1
|
Li GC, Zhang L, Yu M, Jia H, Tian T, Wang J, Wang F, Zhou L. Identification of novel biomarker and therapeutic target candidates for acute intracerebral hemorrhage by quantitative plasma proteomics. Clin Proteomics 2017; 14:14. [PMID: 28450824 PMCID: PMC5406897 DOI: 10.1186/s12014-017-9149-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background The systematic mechanisms of acute intracerebral hemorrhage are still unknown and unverified, although many recent researches have indicated the secondary insults. This study was aimed to disclose the pathological mechanism and identify novel biomarker and therapeutic target candidates by plasma proteome. Methods Patients with AICH (n = 8) who demographically matched healthy controls (n = 4) were prospectively enrolled, and their plasma samples were obtained. The TMT-LC–MS/MS-based proteomics approach was used to quantify the differential proteome across plasma samples, and the results were analyzed by Ingenuity Pathway Analysis to explore canonical pathways and the relationship involved in the uploaded data. Results Compared with healthy controls, there were 31 differentially expressed proteins in the ICH group (P < 0.05), of which 21 proteins increased while 10 proteins decreased in abundance. These proteins are involved in 21 canonical pathways. One network with high confidence level was selected by the function network analysis, in which 23 proteins, P38MAPK and NFκB signaling pathways participated. Upstream regulator analysis found two regulators, IL6 and TNF, with an activation z-score. Seven biomarker candidates: APCS, FGB, LBP, MGMT, IGFBP2, LYZ, and APOA4 were found. Six candidate proteins were selected to assess the validity of the results by subsequent Western blotting analysis. Conclusion Our analysis provided several intriguing pathways involved in ICH, like LXR/RXR activation, acute phase response signaling, and production of NO and ROS in macrophages pathways. The three upstream regulators: IL-6, TNF, LPS, and seven biomarker candidates: APCS, APOA4, FGB, IGFBP2, LBP, LYZ, and MGMT were uncovered. LPS, APOA4, IGFBP2, LBP, LYZ, and MGMT are novel potential biomarkers in ICH development. The identified proteins and pathways provide new perspectives to the potential pathological mechanism and therapeutic targets underlying ICH. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Chun Li
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Lina Zhang
- The Third Hospital of Zhangzhou, Zhangzhou, 363005 People's Republic of China
| | - Ming Yu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Haiyu Jia
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001 People's Republic of China
| | - Ting Tian
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Junqin Wang
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 People's Republic of China
| | - Fuqiang Wang
- School of Public Health, Nanjing Medical University, Nanjing, 211166 People's Republic of China
| | - Ling Zhou
- School of Public Health, Nanjing Medical University, Nanjing, 211166 People's Republic of China
| |
Collapse
|
2
|
Abstract
Glycosylation is one of the most common and essential protein modifications. Glycans conjugated to biomolecules modulate the function of such molecules through both direct recognition of glycan structures and indirect mechanisms that involve the control of protein turnover rates, stability, and conformation. The biological attributes of glycans in numerous biological processes and implications in a number of diseases highlight the necessity for comprehensive characterization of protein glycosylation. This chapter reviews cutting-edge methods and tools developed to facilitate quantitative glycomics. This chapter highlights the different methods employed for the release and purification of glycans from biological samples. The most effective labeling methods developed for sensitive quantitative glycomics are also described and discussed. The chromatographic approaches that have been used effectively in glycomics are also highlighted.
