1
|
Ćavar Zeljković S, De Diego N, Drašar L, Nisler J, Havlíček L, Spíchal L, Tarkowski P. Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5390-5411. [PMID: 38526483 PMCID: PMC11389842 DOI: 10.1093/jxb/erae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/23/2024] [Indexed: 03/26/2024]
Abstract
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Lukáš Drašar
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Jaroslav Nisler
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| |
Collapse
|
2
|
Liu Y, Wang X, Wei J, Fu K, Chen Y, Li L, Wang Z, Yang L. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury. J Chromatogr A 2024; 1721:464816. [PMID: 38537486 DOI: 10.1016/j.chroma.2024.464816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
The severe respiratory dysfunctions associated with acute lung injury (ALI) and its sequelae have a high morbidity and mortality rate, are multifactorial, and lack a viable treatment. Considering the critical function that amino acids and derivatives play in the genesis of illnesses and the regulation of metabolic processes, monitoring the levels of metabolites associated with amino acids in biological matrices is necessary and interesting to study their pathological mechanisms. Exploring the dynamics of amino acids and derivatives level and searching for biomarkers provides improved clinical ideas for the diagnosis and treatment of ALI. Therefore, we developed an ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry (UHPLC-MS/MS) method that can simultaneously determine the amino acid and derivatives metabolic levels to study amino acid profiles in different biological samples to facilitate clinical research of ALI. In this study, 48 amino acids and derivatives, including neurotransmitters, polyamines, purines, and other types, were quantified simultaneously in a fast, high-throughput, sensitive, and reliable manner within a 15-minute run time without derivatization. No relevant studies have been reported to quantify these 48 amino acid metabolites in three biological samples simultaneously. Satisfactory linearity (R > 0.995), inter-day and intra-day accuracy (85.17-112.67 % and 85.29-111.60 %, respectively), inter-day and intra-day precision (RSD < 13.80 % and RSD < 12.01 %, respectively), matrix effects (81.00 %-118.00 %), recovery (85.09 %-114.65 %) and stability (RSD < 14.72 %) were all demonstrated by the optimized method's successful validation for all analytes. In addition, the suggested method was effectively implemented in plasma, urine, and lung tissue from normal mice and mice with ALI, with the aim of finding potential biomarkers associated with ALI. Potential biomarkers were screened through multivariate statistical analysis and volcanic map analysis, and the changes of markers in ALI were again identified through heat map analysis and correlation analysis with biochemical indicators, which provided ideas and references for subsequent mechanism studies. Here, the technique created in this work offers a quick and dependable way to perform an integrated analysis of amino acids in a variety of biological materials, which can provide research ideas for understanding the physiopathological state of various diseases.
Collapse
Affiliation(s)
- Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xunjiang Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaojiao Wei
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kangning Fu
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Brambilla M, Chiari G, Commisso M, Nerva L, Musetti R, Petraglia A, Degola F. Glutamate dehydrogenase in "Liverworld"-A study in selected species to explore a key enzyme of plant primary metabolism in Marchantiophyta. PHYSIOLOGIA PLANTARUM 2023; 175:e14071. [PMID: 38148220 DOI: 10.1111/ppl.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/28/2023]
Abstract
In plants, glutamate dehydrogenase (GDH) is an ubiquitous enzyme that catalyzes the reversible amination of 2-oxoglutarate in glutamate. It contributes to both the amino acid homeostasis and the management of intracellular ammonium, and it is regarded as a key player at the junction of carbon and nitrogen assimilation pathways. To date, information about the GDH of terrestrial plants refers to a very few species only. We focused on selected species belonging to the division Marchantiophyta, providing the first panoramic overview of biochemical and functional features of GDH in liverworts. Native electrophoretic analyses showed an isoenzymatic profile less complex than what was reported for Arabidposis thaliana and other angiosperms: the presence of a single isoform corresponding to an α-homohexamer, differently prone to thermal inactivation on a species- and organ-basis, was found. Sequence analysis conducted on amino acid sequences confirmed a high similarity of GDH in modern liverworts with the GDH2 protein of A. thaliana, strengthening the hypothesis that the duplication event that gave origin to GDH1-homolog gene from GDH2 occurred after the evolutionary bifurcation that separated bryophytes and tracheophytes. Experiments conducted on Marchantia polymorpha and Calypogeia fissa grown in vitro and compared to A. thaliana demonstrated through in gel activity detection and monodimensional Western Blot that the aminating activity of GDH resulted in strongly enhanced responses to ammonium excess in liverworts as well, even if at a different extent compared to Arabidopsis and other vascular species. The comparative analysis by bi-dimensional Western Blot suggested that the regulation of the enzyme could be, at least partially, untied from the protein post-translational pattern. Finally, immuno-electron microscopy revealed that the GDH enzyme localizes at the subcellular level in both mitochondria and chloroplasts of parenchyma and is specifically associated to the endomembrane system in liverworts.
