the homology modeled cytochrome b subunit of the bc1 complex (QcrB) of Mycobacterium tuberculosis, an in-silico design was carried out in order to further explore more newly potential anti-TB compounds. Ligand 26 was selected as the lead template (scaffold A) based on our previous docking results and its less bulky structure. Successively, eight (8) new ligands (A1–A8) were designed with better binding affinities in comparison to the scaffold template (−6.8 kcal/mol) and isoniazid standard drug (−6.00 kcal/mol) respectively. In addition, three (3) designed ligands namely, A6, A2, and A7 with higher binding affinities were validated via ADME and toxicity prediction analysis, and the results showed zero violations of Lipinski rules with similar bioavailability, and high rate in gastrointestinal absorption, while toxicity parameters such as carcinogenicity and cytotoxicity were all predicted as non-toxic (inactiveness). The designed IPA compounds in the present study could serve as a promising gateway that could help the medicinal and synthetic chemist in the exploration of a new set of derivatives as anti-TB agents. Therefore, this research strongly recommends further experimental consideration of the newly designed IPA compounds through synthesis, in-vitro and in-vivo studies to validate the theoretical findings.
Collapse
Affiliation(s)
- Mustapha Abdullahi
- Faculty of Sciences, Department of Pure and Applied Chemistry, Kaduna State University, Tafawa Balewa Way, Kaduna State, Nigeria
| | - Niloy Das
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Shola Elijah Adeniji
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044 Zaria, Kaduna State, Nigeria
| | - Alhassan Kabiru Usman
- Faculty of Sciences, Department of Pure and Applied Chemistry, Kaduna State University, Tafawa Balewa Way, Kaduna State, Nigeria
| | - Ahmad Muhammad Sani
- Faculty of Sciences, Department of Pure and Applied Chemistry, Kaduna State University, Tafawa Balewa Way, Kaduna State, Nigeria
| |
Collapse
|
6
|
Ultra-short-course and intermittent TB47-containing oral regimens produce stable cure against Buruli ulcer in a murine model and prevent the emergence of resistance for Mycobacterium ulcerans. Acta Pharm Sin B 2021; 11:738-749. [PMID: 33777679 PMCID: PMC7982501 DOI: 10.1016/j.apsb.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with rifampin-streptomycin or rifampin-clarithromycin daily for 8 weeks recommended by World Health Organization (WHO). These options are lengthy with severe side effects. A new anti-tuberculosis drug, TB47, targeting QcrB in cytochrome bc1:aa3 complex is being developed in China. TB47-containing regimens were evaluated in a well-established murine model using an autoluminescent M. ulcerans strain. High-level TB47-resistant spontaneous M. ulcerans mutants were selected and their qcrB genes were sequenced. The in vivo activities of TB47 against both low-level and high-level TB47-resistant mutants were tested in BU murine model. Here, we show that TB47-containing oral 3-drug regimens can completely cure BU in ≤2 weeks for daily use or in ≤3 weeks given twice per week (6 doses in total). All high-level TB47-resistant mutants could only be selected using the low-level mutants which were still sensitive to TB47 in mice. This is the first report of double mutations in QcrB in mycobacteria. In summary, TB47-containing regimens have promise to cure BU highly effectively and prevent the emergence of drug resistance. Novel QcrB mutations found here may guide the potential clinical molecular diagnosis of resistance and the discovery of new drugs against the high-level resistant mutants.
