1
|
Cao L, Wu L, Zhong H, Wu H, Zhang S, Meng J, Li F. Analysis of neurotransmitter catecholamines and related amines in human urine and serum by chromatography and capillary electrophoresis with 1, 3, 5, 7-tetramethyl-8-(N-hydroxysuccinimidyl propionic ester)-difluoro-boradiaza-s-indacene. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractTwo sensitive and effective methods were developed for the detection of catecholamines and related biogenic amines (dopamine, epinephrine, norepinephrine, serotonin, levodopa and tyramine) using high performance liquid chromatography with fluorescence detection and capillary electrophoresis with laser-induced fluorescence detection. A BODIPY fluorescent dye, 1, 3, 5, 7-tetramethyl-8-(N-hydroxysuccinimidyl propionic ester)-difluoroboradiaza- s-indacene was used as pre-column derivatization reagent. The separation and derivatization conditions were optimized in detail. In high performance liquid chromatography with fluorescence detection method, the derivatization reaction was completed at 35 °C for 20 min. At the wavelength of λex/λem = 493 nm/513 nm, dopamine, epinephrine, norepinephrine, and levodopa derivatives achieved baseline separation within 15 min. The limits of detection (S/N = 3) were 1.0, 2.0, 5.0, and 0.5 nmol/L, respectively. In capillary electrophoresis with laser-induced fluorescence detection method, the derivatization reaction was completed at 25 °C for 20 min. Serotonin, tyramine and dopamine derivatives reached baseline separation within 10 min at the wavelength of λex = 473 nm. The limits of detection (S/N = 3) for serotonin, tyramine, and dopamine were 0.3, 0.02, and 0.2 nmol/L, respectively. The amino compounds in human serum and urine samples were detected successfully, and the recoveries were 93.3%–106.7% and 91.0%–103.1%, respectively.
Collapse
Affiliation(s)
- Liwei Cao
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Lizhen Wu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Hailan Zhong
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Hao Wu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Siyun Zhang
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Jianxin Meng
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Fengyu Li
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Piestansky J, Matuskova M, Cizmarova I, Majerova P, Kovac A, Mikus P. Ultrasensitive determination of serotonin in human urine by a two dimensional capillary isotachophoresis-capillary zone electrophoresis hyphenated with tandem mass spectrometry. J Chromatogr A 2021; 1648:462190. [PMID: 33979756 DOI: 10.1016/j.chroma.2021.462190] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
A two-dimensional capillary isotachophoresis-capillary zone electrophoresis method hyphenated with tandem mass spectrometry was developed and validated for ultrasensitive quantification of serotonin in real human urine samples. Under optimal conditions, the separation was achieved within 12 min (including on-line sample preparation) with the limit of detection of 34 pg mL-1 (due to a large volume sample injection, here 10 µL, and isotachophoretic preconcentration). This concentration limit represents the lowest value for serotonin in comparison to other previously published separation methods employing mass spectrometry detection and applied to urine matrices. Thanks to high orthogonality, on-line concentration and clean-up effects of this approach, other excellent validation parameters such as linearity (coefficient of determination > 0.99), inter-day and intra-day precision (relative standard deviations 3.5-12.2%), accuracy (relative errors within 99-109.4%), and recovery (96-102%) could be easily obtained too. To demonstrate applicability of the method, we monitored serotonin levels in various real samples (from a healthy volunteer and clinical ones). The determined levels, normalized on the creatinine concentrations, were in the range of 6.81-12.86 ng mmol-1 creatinine This advanced method is suggested for an effective, reliable, high sample throughput, and low cost routine clinical screening or targeted metabolomic studies of serotonin in urine samples.
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic
| | - Michaela Matuskova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic
| | - Ivana Cizmarova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510 Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Emonts P, Servais AC, Ziemons E, Hubert P, Fillet M, Dispas A. Development of a sensitive MEKC-LIF method for synthetic cathinones analysis. Electrophoresis 2021; 42:1127-1134. [PMID: 33482013 DOI: 10.1002/elps.202000331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/11/2022]
Abstract
Synthetic cathinones are phenylalkylamine compounds related to natural cathinone from Catha edulis leaves. Due to their sympathomimetic effects comparable to common illicit drugs, these substances are mainly drugs of abuse and constitute the second most frequently seized group of new psychoactive substances. In order to ensure their regulation and to promote public health, reliable analytical tools are required to track these substances. In the present study, we developed a CE hyphenated to laser-induced fluorescence detection method to demonstrate its suitability to perform fast and cost-effective synthetic cathinones analysis. Fourteen compounds including isobaric compounds and position isomers were selected to encompass the large panel of chemical structures. To separate the FITC-labeled analytes (presenting the same negative charge and close mass to charge ratios), MEKC separation mode was selected. Method selectivity was not suitable using common surfactants. In this context, alkyl polyethylene glycol ether surfactants were successfully used as neutral surfactant to overcome this analytical challenge. The effect of surfactant nature on separation performances and migration behaviors of the analytes was also studied. Optimal BGE composition included 75 mM borate buffer at pH 9.3 and 0.4 mM of C12E10 surfactant. Final MEKC separation conditions were proposed to analyze a large panel of synthetic cathinones. This method helped to reach a sensitivity with LOD from 0.1 to 0.4 nM (pg/mL order).
