1
|
Jin M, Li S, Wu Y, Li D, Han Y. Construction of Chitosan/Alginate Nano-Drug Delivery System for Improving Dextran Sodium Sulfate-Induced Colitis in Mice. NANOMATERIALS 2021; 11:nano11081884. [PMID: 34443715 PMCID: PMC8402175 DOI: 10.3390/nano11081884] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
(1) Background: In the treatment of ulcerative colitis (UC), accurate delivery and release of anti-inflammatory drugs to the site of inflammation can reduce systemic side effects. (2) Methods: We took advantage of this goal to prepare resveratrol-loaded PLGA nanoparticles (RES-PCAC-NPs) by emulsification solvent volatilization. After layer-by-layer self-assembly technology, we deposited chitosan and alginate to form a three-layer polyelectrolyte film. (3) Results: It can transport nanoparticles through the gastric environment to target inflammation sites and slowly release drugs at a specific pH. The resulting RES-PCAC-NPs have an ideal average diameter (~255 nm), a narrow particle size distribution and a positively charged surface charge (~13.5 mV). The Fourier transform infrared spectroscopy showed that resveratrol was successfully encapsulated into PCAC nanoparticles, and the encapsulation efficiency reached 87.26%. In addition, fluorescence imaging showed that RES-PCAC-NPs with positive charges on the surface can effectively target and accumulate in the inflammation site while continuing to penetrate downward to promote mucosal healing. Importantly, oral RES-PCAC-NPs treatment in DSS-induced mice was superior to other results in significantly improved inflammatory markers of UC. (4) Conclusions: Our results strongly prove that RES-PCAC-NPs can target the inflamed colon for maximum efficacy, and this oral pharmaceutical formulation can represent a promising formulation in the treatment of UC.
Collapse
|
2
|
Analytical Chemistry in the 21st Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field. ANALYTICA 2020. [DOI: 10.3390/analytica1010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nowadays, the challenges in analytical chemistry, and mostly in quantitative analysis, include the development and validation of new materials, strategies and procedures to meet the growing need for rapid, sensitive, selective and green methods. In this context, considering the constantly updated International Guidelines, constant innovation is mandatory both in the pre-treatment procedures and in the instrumental configurations to obtain reliable, true, and reproducible information. In this context, additionally to the classic plasma (or serum) matrices, biopsies, whole blood, and urine have seen an increase in the works that also consider non-conventional matrices. Obviously, all these studies have shown that there is a correlation between the blood levels and those found in the new matrix, in order to be able to correlate and compare the results in a robust way and reduce any bias problems. This review provides an update of the most recent developments currently in use in the sample pre-treatment and instrument configurations in the biological/clinical fields. Furthermore, the review concludes with a series of considerations regarding the role and future developments of Analytical Chemistry in light of the forthcoming challenges and new goals to be achieved.
Collapse
|
3
|
Abstract
Recently, high demand of high-throughput analyses with high sensitivity and selectivity to molecules and drugs in different classes with different physical-chemical properties—and a reduction in analysis time—is a principal milestone for novel methodologies that researchers are trying to achieve—especially when analytical procedures are applied to clinical purposes. In addition, to avoid high doses of a single drug that could cause serious side effects, multi-drug therapies are often used to treat numerous diseases. For these reasons, the demand for methods that allow the rapid analysis of mixed compounds has increased in recent years. In order to respond to these needs, new methods and instruments have been developed. However, often the complexity of a matrix can require a long time for the preparation and processing of the samples. Different problems in terms of components, types of matrices, compounds and physical-chemical complexity are encountered when considering drugs association profiles for quantitative analyses. This review addresses not only recently optimized procedures such as chromatographic separation, but also methods that have allowed us to obtain accuracy (precision and trueness), sensitivity and selectivity in quantitative analyses for cases of drug associations.