Collapse
Affiliation(s)
- Martina Brambilla
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giorgio Chiari
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Conegliano, Italy
| | - Rita Musetti
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy
| | - Alessandro Petraglia
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Wang Y, Li Z, Chen R. Simultaneous Determination of Metabolites Related to Arginine Metabolism in Rat plasma by Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry. J Chromatogr Sci 2023; 61:203-210. [PMID: 35704851 DOI: 10.1093/chromsci/bmac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/15/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022]
Abstract
Arginine and its metabolites play important roles in pain and analgesia. This study aimed to develop a comprehensive quantification method for amino acids and metabolites related to arginine metabolism in rat plasma by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS). Rat plasma was diluted to reduce the matrix effect and deproteinized with acetonitrile. The analytes were separated on a Syncronis HILIC column with a gradient elution. MS analysis was performed in positive ion mode with an electrospray ionization source using multiple reaction monitoring technology. All calibration curves for the 10 analytes showed good linear regression (R2 > 0.99). The limits of detection (LODs) were in the range of 0.9-13.4 μg/L. The established method was validated for intra-day and inter-day precisions (relative standard deviation [RSDs] < 6.21%) and accuracy (average recovery ranged from 87.34% to 100.35% with the RSD values less than 11.41%). This method was successfully applied to characterize dynamic alterations in the plasma of rats with neuropathic pain and thus provide service to explore the mechanism of action between metabolite changes and clinical disease.
Collapse
Affiliation(s)
- Ying Wang
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, P. R. China
- Life Sciences Institute, Zunyi Medical University, Zunyi 563000, P. R. China
| | - ZhiRong Li
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, P. R. China
| | - RongXiang Chen
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, P. R. China
- Life Sciences Institute, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
5
|
Wang H, Ni X, Dong W, Qin W, Xu L, Jiang Y. Accurately quantified plasma free glycine concentration as a biomarker in patients with acute ischemic stroke. Amino Acids 2023; 55:385-402. [PMID: 36697969 DOI: 10.1007/s00726-023-03236-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
We developed a hollow fiber centrifugal ultrafiltration (HFCF-UF) method to study the change of plasma levels of free glycine (Gly) in patients with acute ischemic stroke (AIS). Twenty-four patients with AIS confirmed by diffusion-weighted imaging (DWI) were enrolled. During the study period, the patients did not receive any supplemental amino acids therapy that could affect the obtained results. Our results showed that although AIS patients adopted different methods of treatment (thrombolytic and non-thrombolytic), the clinical NIHSS score of AIS showed a downward trend whereas Gly concentration showed increased trend. Moreover, plasma free Gly concentration was positively correlated with ASPECTS score. The correlation between Gly levels and infarct volume showed a statistical significance. That is to say, higher Gly level predicted smaller infarct size. Thus, the change of free Gly level in plasma could be considered as a potential biomarker of AIS.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaoyu Ni
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Weichong Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Weiman Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Lei Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Ye Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
6
|
Kohler I, Verhoeven M, Haselberg R, Gargano AF. Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics: state-of-the-art and current trends. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Piestansky J, Olesova D, Matuskova M, Cizmarova I, Chalova P, Galba J, Majerova P, Mikus P, Kovac A. Amino acids in inflammatory bowel diseases: Modern diagnostic tools and methodologies. Adv Clin Chem 2022; 107:139-213. [PMID: 35337602 DOI: 10.1016/bs.acc.