1
|
Veiga GCD, Mafaldo ÍM, Barão CE, Baú TR, Magnani M, Pimentel TC. Supercritical carbon dioxide technology in food processing: Insightful comprehension of the mechanisms of microbial inactivation and impacts on quality and safety aspects. Compr Rev Food Sci Food Saf 2024; 23:e13345. [PMID: 38638070 DOI: 10.1111/1541-4337.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.
Collapse
Affiliation(s)
- Géssica Cristina da Veiga
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
| | - Ísis Meireles Mafaldo
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Tahis Regina Baú
- Food Technology Coordination, Federal Institute of Santa Catarina, São Miguel do Oeste, Santa Catarina, Brazil
| | - Marciane Magnani
- Department of Food Engineering, Laboratory of Microbial Process in Foods, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatiana Colombo Pimentel
- Department of Food Science and Technology, Post-Graduation Program in Food Science, State University of Londrina, Londrina, Brazil
- Federal Institute of Paraná (IFPR), Campus Paranavaí, Paranavaí, Paraná, Brazil
| |
Collapse
|
2
|
Al-Hmadi HB, Majdoub S, Chaabane-Banaoues R, Nardoni S, El Mokni R, Dhaouadi H, Piras A, Babba H, Porcedda S, Hammami S. Chemical composition, antifungal and antibiofilm activities of essential oils from Glycyrrhiza foetida (Desf.) growing in Tunisia. Biomed Chromatogr 2023; 37:e5596. [PMID: 36740815 DOI: 10.1002/bmc.5596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
This study was designated to investigate the chemical composition, the antifungal activity and antibiofilm properties of Glycyrrhiza foetida (Desf.) growing in Tunisia and recognized for its pharmacological and therapeutic effects. The chemical analysis of essential oil samples prepared via hydrodistillation of the aerial parts was performed by gas chromatography-mass spectrometry (GC-MS). Moreover, the antifungal activity of G. foetida essential oil was developed against three dermatophyte strains, two molds and Candida spp. yeasts using the broth microdilution assay. According to the percentages, the main constituents are δ-cadinene (13.9%), (E)-caryophyllene (13.2%) and γ-cadinene (8.3%). The efficiency of the essential oil in inhibiting Candida albicans biofilms formation was also evaluated in terms of inhibitory percentages. The results showed that C. albicans and Microsporum canis were the most sensitive to G. foetida essential oil with a complete inhibition at 0.4 and 0.2 mg ml-1 , respectively. Candida albicans biofilm development was reduced by 80% by the volatile oil at a concentration of 0.8 mg ml-1 . The essential oil of G. foetida has a promising role in the control of fungal agents with medical interest and in inhibition of Candida biofilm development.
Collapse
Affiliation(s)
- Hekmat B Al-Hmadi
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia.,Department of Chemistry, College of Medicine, AL-Muthanna University, Samawah, Iraq
| | - Siwar Majdoub
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Raja Chaabane-Banaoues
- LP3M: Laboratory of Medical and Molecular Parasitology-Mycology, B Clinical Biology Department Faculty of Pharmacy, 1 Avicenne Street, University of Monastir, Monastir, Tunisia
| | - Simona Nardoni
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Ridha El Mokni
- Laboratory of Botany, Cryptogamy and Plant Biology, Department of Pharmaceutical Sciences "A", Faculty of Pharmacy of Monastir BP 207, Avenue Avicenna, University of Monastir, Monastir, Tunisia
| | - Hatem Dhaouadi
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Alessandra Piras
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Hamouda Babba
- LP3M: Laboratory of Medical and Molecular Parasitology-Mycology, B Clinical Biology Department Faculty of Pharmacy, 1 Avicenne Street, University of Monastir, Monastir, Tunisia
| | - Silvia Porcedda
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Saoussen Hammami
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
3
|
Milovanovic S, Lukic I, Stamenic M, Kamiński P, Florkowski G, Tyśkiewicz K, Konkol M. The effect of equipment design and process scale-up on supercritical CO2 extraction: Case study for Silybum marianum seeds. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|