Collapse
Affiliation(s)
- L Veillon
- Texas Tech University, Lubbock, TX, United States
| | - S Zhou
- Texas Tech University, Lubbock, TX, United States
| | - Y Mechref
- Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
3
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
4
|
Pröfrock D. Coupling Techniques and Orthogonal Combination of Mass Spectrometric Techniques. Metallomics 2016. [DOI: 10.1002/9783527694907.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Pröfrock
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research; Department Marine Bioanalytical Chemistry, Institute of Coastal Research/Biogeochemistry in Coastal Seas; Max-Planck Str.1 21502 Geesthacht Germany
| |
Collapse
|
5
|
Šesták J, Moravcová D, Kahle V. Instrument platforms for nano liquid chromatography. J Chromatogr A 2015; 1421:2-17. [DOI: 10.1016/j.chroma.2015.07.090] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
|
6
|
In vitro gastrointestinal digestion of bovine αS1- and αS2-casein variants gives rise to different IgE-binding epitopes. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Leng J, Zhu D, Wu D, Zhu T, Zhao N, Guo Y. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2555-2562. [PMID: 23008073 DOI: 10.1002/rcm.6369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). METHODS The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. RESULTS The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. CONCLUSIONS This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions.
Collapse
Affiliation(s)
- Jiapeng Leng
- Shanghai Mass Spectrometry Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
8
|
Toyama A, Nakagawa H, Matsuda K, Ishikawa N, Kohno N, Daigo Y, Sato TA, Nakamura Y, Ueda K. Deglycosylation and label-free quantitative LC-MALDI MS applied to efficient serum biomarker discovery of lung cancer. Proteome Sci 2011; 9:18. [PMID: 21473792 PMCID: PMC3090313 DOI: 10.1186/1477-5956-9-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serum is an ideal source of biomarker discovery and proteomic profiling studies are continuously pursued on serum samples. However, serum is featured by high level of protein glycosylations that often cause ionization suppression and confound accurate quantification analysis by mass spectrometry. Here we investigated the effect of N-glycan and sialic acid removal from serum proteins on the performance of label-free quantification results. RESULTS Serum tryptic digests with or without deglycosylation treatment were analyzed by LC-MALDI MS and quantitatively compared on the Expressionist Refiner MS module. As a result, 345 out of 2,984 peaks (11.6%) showed the specific detection or the significantly improved intensities in deglycosylated serum samples (P < 0.01). We then applied this deglycosylation-based sample preparation to the identification of lung cancer biomarkers. In comparison between 10 healthy controls and 20 lung cancer patients, 40 peptides were identified to be differentially presented (P < 0.01). Their quantitative accuracies were further verified by multiple reaction monitoring. The result showed that deglycosylation was needed for the identification of some unique candidates, including previously unreported O-linked glycopeptide of complement component C9. CONCLUSIONS We demonstrated here that sample deglycosylation improves the quantitative performance of shotgun proteomics, which can be effectively applied to any samples with high glycoprotein contents.
Collapse
Affiliation(s)
- Atsuhiko Toyama
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Tsurumiku-Suehirocho1-7-22, Yokohama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS. Mol Cell Biochem 2010; 343:91-9. [PMID: 20526653 DOI: 10.1007/s11010-010-0502-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
Plasma is recognized as a promising source of disease-related biomarkers, and proteomic approaches for identifying novel plasma biomarkers are in great demand. However, the complexity and dynamic protein concentration range of plasma remain the main obstacles for current research in this field. In this study, plasma proteins were prefractioned by immunodepletion and Protein Equalizer Technology to remove high abundant proteins, then labeled with an 8-plex isobaric tags for relative and absolute quantitation (iTRAQ) to improve the peptide ionization, and analyzed by strong-cation-exchange(SCX) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our results showed that both prefraction methods were complementary, with regard to the number of identified proteins. Good chromatographic technique is important to further fractionate the iTRAQ labeling peptides, which allowed 320 and 248 different proteins to be characterized from two prefraction methods, respectively, encompassing a wide array of biological functions and a broad dynamic range of 10(7). Furthermore, the accuracy of iTRAQ relative quantitation for differentially expressed proteins is associated with the number of peptides hits per protein.
