1
|
Nie M, Zhang T, Wang X, Zhao X, Luo C, Wang L, Zou X. High-performance liquid chromatography coupled to Orbitrap mass spectrometry for screening of common new psychoactive substances and other drugs in biological samples. J Forensic Sci 2024; 69:2171-2179. [PMID: 39187963 DOI: 10.1111/1556-4029.15607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The complexity of the drug market and the constant updating of drugs have been challenging issues for drug regulatory authorities. With the emergence of new psychoactive substances (NPS) and the nonmedical use of prescription drugs, forensic and toxicology laboratories have had to adopt new drug screening methods and advanced instrumentation. Using high-performance liquid chromatography coupled with Orbitrap mass spectrometry, we developed a screening method for common NPS and other drugs. Two milliliters of mixed solvent of n-hexane and ethyl acetate (1:1, v:v) were added to 500 μL of blood or urine sample for liquid-liquid extraction, and methanol extraction was used for hair samples. The developed method was applied to 3897 samples (including 332 blood samples, 885 urine samples, and 2680 hair samples) taken from drug addicts in a province of China during 2019-2021. For urine and blood samples, the limits of detection (LODs) ranged from 1.68 pg/mL to 10.7 ng/mL. For hair samples, the LODs ranged from 3.30 × 10-5 to 4.21 × 10-3 ng/mg. The matrix effects of urine, blood, and hair samples were in the range of 47.6%-121%, 39.8%-139%, and 6.35%-118%, respectively. And the intra-day precision was 3.5%-6.0% and the inter-day precision was 4.18%-9.90%. Analysis of the actual samples showed an overall positive detection rate of 58.9%, with 5.32% of the samples indicating the use of multiple drugs.
Collapse
Affiliation(s)
- Manqing Nie
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tianai Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuan Zhao
- Chengdu Centre for Disease Control and Prevention, Chengdu, People's Republic of China
| | - Chunying Luo
- Chengdu Centre for Disease Control and Prevention, Chengdu, People's Republic of China
| | - Lian Wang
- Chengdu Centre for Disease Control and Prevention, Chengdu, People's Republic of China
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People's Republic of China
- Sichuan Ding Cheng Forensic Service, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Doerr AA, Nordmeier F, Walle N, Laschke MW, Menger MD, Meyer MR, Schmidt PH, Schaefer N. Does a postmortem redistribution affect the concentrations of the 7 azaindole-derived synthetic cannabinoid 5F-MDMB-P7AICA in tissues and body fluids following pulmonary administration to pigs? Arch Toxicol 2024; 98:3289-3298. [PMID: 38955864 PMCID: PMC11402846 DOI: 10.1007/s00204-024-03815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Many fatal intoxications have been reported in connection with the consumption of newer, highly potent synthetic cannabinoids. Yet, a possible postmortem redistribution (PMR) might complicate reliable interpretation of analytical results. Thus, it is necessary to investigate the PMR-potential of new synthetic cannabinoids. The pig model has already proven to be suitable for this purpose. Hence, the aim of this study was to study the PMR of the synthetic cannabinoid 5F-MDMB-P7AICA and its main metabolite 5F-MDMB-P7AICA-dimethylbutanoic acid (DBA). 5F-MDMB-P7AICA (200 µg/kg body weight) was administered by inhalation to anesthetized and ventilated pigs. At the end of the experiment, the animals were euthanized and stored at room temperature for 3 days. Tissue and body fluid samples were taken daily. Specimens were analyzed after solid phase extraction using a standard addition method and LC-MS/MS, blood was quantified after protein precipitation using a validated method. In perimortem samples, 5F-MDMB-P7AICA was found mainly in adipose tissue, bile fluid, and duodenum contents. Small amounts of 5F-MDMB-P7AICA were found in blood, muscle, brain, liver, and lung. High concentrations of DBA were found primarily in bile fluid, duodenum contents, urine, and kidney/perirenal fat tissue. In the remaining tissues, rather low amounts could be found. In comparison to older synthetic cannabinoids, PMR of 5F-MDMB-P7AICA was less pronounced. Concentrations in blood also appear to remain relatively stable at a low level postmortem. Muscle, kidney, fat, and duodenum content are suitable alternative matrices for the detection of 5F-MDMB-P7AICA and DBA, if blood specimens are not available. In conclusion, concentrations of 5F-MDMB-P7AICA and its main metabolite DBA are not relevantly affected by PMR.