Collapse
|
4
|
Abstract
Over a long period of time, humans have explored many natural resources looking for remedies of various ailments. Traditional medicines have played an intrinsic role in human life for thousands of years, with people depending on medicinal plants and their products as dietary supplements as well as using them therapeutically for treatment of chronic disorders, such as cancer, malaria, diabetes, arthritis, inflammation, and liver and cardiac disorders. However, plant resources are not sufficient for treatment of recently emerging diseases. In addition, the seasonal availability and other political factors put constrains on some rare plant species. The actual breakthrough in drug discovery came concurrently with the discovery of penicillin from Penicillium notatum in 1929. This discovery dramatically changed the research of natural products and positioned microbial natural products as one of the most important clues in drug discovery due to availability, variability, great biodiversity, unique structures, and the bioactivities produced. The number of commercially available therapeutically active compounds from microbial sources to date exceeds those discovered from other sources. In this review, we introduce a short history of microbial drug discovery as well as certain features and recent research approaches, specifying the microbial origin, their featured molecules, and the diversity of the producing species. Moreover, we discuss some bioactivities as well as new approaches and trends in research in this field.
Collapse
|
5
|
UHPLC-ESI-Orbitrap-MS Analysis of Biologically Active Extracts from Gynura procumbens (Lour.) Merr. and Cleome gynandra L. Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3238561. [PMID: 32047522 PMCID: PMC7007755 DOI: 10.1155/2020/3238561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022]
Abstract
This study aimed to determine the total phenolic content, DPPH scavenging, α-glucosidase, and nitric oxide (NO) inhibition of Gynura procumbens and Cleome gynandra extracts obtained with five different ethanolic concentrations. The findings showed that the 100% ethanolic extract of G. procumbens had the highest phenolic content and the lowest IC50 values for DPPH scavenging and NO inhibition activity compared to the properties of the other extracts. For C. gynandra, the 20% and 100% ethanolic extracts had comparably high total phenolic contents, and the latter possessed the lowest IC50 value in the NO inhibition assay. In addition, the 20% ethanolic extract of C. gynandra had the lowest IC50 value in the DPPH scavenging assay. However, none of the extracts from either herb had the ability to inhibit α-glucosidase enzyme. Pearson correlation analysis indicated a strong relationship between the phenolic content and DPPH scavenging activity in both herb extracts. A moderately strong relationship was also observed between the phenolic content and NO inhibition in G. procumbens extracts and not in C. gynandra extracts. The UHPLC-ESI-Orbitrap-MS revealed major phenolics from the groups of hydroxycinnamic acids, hydroxybenzoic acids, and flavonoid derivatives from both herbs, which could be the key contributors to their bioactivities. Among the identified metabolites, 24 metabolites were tentatively assigned for the first time from both species of studied herbs. These two herbs could be recommended as prospective natural products with valuable medicinal properties.
Collapse
|
6
|
Al Zakri DJ, Obaydo RH, Sakur AA. New spectral resolution techniques for resolving and determining the components in binary fixed-dose combinations. Heliyon 2019; 5:e02637. [PMID: 31687499 PMCID: PMC6820088 DOI: 10.1016/j.heliyon.2019.e02637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/22/2019] [Accepted: 10/08/2019] [Indexed: 11/02/2022] Open
Abstract
Four spectrophotometric approaches were performed to determine a binary combination of Phenazone and Benzocaine in pure powder form and in pharmaceutical formations. This investigation submits the application of four techniques contingent on the presence of the extended area of the spectra of one compound in the binary mixture, these methods include Absorptivity Centering (a-centering), Absorbance Subtraction (AS), Amplitude Modulation (AM) and Concentration Value (CV). The linearity range for the above-mentioned approaches was found to be 3.0-15.0 μg/mL for Benzocaine in a-centering method and 3.0-30.0 μg/mL for Benzocaine and Phenazone in other advanced methods. The four techniques were evaluated as per ICH criteria and were successfully utilized for the determination of Phenazone and Benzocaine existing in pharmaceutical formulations. All results gained by the submitted approaches were statistically compared with a previously published method, and no important differences were detected.