Collapse
|
7
|
Abdullahi M, Adeniji SE, Arthur DE, Haruna A. Homology modeling and molecular docking simulation of some novel imidazo[1,2-a]pyridine-3-carboxamide (IPA) series as inhibitors of Mycobacterium tuberculosis. J Genet Eng Biotechnol 2021; 19:12. [PMID: 33474593 PMCID: PMC7817721 DOI: 10.1186/s43141-020-00102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tuberculosis (TB) remains a serious global health challenge that is caused by Mycobacterium tuberculosis and has killed numerous people. This necessitated the urgent need for the hunt and development of more potent drugs against the fast-emerging extensively drug-resistant (XDR) and multiple-drug-resistant (MDR) M. tuberculosis strains. Mycobacterium tuberculosis cytochrome b subunit of the cytochrome bc1 complex (QcrB) was recognized as a potential drug target in M. tuberculosis (25618/H37Rv) for imidazo[1,2-a]pyridine-3-carboxamides whose crystal strucuture is not yet reported in the Protein Data Bank (PDB). The concept of homology modeling as a powerful and useful computational method can be applied, since the M. tuberculosis QcrB protein sequence data are available. RESULTS The homology model of QcrB protein in M. tuberculosis was built from the X-ray structure of QcrB in M. smegmatis as a template using the Swiss-Model online workspace. The modeled protein was assessed, validated, and prepared for the molecular docking simulation of 35 ligands of N-(2-phenoxy)ethyl imidazo[1,2-a] pyridine-3-carboxamide (IPA) to analyze their theoretical binding affinities and modes. The docking results showed that the binding affinity values ranged from - 6.5 to - 10.1 kcal/mol which confirms their resilience potency when compared with 6.0kcal/mol of isoniazid standard drug. However, ligands 2, 7, 22, 26, and 35 scored higher binding affinity values of - 9.60, - 9.80, - 10.10, - 10.00, and - 10.00 kcal/mol, and are respectively considered as the best ligands among others with better binding modes in the active site of the modeled QcrB protein. CONCLUSION The information derived in this research revealed some potential hits and paved a route for structure-based drug discovery of new hypothetical imidazo pyridine amide analogs as anti-tubercular drug candidates.
Collapse
Affiliation(s)
- Mustapha Abdullahi
- Faculty of Physical sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Kaduna State Zaria, Federal Republic of Nigeria
| | - Shola Elijah Adeniji
- Faculty of Physical sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Kaduna State Zaria, Federal Republic of Nigeria
| | | | - Abdurrashid Haruna
- Faculty of Physical sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Kaduna State Zaria, Federal Republic of Nigeria
| |
Collapse
|
8
|
Satish S, Chitral R, Kori A, Sharma B, Puttur J, Khan AA, Desle D, Raikuvar K, Korkegian A, Martis EAF, Iyer KR, Coutinho EC, Parish T, Nandan S. Design, synthesis and SAR of antitubercular benzylpiperazine ureas. Mol Divers 2021; 26:73-96. [PMID: 33385288 DOI: 10.1007/s11030-020-10158-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
N-furfuryl piperazine ureas disclosed by scientists at GSK Tres Cantos were chosen as antimycobacterial hits from a phenotypic whole-cell screen. Bioisosteric replacement of the furan ring in the GSK Tres Cantos molecules with a phenyl ring led to molecule (I) with an MIC of 1 μM against Mtb H37Rv, low cellular toxicity (HepG2 IC50 ~ 80 μM), good DMPK properties and specificity for Mtb. With the aim of delineating the SAR associated with (I), fifty-five analogs were synthesized and screened against Mtb. The SAR suggests that the piperazine ring, benzyl urea and piperonyl moieties are essential signatures of this series. Active compounds in this series are metabolically stable, have low cellular toxicity and are valuable leads for optimization. Molecular docking suggests these molecules occupy the Q0 site of QcrB like Q203. Bioisosteric replacement of N-furfuryl piperazine-1-carboxamides yielded molecule (I) a novel lead with satisfactory PD, metabolism, and toxicity profiles.
Collapse
Affiliation(s)
- Sohal Satish
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Rohan Chitral
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Amitkumar Kori
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Basantkumar Sharma
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Jayashree Puttur
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India
| | - Afreen A Khan
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Deepali Desle
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Kavita Raikuvar
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Aaron Korkegian
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, WA, 98102, USA
| | - Elvis A F Martis
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Krishna R Iyer
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Evans C Coutinho
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, WA, 98102, USA
| | - Santosh Nandan
- Ambernath Organics Pvt. Ltd., 222, The Summit Business Bay, Andheri (E), Mumbai, 400 093, India.