Collapse
Affiliation(s)
- Adrian A Doerr
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany
| | - Frederike Nordmeier
- Institute of Legal Medicine, University Hospital Schleswig-Holstein, Building U35, 24105, Kiel, Germany
| | - Nadja Walle
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Building 65/66, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Building 65/66, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Building 46, 66421, Homburg, Germany
| | - Peter H Schmidt
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany
| | - Nadine Schaefer
- Institute of Legal Medicine, Saarland University, Building 49.1, 66421, Homburg, Germany.
| |
Collapse
|
3
|
Brandon AM, Baginski SR, Peet C, Dugard P, Green H, Sutcliffe OB, Daéid NN, Nisbet LA, Read KD, McKenzie C. Log D 7.4 and plasma protein binding of synthetic cannabinoid receptor agonists and a comparison of experimental and predicted lipophilicity. Drug Test Anal 2024; 16:1012-1025. [PMID: 38062938 DOI: 10.1002/dta.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 10/17/2024]
Abstract
The emergence of new synthetic cannabinoid receptor agonists (SCRAs) onto the illicit drugs market continues to cause harm, and the overall availability of physicochemical and pharmacokinetic data for new psychoactive substances is lacking. The lipophilicity of 23 SCRAs and the plasma protein binding (PPB) of 11 SCRAs was determined. Lipophilicity was determined using a validated chromatographic hydrophobicity index (CHI) log D method; tested SCRAs showed moderate to high lipophilicity, with experimental log D7.4 ranging from 2.48 (AB-FUBINACA) to 4.95 (4F-ABUTINACA). These results were also compared to in silico predictions generated using seven commercially available software packages and online tools (Canvas; ChemDraw; Gastroplus; MoKa; PreADMET; SwissADME; and XlogP). Licenced, dedicated software packages provided more accurate lipophilicity predictions than those which were free or had prediction as a secondary function; however, the latter still provided competitive estimates in most cases. PPB of tested SCRAs, as determined by equilibrium dialysis, was in the upper range of the lipophilicity scale, ranging from 90.8% (ADB-BUTINACA) to 99.9% (BZO-HEXOXIZID). The high PPB of these drugs may contribute to reduced rate of clearance and extended durations of pharmacological effects compared to lesser-bound SCRAs. The presented data improve understanding of the behaviour of these drugs in the body. Ultimately, similar data and predictions may be used in the prediction of the structure and properties of drugs yet to emerge on the illicit market.
Collapse
Affiliation(s)
- Andrew M Brandon
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Steven R Baginski
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Caroline Peet
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
- Debiopharm, Lausanne, Switzerland
| | - Pat Dugard
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Lorna A Nisbet
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| |
Collapse
|
4
|
Lea Houston M, Morgan J, Kelso C. Narrative Review of the Pharmacodynamics, Pharmacokinetics, and Toxicities of Illicit Synthetic Cannabinoid Receptor Agonists. Mini Rev Med Chem 2024; 24:92-109. [PMID: 37190813 DOI: 10.2174/1389557523666230515163107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Synthetic cannabinoid receptor agonists (SCRAs) are the most diverse class of new psychoactive substances worldwide, with approximately 300 unique SCRAs identified to date. While the use of this class of drug is not particularly prevalent, SCRAs are associated with several deaths every year due to their severe toxicity. METHODS A thorough examination of the literature identified 15 new SCRAs with a significant clinical impact between 2015 and 2021. RESULTS These 15 SCRAs have been implicated in 154 hospitalizations and 209 deaths across the US, Europe, Asia, and Australasia during this time period. CONCLUSION This narrative review provides pharmacodynamic, pharmacokinetic, and toxicologic data for SCRAs as a drug class, including an in-depth review of known pharmacological properties of 15 recently identified and emerging SCRAs for the benefit of researchers, policy makers, and clinicians who wish to be informed of developments in this field.
