1
|
Wang HJ, Chen AC, Chen HY, Cheng HC, Kao LT, Lu CK, Tsai KC, Lee IJ, Ueng YF. Identification of the perpetrator imperatorin in Xin-yi-san-theophylline interaction: observed and predicted herb-drug interaction in rats. J Pharm Pharmacol 2023; 75:1225-1236. [PMID: 37364866 DOI: 10.1093/jpp/rgad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES Theophylline is a bronchodilator with a narrow therapeutic index and primarily metabolised by cytochrome P450 (CYP) 1A2. Xin-yi-san (XYS) is a herbal formula frequently used to ameliorate nasal inflammation. This study aimed to investigate the effects of XYS and its ingredient, imperatorin, on theophylline pharmacokinetics in rats. METHODS The kinetics of XYS- and imperatorin-mediated inhibition of theophylline oxidation were determined. Pharmacokinetics of theophylline were analysed. Comparisons were made with the CYP1A2 inhibitor, fluvoxamine. KEY FINDINGS XYS extract and its ingredient, imperatorin, non-competitively inhibited theophylline oxidation. Fluvoxamine (50 and 100 mg/kg) and XYS (0.5 and 0.9 g/kg) significantly prolonged the time to reach the maximum plasma concentration (tmax) of theophylline by 3-10 fold. In a dose-dependent manner, XYS and imperatorin (0.1-10 mg/kg) treatments significantly decreased theophylline clearance by 27-33% and 19-56%, respectively. XYS (0.9 g/kg) and imperatorin (10 mg/kg) significantly prolonged theophylline elimination half-life by 29% and 142%, respectively. Compared with the increase (51-112%) in the area under curve (AUC) of theophylline by fluvoxamine, the increase (27-57%) by XYS was moderate. CONCLUSIONS XYS decreased theophylline clearance primarily through imperatorin-suppressed theophylline oxidation. Further human studies are essential for the dose adjustment in the co-medication regimen.
Collapse
Affiliation(s)
- Hong-Jaan Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - An-Chi Chen
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Ying Chen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ting Kao
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kuang Lu
- Division of Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keng-Chang Tsai
- Division of Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - I-Jung Lee
- Department of Herbal Medicine, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yune-Fang Ueng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Kowalczyk J, Nakos-Bimpos M, Polissidis A, Dalla C, Kokras N, Skalicka-Woźniak K, Budzyńska B. Imperatorin Influences Depressive-like Behaviors: A Preclinical Study on Behavioral and Neurochemical Sex Differences. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041179. [PMID: 35208969 PMCID: PMC8875245 DOI: 10.3390/molecules27041179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Imperatorin, a naturally derived furanocoumarin, exerts promising neuropharmacological properties. Therefore, it might be applicable in the treatment of brain diseases such as depression. In the present project, we aimed to investigate the sex-dependent effects of imperatorin (1, 5, and 10 mg/kg) on behavior and neurochemistry associated with antidepressant effects. The depressive-like behaviors of male and female Swiss mice were investigated in a forced swim test (FST). Subsequently, High-Performance Liquid Chromatography (HPLC) was used to evaluate the level of serotonin, its metabolite, 5-HIAA, and noradrenaline, in mouse brains. The study revealed that only males responded to imperatorin (1 and 5 mg/kg) treatment and caused an antidepressant effect, such as with respect to depressive-like behaviors, lowering immobility time and increasing immobility latency. The HPLC analysis demonstrated that serotonin levels in the prefrontal cortex of females decreased with the middle dose of imperatorin (5 mg/kg), while in the male prefrontal cortex, the lower dose (1 mg/kg) boosted serotonin levels. There were no evident changes observed with respect to noradrenaline and serotonin metabolite levels in the male hippocampus. To conclude, we propose that imperatorin has antidepressant potential, seemingly only in males, influencing brain serotonin level, but the direct mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Joanna Kowalczyk
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.K.); (B.B.)
| | - Modestos Nakos-Bimpos
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.N.-B.); (A.P.)
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (M.N.-B.); (A.P.)
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.D.); (N.K.)
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.D.); (N.K.)