Collapse
Affiliation(s)
- Duaa J. Al Zakri
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, University of Aleppo, Syria
| | | | | |
Collapse
|
7
|
Salucci S, Burattini S, Buontempo F, Orsini E, Furiassi L, Mari M, Lucarini S, Martelli AM, Falcieri E. Marine bisindole alkaloid: A potential apoptotic inducer in human cancer cells. Eur J Histochem 2018; 62:2881. [PMID: 29943949 PMCID: PMC6038113 DOI: 10.4081/ejh.2018.2881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022] Open
Abstract
Marine organisms such as corals, sponges and tunicates produce active molecules which could represent a valid starting point for new drug development processes. Among the various structural classes, the attention has been focused on 2,2-bis(6-bromo-3-indolyl) ethylamine, a marine alkaloid which showed a good anticancer activity against several tumor cell lines. Here, for the first time, the mechanisms of action of 2,2-bis(6-bromo-3-indolyl) ethylamine have been evaluated in a U937 tumor cell model. Morpho-functional and molecular analyses, highlighting its preferred signaling pathway, demonstrated that apoptosis is the major death response induced by this marine compund. Chromatin condensation, micronuclei formation, blebbing and in situ DNA fragmentation, occurring through caspase activation (extrinsic and intrinsic pathways), were observed. In particular, the bisindole alkaloid induces a mitochondrial involvement in apoptosis machinery activation with Blc-2/Bcl-x down-regulation and Bax up-regulation. These findings demonstrated that 2,2-bis(6-bromo-3-indolyl) ethylamine alkaloid-induced apoptosis is regulated by the Bcl-2 protein family upstream of caspase activation.
Collapse
Affiliation(s)
- Sara Salucci
- University of Urbino, Department of Biomolecular Sciences.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Colorado-Ríos J, Muñoz D, Montoya G, Márquez D, Márquez ME, López J, Martínez A. HPLC-ESI-IT-MS/MS analysis and biological activity of triterpene glycosides from the Colombian marine sponge Ectyoplasia ferox. Mar Drugs 2013; 11:4815-33. [PMID: 24317472 PMCID: PMC3877889 DOI: 10.3390/md11124815] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/28/2013] [Accepted: 11/13/2013] [Indexed: 11/16/2022] Open
Abstract
The marine sponge Ectyoplasia ferox produces antipredatory and allelopathic triterpenoid glycosides as part of its chemical defense repertoire against predators, competitors, and fouling organisms. These molecules are responsible for the pharmacological potential found in the glycosides present in this species. In order to observe the glycochemical diversity present in E. ferox, a liquid chromatography coupled to a tandem mass spectrometry approach to analyse a complex polar fraction of this marine sponge was performed. This gave valuable information for about twenty-five compounds three of which have been previously reported and another three which were found to be composed of known aglycones. Furthermore, a group of four urabosides, sharing two uncommon substitutions with carboxyl groups at C-4 on the terpenoid core, were identified by a characteristic fragmentation pattern. The oxidized aglycones present in this group of saponins can promote instability, making the purification process difficult. Cytotoxicity, cell cycle modulation, a cell cloning efficiency assay, as well as its hemolytic activity were evaluated. The cytotoxic activity was about IC₅₀ 40 µg/mL on Jurkat and CHO-k₁ cell lines without exhibiting hemolysis. Discussion on this bioactivity suggests the scanning of other biological models would be worthwhile.
Collapse
Affiliation(s)
- Jhonny Colorado-Ríos
- Grupo de Investigación Productos Naturales Marinos, Facultad de Química Farmacéutica, Universidad de Antioquia, Calle 70 N° 52-21, Medellín, Colombia; E-Mails: (D.M.); (A.M.)
- Unidad de Investigación e Innovación, Humax Pharmaceutical S.A, 050010, Itagüí, Colombia
| | - Diana Muñoz
- Grupo de Biotecnología Animal, Universidad Nacional de Colombia, 050034, Medellín, Colombia; E-Mails: (D.M.); (M.-E.M.); (J.L.)
| | - Guillermo Montoya
- Grupo Natura, Facultad de Ciencias Naturales, Universidad ICESI, 760050, Cali, Colombia; E-Mail:
| | - Diana Márquez
- Grupo de Investigación Productos Naturales Marinos, Facultad de Química Farmacéutica, Universidad de Antioquia, Calle 70 N° 52-21, Medellín, Colombia; E-Mails: (D.M.); (A.M.)
| | - Maria-Elena Márquez
- Grupo de Biotecnología Animal, Universidad Nacional de Colombia, 050034, Medellín, Colombia; E-Mails: (D.M.); (M.-E.M.); (J.L.)