Collapse
|
10
|
Peš O, Preisler J. Off-line coupling of microcolumn separations to desorption mass spectrometry. J Chromatogr A 2010; 1217:3966-77. [DOI: 10.1016/j.chroma.2010.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/13/2023]
|
11
|
Hwang H, Zhang J, Chung KA, Leverenz JB, Zabetian CP, Peskind ER, Jankovic J, Su Z, Hancock AM, Pan C, Montine TJ, Pan S, Nutt J, Albin R, Gearing M, Beyer RP, Shi M, Zhang J. Glycoproteomics in neurodegenerative diseases. MASS SPECTROMETRY REVIEWS 2010; 29:79-125. [PMID: 19358229 PMCID: PMC2799547 DOI: 10.1002/mas.20221] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein glycosylation regulates protein function and cellular distribution. Additionally, aberrant protein glycosylations have been recognized to play major roles in human disorders, including neurodegenerative diseases. Glycoproteomics, a branch of proteomics that catalogs and quantifies glycoproteins, provides a powerful means to systematically profile the glycopeptides or glycoproteins of a complex mixture that are highly enriched in body fluids, and therefore, carry great potential to be diagnostic and/or prognostic markers. Application of this mass spectrometry-based technology to the study of neurodegenerative disorders (e.g., Alzheimer's disease and Parkinson's disease) is relatively new, and is expected to provide insight into the biochemical pathogenesis of neurodegeneration, as well as biomarker discovery. In this review, we have summarized the current understanding of glycoproteins in biology and neurodegenerative disease, and have discussed existing proteomic technologies that are utilized to characterize glycoproteins. Some of the ongoing studies, where glycoproteins isolated from cerebrospinal fluid and human brain are being characterized in Parkinson's disease at different stages versus controls, are presented, along with future applications of targeted validation of brain specific glycoproteins in body fluids.
Collapse
Affiliation(s)
- Hyejin Hwang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Jianpeng Zhang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kathryn A. Chung
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - James B. Leverenz
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Cyrus P. Zabetian
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Elaine R. Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Zhen Su
- Department of Pathology, University of Washington, Seattle, Washington
| | - Aneeka M. Hancock
- Department of Pathology, University of Washington, Seattle, Washington
| | - Catherine Pan
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thomas J. Montine
- Department of Pathology, University of Washington, Seattle, Washington
| | - Sheng Pan
- Department of Pathology, University of Washington, Seattle, Washington
| | - John Nutt
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Roger Albin
- Ann Arbor VAMC GRECC and Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Richard P. Beyer
- Department of Environmental & Occupational Health Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Min Shi
- Department of Pathology, University of Washington, Seattle, Washington
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
13
|
Abstract
Posttranslational modifications (PTMs) of proteins perform crucial roles in regulating the biology of the cell. PTMs are enzymatic, covalent chemical modifications of proteins that typically occur after the translation of mRNAs. These modifications are relevant because they can potentially change a protein's physical or chemical properties, activity, localization, or stability. Some PTMs can be added and removed dynamically as a mechanism for reversibly controlling protein function and cell signaling. Extensive investigations have aimed to identify PTMs and characterize their biological functions. This chapter will discuss the existing and emerging techniques in the field of mass spectrometry and proteomics that are available to identify and quantify PTMs. We will focus on the most frequently studied modifications. In addition, we will include an overview of the available tools and technologies in tandem mass spectrometry instrumentation that affect the ability to identify specific PTMs.
Collapse
Affiliation(s)
- Adam R Farley
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
14
|
|
15
|
Yoo C, Zhao J, Pal M, Hersberger K, Huber CG, Simeone DM, Beer DG, Lubman DM. Automated integration of monolith-based protein separation with on-plate digestion for mass spectrometric analysis of esophageal adenocarcinoma human epithelial samples. Electrophoresis 2006; 27:3643-51. [PMID: 16927349 DOI: 10.1002/elps.200600117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A unique approach of automating the integration of monolithic capillary HPLC-based protein separation and on-plate digestion for subsequent MALDI-MS analysis has been developed. All liquid-handling procedures were performed using a robotic module. This automated high-throughput method minimizes the amount of time and extensive labor required for traditional in-solution digestion followed by exhaustive sample cleanup and analysis. Also, precise positioning of the droplet from the capillary HPLC separation onto the MALDI plate allows for preconcentration effects of analytes for improved sensitivity. Proteins from primary esophageal Barrett's adenocarcinoma tissue were prefractionated by chromatofocusing and analyzed successfully by this automated configuration, obtaining rapid protein identifications through PMF and sequencing analyses with high sequence coverage. Additionally, intact protein molecular weight values were obtained as a means to further confirm protein identification and also to identify potential sequence modifications of proteins. This simple and rapid method is a highly versatile and robust approach for the analysis of complex proteomes.