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
- Correspondence:
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.K.); (B.B.)
| |
Collapse
|
3
|
Imperatorin Interferes with LPS Binding to the TLR4 Co-Receptor and Activates the Nrf2 Antioxidative Pathway in RAW264.7 Murine Macrophage Cells. Antioxidants (Basel) 2021; 10:antiox10030362. [PMID: 33673673 PMCID: PMC7997471 DOI: 10.3390/antiox10030362] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Imperatorin (IMP) could downregulate several inflammatory transcription factor signaling pathways. Some studies have pointed out that IMP could interfere with toll-like receptor 4 (TLR4) signaling. This study evaluates how IMP interferes with the TLR4 co-receptors signaling through the protein-ligand docking model, Western blotting, immunofluorescence (IF), and atomic force microscopy (AFM) assays in lipopolysaccharide (LPS) stimulated macrophage-like RAW264.7 cells in vitro. The results of the protein-ligand docking demonstrate that IMP interferes with LPS binding to the LPS-binding protein (LBP), the cluster of differentiation 14 (CD14), and the toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) co-receptors in LPS-stimulated RAW264.7 cells. Compared with TLR4 antagonist CLI-095 or dexamethasone, IMP could suppress the protein expressions of LBP, CD14, and TLR4/MD-2 in LPS-stimulated cells. Furthermore, the three-dimensional (3D) image assay of the AFM showed IMP could prevent the LPS-induced morphological change in RAW264.7 cells. Additionally, IMP could activate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and it increased the antioxidative protein expression of heme oxygenase-1 (HO-1), superoxidase dismutase (SOD), and catalase (CAT). Our results are the first to reveal that the anti-inflammatory effect of IMP interferes with LPS binding to TLR4 co-receptor signaling and activates the antioxidative Nrf2 signaling pathway.
Collapse
|
4
|
Grabarska A, Skalicka-Woźniak K, Kiełbus M, Dmoszyńska-Graniczka M, Miziak P, Szumiło J, Nowosadzka E, Kowalczuk K, Khalifa S, Smok-Kalwat J, Klatka J, Kupisz K, Polberg K, Rivero-Müller A, Stepulak A. Imperatorin as a Promising Chemotherapeutic Agent Against Human Larynx Cancer and Rhabdomyosarcoma Cells. Molecules 2020; 25:molecules25092046. [PMID: 32353989 PMCID: PMC7248852 DOI: 10.3390/molecules25092046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
Naturally occurring coumarins are bioactive compounds widely used in Asian traditional medicine. They have been shown to inhibit proliferation, induce apoptosis, and/or enhance the cytotoxicity of currently used drugs against a variety of cancer cell types. The aim of our study was to examine the antiproliferative activity of different linear furanocoumarins on human rhabdomyosarcoma, lung, and larynx cancer cell lines, and dissolve their cellular mechanism of action. The coumarins were isolated from fruits of Angelica archangelica L. or Pastinaca sativa L., and separated using high-performance counter-current chromatography (HPCCC). The identity and purity of isolated compounds were confirmed by HPLC-DAD and NMR analyses. Cell viability and toxicity assessments were performed by means of methylthiazolyldiphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, respectively. Induction of apoptosis and cell cycle progression were measured using flow cytometry analysis. qPCR method was applied to detect changes in gene expression. Linear furanocoumarins in a dose-dependent manner inhibited proliferation of cancer cells with diverse activity regarding compounds and cancer cell type specificity. Imperatorin (IMP) exhibited the most potent growth inhibitory effects against human rhabdomyosarcoma and larynx cancer cell lines owing to inhibition of the cell cycle progression connected with specific changes in gene expression, including CDKN1A. As there are no specific chemotherapy treatments dedicated to laryngeal squamous cell carcinoma and rhabdomyosarcoma, and IMP seems to be non-toxic for normal cells, our results could open a new direction in the search for effective anti-cancer agents.