| |
Collapse
|
9
|
Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis. Eur J Med Chem 2020; 212:113139. [PMID: 33422979 DOI: 10.1016/j.ejmech.2020.113139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
Causing approximately 10 million incident cases and 1.3-1.5 million deaths every year, Mycobacterium tuberculosis remains a global health problem. The risk is further exacerbated with latent tuberculosis (TB) infection, the HIV pandemic, and increasing anti-TB drug resistance. Therefore, unexplored chemical scaffolds directed towards new molecular targets are increasingly desired. In this context, mycobacterial energy metabolism, particularly the oxidative phosphorylation (OP) pathway, is gaining importance. Mycobacteria possess primary dehydrogenases to fuel electron transport; aa3-type cytochrome c oxidase and bd-type menaquinol oxidase to generate a protonmotive force; and ATP synthase, which is essential for both growing mycobacteria as well as dormant mycobacteria because ATP is produced under both aerobic and hypoxic conditions. Small organic molecules targeting OP are active against latent TB as well as resistant TB strains. FDA approval of the ATP synthase inhibitor bedaquiline and the discovery of clinical candidate Q203, which both interfere with the cytochrome bc1 complex, have already confirmed mycobacterial energy metabolism to be a valuable anti-TB drug target. This review highlights both preferable molecular targets within mycobacterial OP and promising small organic molecules targeting OP. Progressive research in the area of mycobacterial OP revealed several highly potent anti-TB compounds with nanomolar-range MICs as low as 0.004 μM against Mtb H37Rv. Therefore, we are convinced that targeting the OP pathway can combat resistant TB and latent TB, leading to more efficient anti-TB chemotherapy.
Collapse
|
10
|
Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 2020; 10:589318. [PMID: 33330134 PMCID: PMC7719681 DOI: 10.3389/fcimb.2020.589318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Collapse
Affiliation(s)
- Sapna Bajeli
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Navin Baid
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Manjot Kaur
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
11
|
Pan Z, Wang Y, Gu X, Wang J, Cheng M. Refined homology model of cytochrome bcc complex B subunit for virtual screening of potential anti-tuberculosis agents. J Biomol Struct Dyn 2019; 38:4733-4745. [DOI: 10.1080/07391102.2019.1688196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhenhai Pan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xi Gu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
12
|
Harrison GA, Mayer Bridwell AE, Singh M, Jayaraman K, Weiss LA, Kinsella RL, Aneke JS, Flentie K, Schene ME, Gaggioli M, Solomon SD, Wildman SA, Meyers MJ, Stallings CL. Identification of 4-Amino-Thieno[2,3- d]Pyrimidines as QcrB Inhibitors in Mycobacterium tuberculosis. mSphere 2019; 4:e00606-19. [PMID: 31511370 PMCID: PMC6739496 DOI: 10.1128/msphere.00606-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is a global crisis that threatens our ability to treat bacterial infections, such as tuberculosis, caused by Mycobacterium tuberculosis Of the 10 million cases of tuberculosis in 2017, approximately 19% of new cases and 43% of previously treated cases were caused by strains of M. tuberculosis resistant to at least one frontline antibiotic. There is a clear need for new therapies that target these genetically resistant strains. Here, we report the discovery of a new series of antimycobacterial compounds, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit the growth of M. tuberculosis To elucidate the mechanism by which these compounds inhibit M. tuberculosis, we selected for mutants resistant to a representative 4-amino-thieno[2,3-d]pyrimidine and sequenced these strains to identify the mutations that confer resistance. We isolated a total of 12 resistant mutants, each of which harbored a nonsynonymous mutation in the gene qcrB, which encodes a subunit of the electron transport chain (ETC) enzyme cytochrome bc1 oxidoreductase, leading us to hypothesize that 4-amino-thieno[2,3-d]pyrimidines target this enzyme complex. We found that addition of 4-amino-thieno[2,3-d]pyrimidines to M. tuberculosis cultures resulted in a decrease in ATP levels, supporting our model that these compounds inhibit the M. tuberculosis ETC. Furthermore, 4-amino-thieno[2,3-d]pyrimidines had enhanced activity against a mutant of M. tuberculosis deficient in cytochrome bd oxidase, which is a hallmark of cytochrome bc1 inhibitors. Therefore, 4-amino-thieno[2,3-d]pyrimidines represent a novel series of QcrB inhibitors that build on the growing number of chemical scaffolds that are able to inhibit the mycobacterial cytochrome bc1 complex.IMPORTANCE The global tuberculosis (TB) epidemic has been exacerbated by the rise in drug-resistant TB cases worldwide. To tackle this crisis, it is necessary to identify new vulnerable drug targets in Mycobacterium tuberculosis, the causative agent of TB, and develop compounds that can inhibit the bacterium through novel mechanisms of action. The QcrB subunit of the electron transport chain enzyme cytochrome bc1 has recently been validated to be a potential drug target. In the current work, we report the discovery of a new class of QcrB inhibitors, 4-amino-thieno[2,3-d]pyrimidines, that potently inhibit M. tuberculosis growth in vitro These compounds are chemically distinct from previously reported QcrB inhibitors, and therefore, 4-amino-thieno[2,3-d]pyrimidines represent a new scaffold that can be exploited to inhibit this drug target.