Collapse
Affiliation(s)
- Chul Yoo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Geyer H, Geyer R. Strategies for analysis of glycoprotein glycosylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1853-69. [PMID: 17134948 DOI: 10.1016/j.bbapap.2006.10.007] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 10/18/2006] [Accepted: 10/18/2006] [Indexed: 01/01/2023]
Abstract
Glycoproteins are known to exhibit multiple biological functions. In order to assign distinct functional properties to defined structural features, detailed information on the respective carbohydrate moieties is required. Chemical and biochemical analyses, however, are often impeded by the small amounts of sample available and the vast structural heterogeneity of these glycans, thus necessitating highly sensitive and efficient methods for detection, separation and structural investigation. The aim of this article is to briefly review suitable strategies for characterization of glycosylation at the levels of intact proteins, glycopeptides and free oligosaccharides. Furthermore, methods commonly used for isolation, fractionation and carbohydrate structure analysis of liberated glycoprotein glycans are discussed in the context of potential applications in glycoproteomics.
Collapse
Affiliation(s)
- Hildegard Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | |
Collapse
|
17
|
Nordhoff E, Lehrach H. Identification and characterization of DNA-binding proteins by mass spectrometry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 104:111-95. [PMID: 17290821 DOI: 10.1007/10_2006_037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mass spectrometry is the most sensitive and specific analytical technique available for protein identification and quantification. Over the past 10 years, by the use of mass spectrometric techniques hundreds of previously unknown proteins have been identified as DNA-binding proteins that are involved in the regulation of gene expression, replication, or DNA repair. Beyond this task, the applications of mass spectrometry cover all aspects from sequence and modification analysis to protein structure, dynamics, and interactions. In particular, two new, complementary ionization techniques have made this possible: matrix-assisted laser desorption/ionization and electrospray ionization. Their combination with different mass-over-charge analyzers and ion fragmentation techniques, as well as specific enzymatic or chemical reactions and other analytical techniques, has led to the development of a broad repertoire of mass spectrometric methods that are now available for the identification and detailed characterization of DNA-binding proteins. These techniques, how they work, what their requirements and limitations are, and selected examples that document their performance are described and discussed in this chapter.
Collapse
Affiliation(s)
- Eckhard Nordhoff
- Department Lehrach, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.
| | | |
Collapse
|
18
|
Rizzi A, Cosmina P, Flego C, Montanari L, Seraglia R, Traldi P. Laser desorption/ionization techniques in the characterization of high molecular weight oil fractions. Part 1: asphaltenes. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1232-41. [PMID: 16941524 DOI: 10.1002/jms.1095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The molecular weight distribution of the asphaltene fractions of two types of crude oils from two different Italian fields (samples 1 and 2) was investigated. The analytical tools used to perform these analyses were matrix assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) mass spectrometry. After observing that the use of the matrix (as well as the addition of Ag+) did not improve the quality of the data compared to that obtained in LDI conditions, all further measurements were performed with the latter technique. Operating under usual conditions of laser power and delay time, a very low resolution was observed, showing only macroscopic differences between the two samples in the molecular weight distribution of the different components. An accurate study on the possible reasons of this undesirable behavior indicates that it can originate from space charge phenomena occurring either in the ion source region or during the flight. A valid parameterization of the delay time and the laser power allowed higher quality spectra to be obtained. Surface-enhanced laser desorption ionization (SELDI) measurements were also performed using normal phase (silica) as the sample holder surface. Under these conditions, better results are obtained, proving that the sample-surface interaction is important to achieve, by means of laser irradiation, a homogeneous set of product ions. Both asphaltene samples were fractionated in five subfractions by gel-permeation chromatography (GPC) to obtain a better separation of the molecular weight distributions; the related spectra confirmed these findings. By using different approaches, relevant and reproducible differences between the asphaltene fractions of the two oil samples were observed.