Collapse
Affiliation(s)
- Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
- Correspondence: ; Tel.: +48-81-742-37-93
| | - Krystyna Skalicka-Woźniak
- Independent Laboratory of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Ewa Nowosadzka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
| | - Krystyna Kowalczuk
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
| | - Sherief Khalifa
- College of Pharmacy, Gulf Medical University, P.O. Box 4184 Ajman, UAE;
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Center, 25-734 Kielce, Poland;
| | - Janusz Klatka
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-954 Lublin, Poland; (J.K.); (K.K.)
| | - Krzysztof Kupisz
- Department of Otolaryngology and Laryngological Oncology, Medical University of Lublin, 20-954 Lublin, Poland; (J.K.); (K.K.)
- Department of Otolaryngology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-090 Lublin, Poland
| | - Krzysztof Polberg
- Department of Otolaryngology, MSWiA Hospital, 20-331 Lublin, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
- Faculty of Science and Engineering, Cell Biology, ÅboAkademi University, 20520 Turku, Finland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.D.-G.); (P.M.); (E.N.); (K.K.); (A.R.-M.); (A.S.)
| |
Collapse
|
5
|
Deng M, Xie L, Zhong L, Liao Y, Liu L, Li X. Imperatorin: A review of its pharmacology, toxicity and pharmacokinetics. Eur J Pharmacol 2020; 879:173124. [PMID: 32339515 DOI: 10.1016/j.ejphar.2020.173124] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
As a naturally occurring furanocoumarin, the medicinal value of imperatorin has been studied more and more. We hope to provide useful information for the further development of imperatorin by analyzing the literature of imperatorin in recent years. By collating the literature on the pharmacology of imperatorin, we found that the pharmacological activity of imperatorin is wide and imperatorin can be used for anti-cancer, neuroprotection, anti-inflammatory, anti-hypertension and antibacterial. In addition, we found that some researchers confirmed the toxicity of imperatorin. Pharmacokinetic studies demonstrated that oxidation metabolism is the main metabolic pathways of imperatorin. At present, the shortcomings of research on imperatorin mainly include: most pharmacological studies are concentrated in vitro, lacking enough in vivo experimental data; more and more studies showed that imperatorin has synergistic effect with other drugs in anticancer and other aspects, but lacking the detailed explanation of the mechanism of the synergistic effect; imperatorin has side effect, but it lacks enough experimental conclusions. Based on the above defects, we believe that more in vivo experiments of imperatorin should be carried out in the future; future research need to explore synergistic mechanisms of imperatorin with other drugs, especially in anticancer; the dose affects both the pharmacological activity and the side effect of imperatorin. The relationship between the dose and the two aspects need to be further studied in order to reduce the side effect. In addition, through structural modification of imperatorin, it is possible to improve the treatment effect and reduce side effect.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Li Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Yanmei Liao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Luona Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
6
|
Jeong SH, Jang JH, Cho HY, Lee YB. Risk assessment for humans using physiologically based pharmacokinetic model of diethyl phthalate and its major metabolite, monoethyl phthalate. Arch Toxicol 2020; 94:2377-2400. [PMID: 32303804 DOI: 10.1007/s00204-020-02748-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/08/2020] [Indexed: 11/24/2022]
Abstract
Diethyl phthalate (DEP) belongs to phthalates with short alkyl chains. It is a substance frequently used to make various products. Thus, humans are widely exposed to DEP from the surrounding environment such as food, soil, air, and water. As previously reported in many studies, DEP is an endocrine disruptor with reproductive toxicity. Monoethyl phthalate (MEP), a major metabolite of DEP in vivo, is a biomarker for DEP exposure assessment. It is also an endocrine disruptor with reproductive toxicity, similar to DEP. However, toxicokinetic studies on both MEP and DEP have not been reported in detail yet. Therefore, the objective of this study was to evaluate and develop physiologically based pharmacokinetic (PBPK) model for both DEP and MEP in rats and extend this to human risk assessment based on human exposure. This study was conducted in vivo after intravenous or oral administration of DEP into female (2 mg/kg dose) and male (0.1-10 mg/kg dose) rats. Biological samples consisted of urine, plasma, and 11 different tissues. These samples were analyzed using UPLC-ESI-MS/MS method. For DEP, the tissue to plasma partition coefficient was the highest in the kidney, followed by that in the liver. For MEP, the tissue to plasma partition coefficient was the highest in the liver. It was less than unity in all other tissues. Plasma, urine, and fecal samples were also obtained after IV administration of MEP (10 mg/kg dose) to male rats. All results were reflected in a model developed in this study, including in vivo conversion from DEP to MEP. Predicted concentrations of DEP and MEP in rat urine, plasma, and tissue samples using the developed PBPK model fitted well with observed values. We then extrapolated the PBPK model in rats to a human PBPK model of DEP and MEP based on human physiological parameters. Reference dose of 0.63 mg/kg/day (or 0.18 mg/kg/day) for DEP and external doses of 0.246 μg/kg/day (pregnant), 0.193 μg/kg/day (fetus), 1.005-1.253 μg/kg/day (adults), 0.356-0.376 μg/kg/day (adolescents), and 0.595-0.603 μg/kg/day (children) for DEP for human risk assessment were estimated using Korean biomonitoring values. Our study provides valuable insight into human health risk assessment regarding DEP exposure.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea.