Collapse
Affiliation(s)
- Paul Emonts
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Liège, Belgium
| | | | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Philippe Hubert
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Liège, Belgium
| | - Amandine Dispas
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Liège, Belgium.,Laboratory of Pharmaceutical Analytical Chemistry, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Piešťanský J, Maráková K, Mikuš P. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine. Molecules 2017; 22:molecules22101668. [PMID: 28991152 PMCID: PMC6151686 DOI: 10.3390/molecules22101668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022] Open
Abstract
An advanced two-dimensional capillary electrophoresis method, based on on-line combination of capillary isotachophoresis and capillary zone electrophoresis with cyclodextrin additive in background electrolyte, was developed for effective determination of serotonin in human urine. Hydrodynamically closed separation system and large bore capillaries (300–800 µm) were chosen for the possibility to enhance the sample load capacity, and, by that, to decrease limit of detection. Isotachophoresis served for the sample preseparation, defined elimination of sample matrix constituents (sample clean up), and preconcentration of the analyte. Cyclodextrin separation environment enhanced separation selectivity of capillary zone electrophoresis. In this way, serotonin could be successfully separated from the rest of the sample matrix constituents migrating in capillary zone electrophoresis step so that human urine could be directly (i.e., without any external sample preparation) injected into the analyzer. The proposed method was successfully validated, showing favorable parameters of sensitivity (limit of detection for serotonin was 2.32 ng·mL−1), linearity (regression coefficient higher than 0.99), precision (repeatability of the migration time and peak area were in the range of 0.02–1.17% and 5.25–7.88%, respectively), and recovery (ranging in the interval of 90.0–93.6%). The developed method was applied for the assay of the human urine samples obtained from healthy volunteers. The determined concentrations of serotonin in such samples were in the range of 12.4–491.2 ng·mL−1 that was in good agreement with literature data. This advanced method represents a highly effective, reliable, and low-cost alternative for the routine determination of serotonin as a biomarker in human urine.
Collapse
Affiliation(s)
- Juraj Piešťanský
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak.
- Toxicological and Antidoping center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak.
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak.
- Toxicological and Antidoping center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak.
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak.
- Toxicological and Antidoping center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak.
| |
Collapse
|
5
|
Cao LW, Hu Y, Liang SL, Li C, Meng JX. Sensitive and efficient determination of gabapentin in human serum based on capillary electrophoresis with laser-induced fluorescence detection. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813070071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Wang S, Fan L, Zhou W. Sensitive Analysis of 5-(4,6-Dichloro-s-triazin-2-ylamino)fluorescein-Labeled Catecholamines by Mixed MEKC–LIF. Chromatographia 2010. [DOI: 10.1365/s10337-010-1796-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Cakal C, Ferrance JP, Landers JP, Caglar P. Development of a micro-total analysis system (μ-TAS) for the determination of catecholamines. Anal Bioanal Chem 2010; 398:1909-17. [DOI: 10.1007/s00216-010-3998-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/28/2010] [Accepted: 07/01/2010] [Indexed: 11/28/2022]
|
8
|
Determination of biogenic amines by capillary electrophoresis using a chameleon type of fluorescent stain. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0247-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Qi SD, Tian SL, Xu HX, Sung JJY, Bian ZX. Quantification of luminally released serotonin in rat proximal colon by capillary electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem 2009; 393:2059-66. [PMID: 19242684 DOI: 10.1007/s00216-009-2655-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 12/31/2008] [Accepted: 01/26/2009] [Indexed: 12/12/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) plays vital roles in regulating gastrointestinal functions. Thus, the detection of 5-HT in the gastrointestinal tract is of great importance for biomedical research, medical diagnosis, and pharmaceutical therapy. This paper presents a simple, sensitive, and fast method for the quantification of luminally released serotonin in the feces and tissues of the rat proximal colon by means of capillary electrophoresis with laser-induced fluorescence detection. 5-Carboxyfluorescein N-succinimidyl ester was used for precolumn derivatization of serotonin. The optimal separation and detection conditions were obtained with an electrophoretic buffer containing 60 mM borate (pH 8.90) and an air-cooled argon-ion laser (excitation at 488 nm, emission at 520 nm). The serotonin concentrations in the feces and tissues of proximal colons were analyzed with this method, and the average values of serotonin in the feces samples were 1.951 +/- 0.446 ng/mg (male) and 2.095 +/- 0.533 ng/mg (female) and 1.397 +/- 0.267 ng/mg in rat proximal colon tissues. The results demonstrate that this method can accurately determine luminally released 5-HT in rats.
Collapse
Affiliation(s)
- Sheng-da Qi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
10
|
Silva M. Micellar electrokinetic chromatography: Methodological and instrumental advances focused on practical aspects. Electrophoresis 2009; 30:50-64. [DOI: 10.1002/elps.200800414] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|