Collapse
Affiliation(s)
- Andrea Rizzi
- Consiglio Nazionale delle Ricerche, ISTM, Corso Stati Uniti 4, 35100 Padova, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Creaser CS, Green PS, Kilby PM, Ratcliffe L. Capillary liquid chromatography/atmospheric-pressure matrix-assisted laser desorption/ionisation ion trap mass spectrometry: a comparison with liquid chromatography/matrix-assisted laser desorption/ionisation time-of-flight and liquid chromatography/electrospray ionisation quadrupole time-of-flight for the identification of tryptic peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:829-36. [PMID: 16470569 DOI: 10.1002/rcm.2376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The atmospheric-pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI-QIT) analysis of tryptic peptides is reported following capillary liquid chromatographic (LC) separation and direct analysis of a protein digest. Peptide fragments were identified by peptide mass fingerprinting from mass spectrometric data and sequence analysis obtained by tandem mass spectrometry of the principal mass spectral peaks using a data-dependent scanning protocol. These data were compared with those from mass spectrometric analysis using capillary LC/MALDI-time-of-flight (TOF) and capillary LC/electrospray ionisation (ESI)-quadrupole TOF. For all three configurations the resulting data were searched against the MSDB database, using MASCOT and the sequence coverage compared for each technique. Complementary data were obtained using the three techniques.
Collapse
Affiliation(s)
- Colin S Creaser
- School of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | | | | | | |
Collapse
|
20
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1110-21. [PMID: 16106339 DOI: 10.1002/jms.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
21
|
Pingoud V, Geyer H, Geyer R, Kubareva E, Bujnicki JM, Pingoud A. Identification of base-specific contacts in protein-DNA complexes by photocrosslinking and mass spectrometry: a case study using the restriction endonuclease SsoII. MOLECULAR BIOSYSTEMS 2005; 1:135-41. [PMID: 16880975 DOI: 10.1039/b503091a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific protein-nucleic acid interactions are of paramount importance for the propagation, maintenance and expression of genetic information. Restriction endonucleases serve as model systems to study the mechanisms of DNA recognition by proteins. SsoII is a Type II restriction endonuclease that recognizes the double stranded sequence downward arrow CCNGG and cleaves it in the presence of Mg(2+)-ions, as indicated. SsoII shows sequence similarity over a stretch of approximately 70 amino acid residues with several other restriction endonucleases that recognize a similar sequence as SsoII (Cfr10I, EcoRII, NgoMIV, PspGI). In NgoMIV this stretch is involved in DNA recognition and cleavage, as shown by the crystal structure analysis of an enzyme-product complex. To find out whether the presumptive DNA recognition region in SsoII is indeed in contact with DNA we have photocrosslinked SsoII with an oligodeoxyribonucleotide in which the first guanine of the recognition sequence was replaced by 5-iodouracil. Following digestion by trypsin, the peptide-oligodeoxyribonucleotide conjugate was purified by Fe(3+)-IMAC and then incubated with hydrogen fluoride, which hydrolyzes the oligodeoxyribonucleotide to yield the peptide-deoxyuridine conjugate. The site of photocrosslinking was identified by MALDI-TOF-MS and MALDI-TOF-MS/MS to be Trp189, adjacent to Arg188, which aligns with Arg194 in NgoMIV, involved in recognition of the second guanine in the NgoMIV recognition sequence G downward arrow CCGGC. This result confirms previously published conclusions drawn on the basis of a mutational analysis of SsoII. The methodology that was employed here can be used in principle to identify the DNA binding site of any protein.