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Wei D, Hou YJ, Xie YT, Liu ZR, Wang C, He HZ. Synthesis and biological evaluation of novel biphenyl-furocoumarin derivatives as vasodilator agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:153-166. [PMID: 30507254 DOI: 10.1080/10286020.2018.1540600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
A series of novel biphenyl-furocoumarin derivatives were synthesized based on the nuclear structure of imperatorin and identified by IR, 1H NMR, 13C NMR and MS, and evaluated for their ability to relax vessel on isolated rat mesenteric artery, basilar artery and renal artery, respectively. The majority of compounds demonstrated potent vasodilatation, and compound 8e expressed the highest activity (EC50 = 0.56 μM) in MA. Compounds with fluorine at 2-position of 5-phenyl get better activity than others with chlorine or bromine, and the compounds containing a bulky structure had relatively low activity, such as 8c (EC50 = 22.39 μM) in MA. As a follow-up, 8e, 10e, and 8c were docked into L-calcium channel (PDB code: 3G43) to explain the difference in the activity of the compounds.
Collapse
Affiliation(s)
- Di Wei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ya-Jing Hou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi-Tong Xie
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhen-Ru Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Cheng Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Huai-Zhen He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
8
|
A sensitive UPLC–ESI–MS/MS method for the quantification of cinnamic acid in vivo and in vitro: application to pharmacokinetic and protein binding study in human plasma. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00444-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Blood-to-Retina Transport of Imperatorin Involves the Carrier-Mediated Transporter System at the Inner Blood-Retinal Barrier. J Pharm Sci 2018; 108:1619-1626. [PMID: 30528198 DOI: 10.1016/j.xphs.2018.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
This study investigated the mechanism of transporting imperatorin across the inner blood-retinal barrier (iBRB). The carotid artery single injection method was used to calculate the retinal uptake index (RUI) of [3H]imperatorin in vivo, whereas the retinal capillary endothelial cell lines were used for the in vitro uptake and mRNA expression assays. RUI value of [3H]imperatorin was greater than that of the reference compound ([14C]n-butanol). [3H]Imperatorin significantly reduced the RUI in the presence of neuroprotective organic cationic drugs at 10 mM. However, tetraethylammonium and p-aminohippuric acid showed no significant effects. [3H]Imperatorin uptake by TR-iBRB2 cells was time-, pH-, energy-, and concentration-dependent with a Km value of 679 ± 130 μM. In addition, the uptake study showed insensitivity to sodium and membrane potential. Various organic cations including pyrilamine, nicotine, and clonidine significantly reduced the uptake of [3H]imperatorin, whereas organic anions and monocarboxylic acids did not. Furthermore, the mRNA expression level dropped markedly with rOCTN1, rOCTN2, rPMAT, and rMATE1 small interfering RNAs in the transfection study. Moreover, [3H]imperatorin uptake remained neutral with small interfering RNA transfections. Our results indicate that imperatorin transport across the iBRB involves carrier-mediated transporter system.