Collapse
Affiliation(s)
- Matilda Lea Houston
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jody Morgan
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Molecular Horizons Institute, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Characterisation of AMB-FUBINACA metabolism and CB 1-mediated activity of its acid metabolite. Forensic Toxicol 2023; 41:114-125. [PMID: 36652070 PMCID: PMC9849163 DOI: 10.1007/s11419-022-00649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/17/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE AMB-FUBINACA is a synthetic cannabinoid receptor agonist (SCRA) which is primarily metabolised by hepatic enzymes producing AMB-FUBINACA carboxylic acid. The metabolising enzymes associated with this biotransformation remain unknown. This study aimed to determine if AMB-FUBINACA metabolism could be reduced in the presence of carboxylesterase (CES) inhibitors and recreational drugs commonly consumed with it. The affinity and activity of the AMB-FUBINACA acid metabolite at the cannabinoid type-1 receptor (CB1) was investigated to determine the activity of the metabolite. METHODS The effect of CES1 and CES2 inhibitors, and delta-9-tetrahydrocannabinol (Δ9-THC) on AMB-FUBINACA metabolism were determined using both human liver microsomes (HLM) and recombinant carboxylesterases. Radioligand binding and cAMP assays comparing AMB-FUBINACA and AMB-FUBINACA acid were carried out in HEK293 cells expressing human CB1. RESULTS AMB-FUBINACA was rapidly metabolised by HLM in the presence and absence of NADPH. Additionally, CES1 and CES2 inhibitors both significantly reduced AMB-FUBINACA metabolism. Furthermore, digitonin (100 µM) significantly inhibited CES1-mediated metabolism of AMB-FUBINACA by ~ 56%, while the effects elicited by Δ9-THC were not statistically significant. AMB-FUBINACA acid produced only 26% radioligand displacement consistent with low affinity binding. In cAMP assays, the potency of AMB-FUBINACA was ~ 3000-fold greater at CB1 as compared to the acid metabolite. CONCLUSIONS CES1A1 was identified as the main hepatic enzyme responsible for the metabolism of AMB-FUBINACA to its less potent carboxylic acid metabolite. This biotransformation was significantly inhibited by digitonin. Since other xenobiotics may also inhibit similar SCRA metabolic pathways, understanding these interactions may elucidate why some users experience high levels of harm following SCRA use.
Collapse
|
6
|
Słoczyńska K, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Żmudzki P, Pękala E. Evaluation of Two Novel Hydantoin Derivatives Using Reconstructed Human Skin Model EpiskinTM: Perspectives for Application as Potential Sunscreen Agents. Molecules 2022; 27:molecules27061850. [PMID: 35335215 PMCID: PMC8949075 DOI: 10.3390/molecules27061850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to assess two novel 5-arylideneimidazolidine-2,4-dione (hydantoin) derivatives (JH3 and JH10) demonstrating photoprotective activity using the reconstructed human skin model EpiskinTM. The skin permeability, irritation, and phototoxicity of the compounds was evaluated in vitro. Moreover, the in vitro genotoxicity and human metabolism of both compounds was studied. For skin permeation and irritation experiments, the test compounds were incorporated into a formulation. It was shown that JH3 and JH10 display no skin irritation and no phototoxicity. Both compounds did not markedly enhance the frequency of micronuclei in CHO-K1 cells in the micronucleus assay. Preliminary in vitro studies with liver microsomes demonstrated that hydrolysis appears to constitute their important metabolic pathway. EpiskinTM permeability experiments showed that JH3 permeability was lower than or close to currently used UV filters, whereas JH10 had the potential to permeate the skin. Therefore, a restriction of this compound permeability should be obtained by choosing the right vehicle or by optimizing it, which should be addressed in future studies.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
- Correspondence: ; Tel.: +48-126-205-577
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| |
Collapse
|
7
|