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amino acids are crucial building blocks of living organisms. Together with their derivatives, they participate in many intracellular processes to act as hormones, neuromodulators, and neurotransmitters. For several decades amino acids have been studied for their potential as markers of various diseases, including inflammatory bowel diseases. Subsequent improvements in sample pretreatment, separation, and detection methods have enabled the specific and very sensitive determination of these molecules in multicomponent matrices-biological fluids and tissues. The information obtained from targeted amino acid analysis (biomarker-based analytical strategy) can be further used for early diagnostics, to monitor the course of the disease or compliance of the patients. This review will provide an insight into current knowledge about inflammatory bowel diseases, the role of proteinogenic amino acids in intestinal inflammation and modern analytical techniques used in its diagnosis and disease activity monitoring. Current advances in the analysis of amino acids focused on sample pretreatment, separation strategy, or detection methods are highlighted, and their potential in clinical laboratories is discussed. In addition, the latest clinical data obtained from the metabolomic profiling of patients suffering from inflammatory bowel diseases are summarized with a focus on proteinogenic amino acids.
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Matuskova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
8
|
Zhang F, Li DX, Lu DY, Lu YF, Zhang R, Zhao LL, Ji S, Guo MZ, Du Y, Tang DQ. Analysis of plasma free amino acids in diabetic rat and the intervention of Ginkgo biloba leaves extract using hydrophilic interaction liquid chromatography coupled with tandem mass-spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123230. [PMID: 35349934 DOI: 10.1016/j.jchromb.2022.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
Amino acids (AAs) are important metabolites that are related with diabetes. However, their roles in the initiation and development of diabetes mellitus (DM), especially in the treatment of Ginkgo biloba leaves extract (GBE) have not been fully explored. Thus, we investigated the roles that AAs played in the progression and GBE supplementation of DM rat induced by streptozotocin. The rats were randomly divided into a normal control group treated with drug-free solution, a normal control group treated with GBE, a DM group treated with drug-free solution, and DM group treated with GBE; and maintained on this protocol for 9 weeks. Rat plasma was collected from the sixth week to the ninth week and then analyzed with the optimized hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry method. A total of 17 AAs with differential levels were monitored to indicate dysfunction of AAs metabolism to confirm the occurrence and development of DM. Treatment with GBE partially reversed the changes seen in seven AAs including leucine, isoleucine, tyrosine, glutamic acid, asparagines, lysine and alanine in DM rats, indicating that GBE could prevent the occurrence and development of DM by acting on AAs metabolism. The improvement of those AAs metabolism disorders may play a considerable role in the treatment of GBE on the occurrence and development of DM. Those findings potentially promote the understanding of the pathogenic progression of DM and reveal the therapeutic mechanism of GBE against DM.
Collapse
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital, Suining, China
| | - Yi-Fan Lu
- The Second Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, Suining People's Hospital, Suining, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
9
|
Stampina E, Tsiasioti A, Klimatsaki K, Zacharis CK, Tzanavaras PD. Determination of histidine in human serum and urine by cation exchange chromatography coupled to selective on-line post column derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122697. [PMID: 33878535 DOI: 10.1016/j.jchromb.2021.122697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/04/2023]
Abstract
A reliable and highly selective method for the determination of histidine in human serum and urine is described. Histidine was separated from the matrix by cation exchange chromatography and detected selectively using on-line post column derivatization and fluorimetric detection. Unique reaction of histidine with o-phthalaldehyde in the absence of nucleophilic compounds offered specific detection in the complex biological substrate. Linearity was obeyed in the range of 0.5 - 25 μmol L-1 with a limit of detection of 0.160 μmol L-1. The absence of matrix effect (<5%) enabled the processing of real samples after minimal pretreatment. Endogenous histidine has been determined in human serum in the range of 78 - 119 μmol L-1 and random human urine in the range of 266 - 2034 μmol L-1. The percent recoveries were satisfactory in all cases, ranging between 89 and 114%.