| | - Juan López
- Grupo de Biotecnología Animal, Universidad Nacional de Colombia, 050034, Medellín, Colombia; E-Mails: (D.M.); (M.-E.M.); (J.L.)
| | - Alejandro Martínez
- Grupo de Investigación Productos Naturales Marinos, Facultad de Química Farmacéutica, Universidad de Antioquia, Calle 70 N° 52-21, Medellín, Colombia; E-Mails: (D.M.); (A.M.)
| |
Collapse
|
9
|
Mollica A, Locatelli M, Stefanucci A, Pinnen F. Synthesis and bioactivity of secondary metabolites from marine sponges containing dibrominated indolic systems. Molecules 2012; 17:6083-99. [PMID: 22614862 PMCID: PMC6268355 DOI: 10.3390/molecules17056083] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022] Open
Abstract
Marine sponges. (e.g., Hyrtios sp., Dragmacidin sp., Aglophenia pleuma, Aplidium cyaneum, Aplidium meridianum.) produce bioactive secondary metabolites involved in their defence mechanisms. Recently it was demonstrated that several of those compounds show a large variety of biological activities against different human diseases with possible applications in medicinal chemistry and in pharmaceutical fields, especially related to the new drug development process. Researchers have focused their attention principally on secondary metabolites with anti-cancer and cytotoxic activities. A common target for these molecules is the cytoskeleton, which has a central role in cellular proliferation, motility, and profusion involved in the metastatic process associate with tumors. In particular, many substances containing brominated indolic rings such as 5,6-dibromotryptamine, 5,6-dibromo-N-methyltryptamine, 5,6-dibromo-N-methyltryptophan (dibromoabrine), 5,6-dibromo-N,N-dimethyltryptamine and 5,6-dibromo-L-hypaphorine isolated from different marine sources, have shown anti-cancer activity, as well as antibiotic and anti-inflammatory properties. Considering the structural correlation between endogenous monoamine serotonin with marine indolic alkaloids 5,6-dibromoabrine and 5,6-dibromotryptamine, a potential use of some dibrominated indolic metabolites in the treatment of depression-related pathologies has also been hypothesized. Due to the potential applications in the treatment of various diseases and the increasing demand of these compounds for biological assays and the difficult of their isolation from marine sources, we report in this review a series of recent syntheses of marine dibrominated indole-containing products.
Collapse
Affiliation(s)
- Adriano Mollica
- Via dei Vestini 31, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University G. d' Annunzio of Chieti-Pescara, Chieti 66100, Italy.
| | | | | | | |
Collapse
|
10
|
Locatelli M, Genovese S, Carlucci G, Kremer D, Randic M, Epifano F. Development and application of high-performance liquid chromatography for the study of two new oxyprenylated anthraquinones produced by Rhamnus species. J Chromatogr A 2012; 1225:113-20. [PMID: 22261224 DOI: 10.1016/j.chroma.2011.12.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 02/02/2023]
Abstract
Rhamnus spp. is known to contain biologically active anthraquinone secondary metabolites but the presence of oxyprenylated ones is not reported. To this aim, a new simple, and accurate analytical method was developed to reveal chemical fingerprint of these analytes in plant extracts. Plant samples were analysed after extraction with n-hexane (first step) and methanol (second step) using a C(18) column with a mobile phase composed of 35% of water:65% of methanol (both with 1% formic acid, v/v) at 0.7 mL min⁻¹ flow rate in gradient elution mode. For quantitative analyses, selective detection was performed at 435 nm. The limit of quantification (LOQ) was 0.5 μM, with the only exception of 3-geranyloxyemodin for which the LOQ value was 5.0 μM, and external matrix-matched standard curves showed linearity up to 125 μM. The within- and between-batch precision (RSD%) values ranged from 0.2% to 12.9% while within- and between-batch trueness (bias%) values ranged from 12.2% to 12.7%. The method was applied to evaluate for the first time the presence and the quantities of oxyprenylated anthraquinones in Rhamnus spp. barks as well as the anthraquinone profile of Rhamnus pumila Turra. The proposed method could be directly applied to the selective quantification of these analytes in natural sources.
Collapse
Affiliation(s)
- Marcello Locatelli
- Dipartimento di Scienze del Farmaco, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100 Chieti (CH), Italy.
| | | | | | | | | | | |
Collapse
|