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie (FB 08), Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Pingoud V, Sudina A, Geyer H, Bujnicki JM, Lurz R, Lüder G, Morgan R, Kubareva E, Pingoud A. Specificity Changes in the Evolution of Type II Restriction Endonucleases. J Biol Chem 2005; 280:4289-98. [PMID: 15563460 DOI: 10.1074/jbc.m409020200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How restriction enzymes with their different specificities and mode of cleavage evolved has been a long standing question in evolutionary biology. We have recently shown that several Type II restriction endonucleases, namely SsoII (downward arrow CCNGG), PspGI (downward arrow CCWGG), Eco-RII (downward arrow CCWGG), NgoMIV (G downward arrow CCGGC), and Cfr10I (R downward arrow CCGGY), which recognize similar DNA sequences (as indicated, where the downward arrows denote cleavage position), share limited sequence similarity over an interrupted stretch of approximately 70 amino acid residues with MboI, a Type II restriction endonuclease from Moraxella bovis (Pingoud, V., Conzelmann, C., Kinzebach, S., Sudina, A., Metelev, V., Kubareva, E., Bujnicki, J. M., Lurz, R., Luder, G., Xu, S. Y., and Pingoud, A. (2003) J. Mol. Biol. 329, 913-929). Nevertheless, MboI has a dissimilar DNA specificity (downward arrow GATC) compared with these enzymes. In this study, we characterize MboI in detail to determine whether it utilizes a mechanism of DNA recognition similar to SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. Mutational analyses and photocross-linking experiments demonstrate that MboI exploits the stretch of approximately 70 amino acids for DNA recognition and cleavage. It is therefore likely that MboI shares a common evolutionary origin with SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. This is the first example of a relatively close evolutionary link between Type II restriction enzymes of widely different specificities.
Collapse
MESH Headings
- Amino Acid Sequence
- Catalytic Domain
- Chromatography, Gel
- Computational Biology
- Cross-Linking Reagents/pharmacology
- DNA/chemistry
- DNA/metabolism
- DNA Mutational Analysis
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Dimerization
- Escherichia coli/metabolism
- Evolution, Molecular
- Light
- Magnesium/chemistry
- Manganese/chemistry
- Mass Spectrometry
- Microscopy, Electron, Transmission
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Protein Binding
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Salts/pharmacology
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Time Factors
Collapse
Affiliation(s)
- Vera Pingoud
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Geyer H, Geyer R, Pingoud V. A novel strategy for the identification of protein-DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res 2004; 32:e132. [PMID: 15383647 PMCID: PMC519130 DOI: 10.1093/nar/gnh131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Photochemical crosslinking is a method for studying the molecular details of protein-nucleic acid interactions. In this study, we describe a novel strategy to localize crosslinked amino acid residues that combines laser-induced photocrosslinking, proteolytic digestion, Fe3+-IMAC (immobilized metal affinity chromatography) purification of peptide-oligodeoxynucleotide heteroconjugates and hydrolysis of oligodeoxynucleotides by hydrogen fluoride (HF), with efficient matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The new method is illustrated by the identification of the DNA-binding site of the restriction endonuclease MboI. Photoactivatable 5-iododeoxyuridine was incorporated into a single site within the DNA recognition sequence (GATC) of MboI. Ultraviolet irradiation of the protein-DNA complex with a helium/cadmium laser at 325 nm resulted in 15% crosslinking yield. Proteolytic digestion with different proteases produced various peptide-oligodeoxynucleotide adducts that were purified together with free oligodeoxynucleotide by Fe3+-IMAC. A combination of MS analysis of the peptide-nucleosides obtained after hydrolysis by HF and their fragmentation by MS/MS revealed that Lys209 of MboI was crosslinked to the MboI recognition site at the position of the adenine, demonstrating that the region around Lys209 is involved in specific binding of MboI to its DNA substrate. This method is suitable for the fast identification of the site of contact between proteins and nucleic acids starting from picomole quantities of crosslinked complexes.
Collapse
Affiliation(s)
- Hildegard Geyer
- Biochemisches Institut, Friedrichstrasse 24, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | |
Collapse
|