Collapse
Affiliation(s)
- Eirini Stampina
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece
| | | | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124, Greece.
| |
Collapse
|
10
|
Wang YP, Liang F, Liu S. Molecular dynamics simulations of amino acid adsorption and transport at the acetonitrile–water–silica interface: the role of side chains. RSC Adv 2021; 11:21666-21677. [PMID: 35478806 PMCID: PMC9034086 DOI: 10.1039/d1ra03982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
The solvation and transport of amino acid residues at liquid–solid interfaces have great importance for understanding the mechanism of separation of biomolecules in liquid chromatography. This study uses umbrella sampling molecular dynamics simulations to study the adsorption and transport of three amino acid molecules with different side chains (phenylalanine (Phe), leucine (Leu) and glutamine (Gln)) at the silica–water–acetonitrile interface in liquid chromatography. Free energy analysis shows that the Gln molecule has stronger binding affinity than the other two molecules, indicating the side chain polarity may play a primary role in adsorption at the liquid–solid interface. The Phe molecule with a phenyl side chain exhibits stronger adsorption free energy than Leu with a non-polar side chain, which can be ascribed to the better solvated configuration of Phe. Further analysis of molecular orientations found that the amino acid molecules with apolar side chains (Phe and Leu) have ‘standing up’ configurations at their stable adsorption state, where the polar functional groups are close to the interface and the side chain is far from the interface, whereas the amino acid molecule with a polar side chain (Gln) chooses the ‘lying’ configuration, and undergoes a sharp orientation transition when the molecule moves away from the silica surface. Extending our simulation studies to systems with different solute concentrations reveals that there is a decrease in the adsorption free energy as well as surface diffusion as the solute concentration increases, which is related to the crowding in the interfacial layers. This simulation study gives a detailed microscopic description of amino acid molecule solvation and transport at the acetonitrile–water–silica interface in liquid chromatography and will be helpful for understanding the retention mechanism for amino acid separation. The solvation and transport of amino acid residues at liquid–solid interfaces have great importance for understanding the mechanism of separation of biomolecules in liquid chromatography.![]()
Collapse
Affiliation(s)
- Yong-Peng Wang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Fei Liang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Shule Liu
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
| |
Collapse
|
11
|
Chen Z, Lin F, Ye X, Dong Y, Hu L, Huang A. Simultaneous determination of five essential amino acids in plasma of Hyperlipidemic subjects by UPLC-MS/MS. Lipids Health Dis 2020; 19:52. [PMID: 32293459 PMCID: PMC7087371 DOI: 10.1186/s12944-020-01216-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Millions of adults have been reported with hyperlipemia in the world. It is still unclear whether the plasma level of essential amino acids (AAs) will be influenced by the hyperlipemia. This study was aimed to investigate the AAs levels and the underlying metabolic relationship in hyperlipidemic subjects. METHODS An ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method was developed for the determination of phenylalanine (Phe), valine (Val), histidine (His), tryptophan (Trp), and methionine (Met). Plasma samples (100 μL) were precipitated by acetonitrile (300 μL) and analyzed on a BEH C18 (2.1 mm × 100 mm, 1.7 μm) column at 40 °C by gradient elution. The mobile phase composed of 0.1% formic acid and acetonitrile was used with flow rate at 0.2-0.4 ml/0-3 min. Five AAs were determined at positive electrospray ionization (ESI+) at m/z 118.1/72.1 (Val), 150.12/104.02(Met), 156.06/110.05(His), 166.1/120.1(Phe), and 205.2/188.02 (Trp). A total of 75 healthy subjects and 83 hyperlipidemic subjects, who had blood routine test and plasma lipid test were determined by developed UPLC-MS/MS. RESULTS It was shown that there was good linearity for Val, Met, His, Phe, and Trp within 1-100 μg/mL. The relative standard deviations of precision and accuracy were all within 15%. The level of Val, Phe, Trp, His, and Met were 35.34 ± 15.64, 22.72 ± 9.13, 17.23 ± 4.94, 16.78 ± 13.64, and 6.24 ± 1.97 μg/mL in healthy subjects, while they were 38.04 ± 16.70, 22.41 ± 8.45, 15.62 ± 5.77, 18.35 ± 14.49, and 6.21 ± 1.97 μg/mL in hyperlipidemic subjects respectively. The Spearman's correlations analysis showed that there were high correlations between Val, Phe, Trp, His, Met and triglyceride in healthy subjects. While, those correlations decreased in hyperlipemia cases. CONCLUSION A convenient and sensitive method for simultaneous determination of Val, Phe, Trp, His, and Met in human plasma was developed. There was a high correlation between Val, Phe, Trp, His, Met and triglyceride. Hyperlipemia influences the metabolic balance of His, Phe, Trp, Met and Val.