Collapse
|
10
|
Kwon MH, Jeong JS, Ryu J, Cho YW, Kang HE. Pharmacokinetics and Brain Distribution of the Active Components of DA-9805, Saikosaponin A, Paeonol, and Imperatorin in Rats. Pharmaceutics 2018; 10:pharmaceutics10030133. [PMID: 30127277 PMCID: PMC6160927 DOI: 10.3390/pharmaceutics10030133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/20/2022] Open
Abstract
DA-9805 is a botanical anti-Parkinson’s drug candidate formulated from ethanol extracts of the root of Bupleurum falcatum, the root cortex of Paeonia suffruticosa, and the root of Angelica dahurica. The pharmacokinetics (PKs) and brain distribution of active/representative ingredients of DA-9805, Saikosaponin a (SSa; 1.1–4.6 mg/kg), Paeonol (PA; 14.8–59.2 mg/kg), and Imperatorin (IMP; 1.4–11.5 mg/kg) were evaluated following the intravenous or oral administration of each pure component and the equivalent dose of DA-9805 in rats. All three components had greater dose-normalized areas under the plasma concentration-time curve (AUC) and slower clearance with higher doses, following intravenous administration. By contrast, dose-proportional AUC values of SSa, PA, and IMP were observed following the oral administration of each pure component (with the exception of IMP at the highest dose) or DA-9805. Compared to oral administration of each pure compound, DA-9805 administration showed an increase in the AUC of SSa (by 96.1–163%) and PA (by 155–164%), possibly due to inhibition of their metabolism by IMP or other component(s) in DA-9805. A delay in the absorption of PA and IMP was observed when they were administered as DA-9805. All three components of DA-9805 showed greater binding values in brain homogenates than in plasma, possibly explaining why the brain-to-plasma ratios were greater than unity following multiple oral administrations of DA-9805. By contrast, their levels in cerebrospinal fluid were negligible. Our results further our understanding of the comprehensive PK characteristics of SSa, PA, and IMP in rats and the comparative PKs between each pure component and DA-9805.
Collapse
Affiliation(s)
- Mi Hye Kwon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Jin Seok Jeong
- Research Center, Dong-A ST Co., Ltd., 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin 17073, Korea.
| | - Jayoung Ryu
- Research Center, Dong-A ST Co., Ltd., 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin 17073, Korea.
| | - Young Woong Cho
- Research Center, Dong-A ST Co., Ltd., 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin 17073, Korea.
| | - Hee Eun Kang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| |
Collapse
|
11
|
Liang WH, Chang TW, Charng YC. Effects of drying methods on contents of bioactive compounds and antioxidant activities of Angelica dahurica. Food Sci Biotechnol 2018; 27:1085-1092. [PMID: 30263838 PMCID: PMC6085254 DOI: 10.1007/s10068-018-0359-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/20/2018] [Accepted: 03/14/2018] [Indexed: 11/28/2022] Open
Abstract
Baizhi (Angelica dahurica) has been widely used as a traditional Chinese herbal medicine, functional food and cosmetic product ingredient, mostly because of the high furanocoumarin compounds in roots. Because the fresh root is perishable, drying techniques are needed to maintain a higher-quality product. Freeze-drying is the best method but energy-consuming and costly. The aim of this study was to analyze the quality (antioxidant and furanocoumarin content) of Baizhi roots after freeze-drying (the control) and in-the-shade, 40 and 70 °C drying. Antioxidant activity was revealed by 2,2-diphenyl-1-picrylhydrazyl and Fe2+ chelating assay, and the content of six furanocoumarin compounds, including xanthotoxin, bergapten, oxypeucedanin, imperatorin, phellopterin and isoimperatorin, was analyzed by liquid chromatography. Antioxidant activity was greater in roots with in-the-shade, 40 and 70 °C drying than freeze-drying. The furanocoumarin content pattern was similar with 70 °C drying and freeze-drying. A. dahurica roots dried at 70 °C may be an alternative method for maintaining high quality.
