1
|
Nicastri KA, Gerstner NC, Schomaker JM. Progress toward the Total Synthesis of Jogyamycin Using a Tandem Ichikawa/Winstein Rearrangement. Org Lett 2023; 25:8279-8283. [PMID: 37997640 PMCID: PMC10789149 DOI: 10.1021/acs.orglett.3c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Jogyamycin is a densely functionalized aminocyclopentitol that displays potent antiprotozoal activity. Herein, we report a route toward this natural product that utilizes an unprecedented transformation involving a tandem Ichikawa-Winstein rearrangement to install the C-1/C-2 diamine core. Attempts to further functionalize the C-3/C-4 alkene en route to jogyamycin are also discussed.
Collapse
Affiliation(s)
- Kate A Nicastri
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nels C Gerstner
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Villarreal-Parra M, Di Gresia GE, Labadie GR, Vallejos MM. Understanding the Fate of the Banert Cascade of Propargylic Azides: Sigmatropic versus Prototropic Pathway. J Org Chem 2023. [PMID: 37418758 DOI: 10.1021/acs.joc.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The Banert cascade is an efficient synthetic strategy for obtaining 4,5-disubstituted 1,2,3-triazoles. The reaction can proceed via a sigmatropic or prototropic mechanism depending on the substrate and the conditions. In this work, the mechanisms of both pathways from propargylic azides with different electronic features were investigated using density functional theory, quantum theory of atoms in molecules, and natural bond orbital approaches. The calculated energy barriers were consistent with the experimental data. Three patterns of electron density distribution on the transition structures were observed, which reflected the behaviors of the reactants in the Banert cascade. The stronger conjugative effects were associated with lower/higher free activation energies of sigmatropic/prototropic reactions, respectively. A clear relationship between the accumulation of the charge at the C3 atom of propargylic azides with the energy barriers for prototropic reactions was found. Thus, the obtained results would allow the prediction of the reaction's course by evaluating reactants.
Collapse
Affiliation(s)
- Miguel Villarreal-Parra
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Gabriel E Di Gresia
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Margarita M Vallejos
- Instituto de Química Básica y Aplicada del NEA (IQUIBA-NEA, UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
3
|
Çetinkaya Y, Maraş A, Göksu S. Insight into the intramolecular interactions of trans-2-azidocycloalk-3-en-1-ols and trans-2-azidocycloalk-3-en-1-yl acetates: A theoretical study. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Vallejos MM, Labadie GR. Insight into the factors controlling the equilibrium of allylic azides. RSC Adv 2020; 10:4404-4413. [PMID: 35495248 PMCID: PMC9049130 DOI: 10.1039/c9ra10093h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Several allylic azides with different double bond substitutions were studied to understand the factors, governing their equilibrium using density functional theory along with the quantum theory of atoms in molecules, non-covalent interactions and natural bond orbital approaches. The results showed that the hydroxyl group or heteroatoms in allylic azides interact with the molecule through an electrostatic weak interaction in each pair of regioisomers. The equilibrium shifts of substituted allylic azides, compared to non-substituted allylic azides, were not attributed to the presence of specific interactions, such as hydrogen bonds. The observed equilibrium shifts stemmed mainly from the strengthening and weakening of negative hyperconjugative interactions, which were affected by the weak interaction involving the proximal substituent in each regioisomer. A good linear correlation was obtained between the hyperconjugative energies of πC
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C→σ*Zb interactions and the calculated percentages of the secondary azide and tertiary azide in the equilibrium mixture. Also, the effect of the aromatic ring substituent was analysed using such approaches. This study not only provides insights into the factors controlling the stabilities of the substituted allylic azides, but also settles the basis to predict the regioisomer predominance in the equilibrium mixture. The factors controlling the allyl azides equilibrium has been studied by different theoretical approaches setting the basis to predict the regioisomers predominance in the equilibrium mixture.![]()
Collapse
Affiliation(s)
- Margarita M Vallejos
- Laboratorio de Química Orgánica, IQUIBA-NEA, Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5460 Corrientes 3400 Argentina +54-379-4457996 ext. 104
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
5
|
Duan X, Huang X, Fu C, Ma S. Palladium‐Catalyzed Selective Three‐Component Tandem Reaction to Bicyclic 1,2,3‐Triazole Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xinyu Duan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| |
Collapse
|
6
|
Carlson AS, Topczewski JJ. Allylic azides: synthesis, reactivity, and the Winstein rearrangement. Org Biomol Chem 2019; 17:4406-4429. [PMID: 30969292 PMCID: PMC6530792 DOI: 10.1039/c8ob03178a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organic azides are useful synthetic intermediates, which demonstrate broad reactivity. Unlike most organic azides, allylic azides can spontaneously rearrange to form a mixture of isomers. This rearrangement has been named the Winstein rearrangement. Using allylic azides can result in low yields and azide racemization in some synthetic contexts due to the Winstein rearrangement. Effort has been made to understand the mechanism of the Winstein rearrangement and to take advantage of this process. Several guiding principles can be used to identify which azides will produce a mixture of isomers and which will resist rearrangement. Selective reaction conditions can be used to differentiate the azide isomers in a dynamic manner. This review covers all aspects of allylic azides including their synthesis, their reactivity, the mechanism of the Winstein rearrangement, and reactions that can selectively elaborate an azide isomer. This review covers the literature from Winstein's initial report to early 2019.
Collapse
Affiliation(s)
- Angela S Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
7
|
Ott AA, Packard MH, Ortuño MA, Johnson A, Suding VP, Cramer CJ, Topczewski JJ. Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement. J Org Chem 2018; 83:8214-8224. [PMID: 29870252 DOI: 10.1021/acs.joc.8b00961] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The spontaneous rearrangement of allylic azides is thought to be a sigmatropic reaction. Presented herein is a detailed investigation into the rearrangement of several allylic azides. A combination of experiments including equilibrium studies, kinetic analysis, density functional theory calculations, and selective 15N-isotopic labeling are included. We conclude that the Winstein rearrangement occurs by the assumed sigmatropic pathway under most conditions. However, racemization was observed for some cyclic allylic azides. A kinetic analysis of this process is provided, which supports a previously undescribed ionic pathway.
Collapse
Affiliation(s)
- Amy A Ott
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Mary H Packard
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Manuel A Ortuño
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Alayna Johnson
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Victoria P Suding
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Christopher J Cramer
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Joseph J Topczewski
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|