Collapse
Affiliation(s)
- Zhibin Chen
- Department of Nephrology, The Affiliated Yueqing Hospital of Wenzhou Medical University, Yueqing, Zhejiang, China
| | - Feiyan Lin
- School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xuemei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, China
| | - Yuqian Dong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lufeng Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, China.
| | - Aifang Huang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, China.
| |
Collapse
|
12
|
Development and Validation of a Hydrophilic Interaction Liquid Chromatography Tandem Mass Spectrometry Method for the Determination of Asparagine in Human Serum. Int J Anal Chem 2020; 2020:6980392. [PMID: 32180807 PMCID: PMC7064832 DOI: 10.1155/2020/6980392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/03/2022] Open
Abstract
L-Asparagine (ASN) is the catalyze substrate of L-asparaginase (ASNase), which is an important drug for acute lymphoblastic leukemia (ALL) patients. The ASN level is found to be closely associated with the effectiveness of ASNase treatment. In this study, a hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) method was developed for the determination of ASN in the human serum using a stable isotope-labeled internal standard (ASN-D3). Serum samples were prepared by a one-step precipitation procedure using methanol and separated by an Agilent HILIC Plus column with the mobile phase of methanol-water (95 : 5, v/v, containing 5 mM ammonium formate and 0.1% formic acid), at a constant flow rate of 0.3 mL/min. Mass spectrometric analysis was conducted using multiple-reaction monitoring in the positive electrospray ionization mode. Serum ASN concentrations were determined over a linear calibration curve range of 2–200 μM, with acceptable accuracies and precisions. The validated HILIC-MS/MS method was successfully applied to the quantification of ASN levels in the serum from patients with ALL. Collectively, the research may shed new light on an alternative rapid, simple, and convenient quantitative method for determination of serum ASN in ALL patients treated with ASNase.
Collapse
|
13
|
Ferré S, González-Ruiz V, Guillarme D, Rudaz S. Analytical strategies for the determination of amino acids: Past, present and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121819. [PMID: 31704619 DOI: 10.1016/j.jchromb.2019.121819] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes the analytical methods that have been developed over the years to tackle the high polarity and non-chromophoric nature of amino acids (AAs). First, the historical methods are briefly presented, with a strong focus on the use of derivatization reagents to make AAs detectable with spectroscopic techniques (ultraviolet and fluorescence) and/or sufficiently retained in reversed phase liquid chromatography. Then, an overview of the current analytical strategies for achiral separation of AAs is provided, in which mass spectrometry (MS) becomes the most widely used detection mode in combination with innovative liquid chromatography or capillary electrophoresis conditions to detect AAs at very low concentration in complex matrixes. Finally, some future trends of AA analysis are provided in the last section of the review, including the use of supercritical fluid chromatography (SFC), multidimensional liquid chromatography and electrophoretic separations, hyphenation of ion exchange chromatography to mass spectrometry, and use of ion mobility spectrometry mass spectrometry (IM-MS). Various application examples will also be presented throughout the review to highlight the benefits and limitations of these different analytical approaches for AAs determination.
Collapse
Affiliation(s)
- Sabrina Ferré
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|