Collapse
Affiliation(s)
- Wei-Hong Liang
- Department of Agronomy, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd, Taipei, Taiwan, Republic of China
| | - Tung-Wu Chang
- Hualien District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Hualien, Taiwan, Republic of China
| | - Yuh-Chyang Charng
- Department of Agronomy, National Taiwan University, No. 1 Sec. 4 Roosevelt Rd, Taipei, Taiwan, Republic of China
| |
Collapse
|
12
|
Jiao Q, Wang R, Jiang Y, Liu B. Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chem Cent J 2018; 12:48. [PMID: 29728878 PMCID: PMC5935606 DOI: 10.1186/s13065-018-0417-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese medicine (TCM), as a unique form of natural medicine, has been used in Chinese traditional therapeutic systems over two thousand years. Active components in Chinese herbal medicine are the material basis for the prevention and treatment of diseases. Research on drug-protein binding is one of the important contents in the study of early stage clinical pharmacokinetics of drugs. Plasma protein binding study has far-reaching influence on the pharmacokinetics and pharmacodynamics of drugs and helps to understand the basic rule of drug effects. It is important to study the binding characteristics of the active components in Chinese herbal medicine with plasma proteins for the medical science and modernization of TCM. This review summarizes the common analytical methods which are used to study the active herbal components-protein binding and gives the examples to illustrate their application. Rules and influence factors of the binding between different types of active herbal components and plasma proteins are summarized in the end. Finally, a suggestion on choosing the suitable technique for different types of active herbal components is provided, and the prospect of the drug-protein binding used in the area of TCM research is also discussed.
Collapse
Affiliation(s)
- Qishu Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Rufeng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanyan Jiang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bin Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
13
|
Chen L, Yang H, Yu C, Yuan M, Li H. High hepatic exposure of furanocoumarins in Radix Angelica dahuricae is associated with transporter mediated active uptake. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:74-85. [PMID: 29055720 DOI: 10.1016/j.jep.2017.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Angelica dahuricae (RAD), the roots of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav, is a well-known traditional Chinese medicine (TCM) and has been used for centuries to treat headaches, toothaches, nose congestion, abscesses, furunculoses, and acne. This herb is also one of frequently reported TCMs showing the herb-drug interaction potential. Furanocoumarins are main bioactive components of RAD. AIM OF THE STUDY This study is designed to characterize the tissue distribution profiles of furanocoumarins after oral administration of RAD extract in rats and to explore the mechanism underlying the high hepatic exposure of the major furanocoumarins. MATERIALS AND METHODS The tissue distribution of nine furanocoumarins was determined in rats after an oral dose of 0.46g/kg RAD extract using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Unbound fractions (ƒu) of major furanocoumarins, including imperatorin (IM), isoimperatorin (IIM), bergapten (BER) and oxypeucedanin hydrate (OXYH), were measured in rat plasma and selected tissue homogenates (liver, kidney, lung and brain) with Rapid Equilibrium Dialysis (RED) method. The temperature dependent hepatic uptake of IM, IIM, BER and OXYH were evaluated in suspended rat primary hepatocytes at 4°C or 37°C by the oil-spin method. The uptake kinetics was conducted in the cells over a wide concentration range. The furanocoumarins were co-incubated with a panel of transporter inhibitors to investigate the involvement of uptake transporters in the hepatic uptake. The transcellular transport characteristics of IM, IIM, BER and OXYH were further assessed using Caco-2 cell monolayer model. RESULTS IM, IIM, BER and OXYH were found to be the major bioactive furanocoumarins in rat plasma and tissues, representing more than 90% exposure for all the detected furanocoumarins. The most concentrative organ of major furanocoumarins was the liver, with liver-to-plasma exposure ratio (Kp,AUC) of 5.1, 6.5 and 4.7 for IM, IIM and BER, and 2.3 for OXYH, respectively. IM, IIM and BER also showed higher concentrations in the kidney with Kp above 2.2. The higher protein binding of the furanocoumarins partially contributed to their higher tissue exposure. In suspended rat primary hepatocyte, the hepatic uptake of IM, IIM, BER and OXYH was temperature-dependent, with considerably higher uptake at 37°C than at 4°C. Uptake kinetics indicated that the hepatic uptake of IM, IIM, BER and OXYH involved both active transport and passive diffusion processes. For IM, IIM and BER, the contribution of the active transport was greater than the passive process, with the CLactive/CLuptake > 72%. Ritonavir (RTN) and cyclosporine A (CsA), the known inhibitors of organic anion transporting polypeptide (Oatp) significantly inhibited the hepatic uptake of IM and BER, while the inhibitor of the organic anion transporters (Oat) probenecid (PBC) remarkably reduced IIM uptake. In the Caco-2 cell model, the furanocoumarins were highly permeable in the apical to basolateral direction without notable active efflux. CONCLUSION The furanocoumarins rapidly and widely distributed into various tissues after oral dose of the RAD extract. IM, IIM, BER and OXYH were the major components detected in both plasma and tissues. Liver was the most distributed tissue of the total and free furanocoumarins. Non-specific protein binding contributed partially to the higher tissue exposures of these bioactive components. The Oatp and Oat mediated active uptake played the primal role in the high hepatic exposure of the furanocoumarins.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Haiying Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Chenchen Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Mei Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| | - Hua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, 100850 Beijing, China; Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China.