Kleis JN, Hess C, Germerott T, Roehrich J. Sensitive screening of synthetic cannabinoids using liquid chromatography quadrupole time-of-flight mass spectrometry after solid phase extraction. Drug Test Anal 2021; 13:1535-1551. [PMID: 33884774 DOI: 10.1002/dta.3052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022]
Abstract
Analysis of synthetic cannabinoids still poses a challenge for many institutions due to the number of available substances and the constantly changing drug market. Both new and well-known substances keep appearing and disappearing on the market, making it hard to adapt analytical methods in a timely manner. In this study, we developed a qualitative screening approach for synthetic cannabinoids and their metabolites by means of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Samples were measured in data-dependent auto-MS/MS mode and identified by fragment spectra, retention time and accurate mass. Two established solid phase extractions were compared using fortified serum and urine samples. Mixes of 199 synthetic cannabinoids and 110 metabolites were used in 1- and 10-ng/ml concentrations. Up to 93% of synthetic cannabinoids and 74% of metabolites were detected in fortified 1-ng/ml samples. From February 2018 to October 2020, we analyzed 1492 cases, of which 73 cases were positive for synthetic cannabinoids or metabolites. 5F-MDMB-PICA, 4F-MDMB-BINACA, MDMB-4en-PINACA, and 4F-MDMB-BICA were most frequently detected. Hydrolysis metabolites were detected in many blood samples, providing a longer detection window. Quantification was conducted via liquid chromatography triple quadrupole mass spectrometry after liquid-liquid extraction. Concentrations were mostly close to 1 ng/ml in blood samples. LC-QTOF-MS was able to detect substances above trace quantities (< 0.1 ng/ml) in most cases, therefore fulfilling its purpose as a sensitive general screening approach. Expansion of the screening library was uncomplicated and enables future additions for up to thousands of targets.
Collapse
Affiliation(s)
- Jan-Niklas Kleis
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Cornelius Hess
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tanja Germerott
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jörg Roehrich
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
8
|
A Systematic Study of the In Vitro Pharmacokinetics and Estimated Human In Vivo Clearance of Indole and Indazole-3-Carboxamide Synthetic Cannabinoid Receptor Agonists Detected on the Illicit Drug Market. Molecules 2021; 26:molecules26051396. [PMID: 33807614 PMCID: PMC7961380 DOI: 10.3390/molecules26051396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro pharmacokinetic studies were conducted on enantiomer pairs of twelve valinate or tert-leucinate indole and indazole-3-carboxamide synthetic cannabinoid receptor agonists (SCRAs) detected on the illicit drug market to investigate their physicochemical parameters and structure-metabolism relationships (SMRs). Experimentally derived Log D7.4 ranged from 2.81 (AB-FUBINACA) to 4.95 (MDMB-4en-PINACA) and all SCRAs tested were highly protein bound, ranging from 88.9 ± 0.49% ((R)-4F-MDMB-BINACA) to 99.5 ± 0.08% ((S)-MDMB-FUBINACA). Most tested SCRAs were cleared rapidly in vitro in pooled human liver microsomes (pHLM) and pooled cryopreserved human hepatocytes (pHHeps). Intrinsic clearance (CLint) ranged from 13.7 ± 4.06 ((R)-AB-FUBINACA) to 2944 ± 95.9 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHLM, and from 110 ± 34.5 ((S)-AB-FUBINACA) to 3216 ± 607 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHHeps. Predicted Human in vivo hepatic clearance (CLH) ranged from 0.34 ± 0.09 ((S)-AB-FUBINACA) to 17.79 ± 0.20 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHLM and 1.39 ± 0.27 ((S)-MDMB-FUBINACA) to 18.25 ± 0.12 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHHeps. Valinate and tert-leucinate indole and indazole-3-carboxamide SCRAs are often rapidly metabolised in vitro but are highly protein bound in vivo and therefore predicted in vivo CLH is much slower than CLint. This is likely to give rise to longer detection windows of these substances and their metabolites in urine, possibly as a result of accumulation of parent drug in lipid-rich tissues, with redistribution into the circulatory system and subsequent metabolism.