Collapse
Affiliation(s)
- Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Megh Singh
- Center for World Health and Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Keshav Jayaraman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Leslie A Weiss
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Janessa S Aneke
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kelly Flentie
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Miranda E Schene
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Margaret Gaggioli
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Samantha D Solomon
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Scott A Wildman
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
13
|
Lu X, Williams Z, Hards K, Tang J, Cheung CY, Aung HL, Wang B, Liu Z, Hu X, Lenaerts A, Woolhiser L, Hastings C, Zhang X, Wang Z, Rhee K, Ding K, Zhang T, Cook GM. Pyrazolo[1,5- a]pyridine Inhibitor of the Respiratory Cytochrome bcc Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infect Dis 2019; 5:239-249. [PMID: 30485737 DOI: 10.1021/acsinfecdis.8b00225] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Respiration is a promising target for the development of new antimycobacterial agents, with a growing number of compounds in clinical development entering this target space. However, more candidate inhibitors are needed to expand the therapeutic options available for drug-resistant Mycobacterium tuberculosis infection. Here, we characterize a putative respiratory complex III (QcrB) inhibitor, TB47: a pyrazolo[1,5- a]pyridine-3-carboxamide. TB47 is active (MIC between 0.016 and 0.500 μg/mL) against a panel of 56 M. tuberculosis clinical isolates, including 37 multi-drug-resistant and two extensively drug-resistant strains. Pharmacokinetic and toxicity studies showed promising profiles, including negligible CYP450 interactions, cytotoxicity, and hERG channel inhibition. Consistent with other reported QcrB inhibitors, TB47 inhibits oxygen consumption only when the alternative oxidase, cytochrome bd, is deleted. A point mutation in the qcrB cd2-loop (H190Y, M. smegmatis numbering) rescues the inhibitory effects of TB47. Metabolomic profiling of TB47-treated M. tuberculosis H37Rv cultures revealed accumulation of steps in the TCA cycle and pentose phosphate pathway that are linked to reducing equivalents, suggesting that TB47 causes metabolic redox stress. In mouse infection models, a TB47 monotherapy was not bactericidal. However, TB47 was strongly synergistic with pyrazinamide and rifampicin, suggesting a promising role in combination therapies. We propose that TB47 is an effective lead compound for the development of novel tuberculosis chemotherapies.
Collapse
Affiliation(s)
- Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zoe Williams
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Jian Tang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Htin Lin Aung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Bangxing Wang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Shushan District, Hefei 230009, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xianglong Hu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Anne Lenaerts
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Lisa Woolhiser
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Courtney Hastings
- Colorado State University, 200W Lake Street, Fort Collins, Colorado 80523, United States
| | - Xiantao Zhang
- Guangzhou Eggbio Co., Ltd., 3 Ju Quan Road, Science Park, Guangzhou 510663, China
| | - Zhe Wang
- Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021, United States
| | - Kyu Rhee
- Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10021, United States
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Huangpu District, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
14
|
Activity of 2-(quinolin-4-yloxy)acetamides in Mycobacterium tuberculosis clinical isolates and identification of their molecular target by whole-genome sequencing. Int J Antimicrob Agents 2018; 51:378-384. [DOI: 10.1016/j.ijantimicag.2017.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 11/24/2022]
|
15
|
Bown L, Srivastava SK, Piercey BM, McIsaac CK, Tahlan K. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. J Membr Biol 2017; 251:105-117. [DOI: 10.1007/s00232-017-9997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
|