| |
Collapse
|
14
|
Lin H, Xie Q, Huang X, Ban J, Wang B, Wei X, Chen Y, Lu Z. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int J Nanomedicine 2018; 13:831-842. [PMID: 29467573 PMCID: PMC5811179 DOI: 10.2147/ijn.s150086] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs), to expand the applications of the Chinese herbal medicine, imperatorin (IMP), and increase its transdermal delivery. Methods In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. Results The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%), an acceptable particle size (82.4±0.65 nm), high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. Conclusion The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP.
Collapse
Affiliation(s)
- Hongwei Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qingchun Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xin Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xing Wei
- Guangdong Shennong Chinese Medicine Research Institute, Guangzhou, People's Republic of China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhufen Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Kwon MH, Jeong JS, Ryu J, Cho YW, Kang HE. Simultaneous determination of saikosaponin a, paeonol, and imperatorin, components of DA-9805, in rat plasma by LC–MS/MS and application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:289-296. [DOI: 10.1016/j.jchromb.2017.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023]
|
16
|
Ngo L, Tran P, Ham SH, Cho JH, Cho HY, Lee YB. Simultaneous determination of imperatorin and its metabolite xanthotoxol in rat plasma and urine by LC–MS/MS and its application to pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:30-38. [DOI: 10.1016/j.jchromb.2016.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/28/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023]
|
17
|
Zheng YM, Shen JZ, Wang Y, Lu AX, Ho WS. Anti-oxidant and anti-cancer activities of Angelica dahurica extract via induction of apoptosis in colon cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1267-1274. [PMID: 26776960 DOI: 10.1016/j.phymed.2015.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Angelica dahurica Radix is the common herbal medicine with anti-cancer activities. However, details of its anti-cancer activities are lacking. MATERIALS AND METHODS We investigated the anti-cancer effects of Angelica dahurica extract in HT-29 colon cancer cell line. Cell viability, apoptotic and necrotic activities and the mechanism of actions of the active fraction were measured. RESULTS AND DISCUSSION The organic extract of Angelica dahurica Radi decreased significantly the gene expression of p53, Bcl, Bax and induced apoptosis via caspase cascade and cell cycle arrest. The ethanol-ethyl acetate fraction showed anti-cancer activities in HT-29 cancer cells. A HPLC-DAD analysis of the fraction indicated the presence of Imperatorin and isoimperatorin, which are the major coumarins in the active fraction that contribute to the anti-cancer activities. CONCLUSIONS This study has evaluated the ant-cancer activity of the organic extract of Angelica dahurica Radix against colon cancer cells and provided a basis of further development of the herbal extract for treatment of colon cancer.
Collapse
Affiliation(s)
- Yi Mei Zheng
- Minnan Normal University, College of Biological Science and Technology, Zhangzhou 363000, PR China.
| | - James Zheng Shen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yan Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amy Xiaoxu Lu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing Shing Ho
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
18
|
Simultaneous determination of seven coumarins by UPLC–MS/MS: Application to a comparative pharmacokinetic study in normal and arthritic rats after oral administration of Huo Luo Xiao Ling Dan or single-herb extract. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 991:108-17. [DOI: 10.1016/j.jchromb.2015.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
|
19
|
A novel GC–MS method for determination of chrysophanol in rat plasma and tissues: Application to the pharmacokinetics, tissue distribution and plasma protein binding studies. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 973C:76-83. [DOI: 10.1016/j.jchromb.2014.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022]
|