Collapse
|
9
|
Feeney W, Moorthy AS, Sisco E. Spectral trends in GC-EI-MS data obtained from the SWGDRUG mass spectral library and literature: A resource for the identification of unknown compounds. Forensic Chem 2020; 31:10.1016/j.forc.2022.100459. [PMID: 36578315 PMCID: PMC9793444 DOI: 10.1016/j.forc.2022.100459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Rapid identification of new or emerging psychoactive substances remains a critical challenge in forensic drug chemistry laboratories. Current analytical protocols are well-designed for confirmation of known substances yet struggle when new compounds are encountered. Many laboratories initially attempt to classify new compounds using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS). Though there is a large body of research focused on the analysis of illicit substances with GC-EI-MS, there is little high-level discussion of mass spectral trends for different classes of drugs. This manuscript compiles literature information and performs simple exploratory analyses on evaluated GC-EI-MS data to investigate mass spectral trends for illicit substance classes. Additionally, this work offers other important aspects: brief discussions of how each class of drugs is used; illustrations of EI mass spectra with proposed structures of commonly observed ions; and summaries of mass spectral trends that can help an analyst classify new illicit compounds.
Collapse
Affiliation(s)
- William Feeney
- Corresponding author at: Surface and Trace Chemical Analysis Group, Material Measurement Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899, USA. (W. Feeney)
| | | | | |
Collapse
|
10
|
Morrow PL, Stables S, Kesha K, Tse R, Kappatos D, Pandey R, Russell S, Linsell O, McCarthy MJ, Spark A, Vertes D, Triggs Y, McCarthy S, Cuthers N, Massey R. An outbreak of deaths associated with AMB-FUBINACA in Auckland NZ. EClinicalMedicine 2020; 25:100460. [PMID: 32743487 PMCID: PMC7385440 DOI: 10.1016/j.eclinm.2020.100460] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AMB-FUBINACA is a synthetic cannabinoid that has been associated with periodic outbreaks of acute poisonings, but few fatalities. In late May, June and July 2017 Auckland, New Zealand, experienced an outbreak of deaths associated with AMB-FUBINACA that continued at a rate of about 2-3 per month through February 2019. The aim of this study was to define the demographic, circumstantial, pathological and toxicological characteristics of this outbreak. METHODS All records of the Northern Forensic Pathology Service, Auckland Hospital, were reviewed in which the word "AMB-FUBINACA" was referenced, including initial police reports, autopsy reports and toxicology reports. Recorded data included age, sex, race/ethnicity, times and locations, cause of death, autopsy and toxicology findings, and a brief summary of the circumstances of death. Descriptive statistics were performed using IBM® SPSS® Statistics Version 24 and Microsoft® Excel® Version 14.7.2. FINDINGS Sixty-four cases were identified. One sudden infant death and five cases where cause of death was due to trauma were excluded. Of the remaining 58 cases, 88% were male. Mean age was 42 years. In 95% of the deaths, AMB-FUBINACA alone or in combination with alcohol or another drug was listed as the primary or contributory cause of death. In 41 cases postmortem blood concentrations of AMB-FUBINACA acid were available, ranging from <45 ng/mL to >1000 ng/mL, mean 229 ng/mL, median 140 ng/mL. Comorbidities identified included mixed intoxications (29%), heart disease (47%) and obesity (16%). A mental health diagnosis was reported in 50%, and 40% were on antipsychotic medications. INTERPRETATION This study presents characteristics, comorbidities and toxicological findings in a unique outbreak of deaths associated with the synthetic cannabinoid AMB-FUBINACA in Auckland, NZ. FUNDING All work was funded as part of the usual employment of the authors in their respective institutions. No special funding sources are reported.
Collapse
Affiliation(s)
- Paul L Morrow
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
- Corresponding author.
| | - Simon Stables
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Kilak Kesha
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Rexson Tse
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Diana Kappatos
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Rishi Pandey
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Sarah Russell
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Oliver Linsell
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Mary Jane McCarthy
- Institute of Environmental Science and Research (ESR), 34 Kenepuru Dr, Kenepuru, Porirua 5022, New Zealand
| | - Amy Spark
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Dianne Vertes
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Yvonne Triggs
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | - Sinead McCarthy
- Northern Forensic Pathology Service, LabPlus, Gate 4 Grafton Rd, Auckland City Hospital, PO Box 110031, Auckland 1148, New Zealand
| | | | | |
Collapse
|