1
|
Szumska M, Mroczek P, Tyrpień-Golder K, Pastuszka B, Janoszka B. Determination of Cotinine, 3'-Hydroxycotinine and Nicotine 1'-Oxide in Urine of Passive and Active Young Smokers by LC-Orbitrap-MS/MS Technique. Molecules 2024; 29:3643. [PMID: 39125048 PMCID: PMC11313786 DOI: 10.3390/molecules29153643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Tobacco smoke is probably the most significant factor conducing to toxic xenobiotics exposure to humans. The aim of the study was to develop a rapid and sensitive method for the determination of selected nicotine metabolites in urine of tobacco smokers and passive smokers. The method for removing protein and extracting the metabolites involved the centrifugation of urine with acetonitrile. Cotinine, trans-3'-hydroxycotinine, and (2'S)-nicotine 1'-oxide in the supernatant were determined using the LC-Orbitrap-MS/MS technique, with the selected ion monitoring (SIM) and parallel reaction monitoring (PRM) modes used. The recovery of these analytes added to the urine samples ranged from 72% to 101%. Repeatability and reproducibility were less than 3.1% and 10.1%, respectively. The study was carried out among medical students. The group was selected as representatives of young people and who as future physicians should be more aware of the effects of nicotine use. Concentration levels of cotinine and trans-3'-hydroxycotinine determined in ng/mL in the urine of cigarette smokers were 70- and 58-fold higher, respectively, compared to passive smokers. Higher concentrations were recorded in the urine of those passively exposed to tobacco smoke than in non-smokers, confirming that passive exposure to tobacco smoke is not harmless to the human body. However, no significant differences were observed in the concentration of (1'S,2'S)-nicotine 1'-oxide in the samples of individuals from various groups.
Collapse
Affiliation(s)
- Magdalena Szumska
- Department of Chemistry, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland; (P.M.); (K.T.-G.)
- Research and Implementation Center Silesia LabMed, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Paweł Mroczek
- Department of Chemistry, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland; (P.M.); (K.T.-G.)
| | - Krystyna Tyrpień-Golder
- Department of Chemistry, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland; (P.M.); (K.T.-G.)
| | - Beata Pastuszka
- Research and Implementation Center Silesia LabMed, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Beata Janoszka
- Department of Chemistry, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland; (P.M.); (K.T.-G.)
- Research and Implementation Center Silesia LabMed, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
2
|
Jin S, Pang W, Zhao L, Zhao Z, Mei S. Review of HPLC-MS methods for the analysis of nicotine and its active metabolite cotinine in various biological matrices. Biomed Chromatogr 2022; 36:e5351. [PMID: 35106788 DOI: 10.1002/bmc.5351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
In recent years, tobacco smoking is a risk factor for a series of diseases including cardiovascular diseases, cerebrovascular diseases, and cancers. Nicotine, the primary component of tobacco smoke, is mainly transformed to its active metabolite cotinine, which is often used as biomarker for tobacco exposure for its higher blood concentration and longer residence time than nicotine. Various analytical methods have been developed for the determination of nicotine and cotinine in biological matrices. This article reviewed the HPLC-MS based methods for nicotine and/or cotinine analysis in various biological matrices. The sample preparation, mass and chromatographic conditions and method validation results of these methods have been summarized and analyzed. Sample was mainly pretreated by protein precipitation and/or extraction. Separation was achieved using methanol and/or acetonitrile:water (with or without ammonium acetate) on C18 columns, and acetonitrile:water (with formic acid, ammonium acetate/formate) on HILIC columns. Nicotine-d3, nicotine-d4 and cotinine-d3 were commonly used internal standards. Other non-deuterated IS were also used such as ritonavir, N-ethylnorcotinine, and milrinone. For both nicotine and cotinine, the calibration range was 0.005-35000 ng/mL, the matrix effect was 75.96% - 126.8% and the recovery was 53% - 124.5%. The two analytes were stable at room temperature for 1-10 days, at -80 °C for up to 6 months, and after 3-6 freeze-thaw cycles. Comedications did not affect nicotine and cotinine analysis.
Collapse
Affiliation(s)
- Siyao Jin
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P. R. China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Wenyuan Pang
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China.,Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, P. R. China.,Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Zhigang Zhao
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| | - Shenghui Mei
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
3
|
Tan X, Vrana K, Ding ZM. Cotinine: Pharmacologically Active Metabolite of Nicotine and Neural Mechanisms for Its Actions. Front Behav Neurosci 2021; 15:758252. [PMID: 34744656 PMCID: PMC8568040 DOI: 10.3389/fnbeh.2021.758252] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tobacco use disorder continues to be a leading public health issue and cause of premature death in the United States. Nicotine is considered as the major tobacco alkaloid causing addiction through its actions on nicotinic acetylcholine receptors (nAChRs). Current pharmacotherapies targeting nicotine's effects produce only modest effectiveness in promoting cessation, highlighting the critical need for a better understanding of mechanisms of nicotine addiction to inform future treatments. There is growing interest in identifying potential contributions of non-nicotine components to tobacco reinforcement. Cotinine is a minor alkaloid, but the major metabolite of nicotine that can act as a weak agonist of nAChRs. Accumulating evidence indicates that cotinine produces diverse effects and may contribute to effects of nicotine. In this review, we summarize findings implicating cotinine as a neuroactive metabolite of nicotine and discuss available evidence regarding potential mechanisms underlying its effects. Preclinical findings reveal that cotinine crosses the blood brain barrier and interacts with both nAChRs and non-nAChRs in the nervous system, and produces neuropharmacological and behavioral effects. Clinical studies suggest that cotinine is psychoactive in humans. However, reviewing evidence regarding mechanisms underlying effects of cotinine provides a mixed picture with a lack of consensus. Therefore, more research is warranted in order to provide better insight into the actions of cotinine and its contribution to tobacco addiction.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kent Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, and Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|