1
|
Szymczyk P, Majewska M, Nowak J. Proteins and DNA Sequences Interacting with Tanshinones and Tanshinone Derivatives. Int J Mol Sci 2025; 26:848. [PMID: 39859562 PMCID: PMC11765770 DOI: 10.3390/ijms26020848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
Tanshinones, biologically active diterpene compounds derived from Salvia miltiorrhiza, interact with specific proteins and DNA sequences, influencing signaling pathways in animals and humans. This study highlights tanshinone-protein interactions observed at concentrations achievable in vivo, ensuring greater physiological relevance compared to in vitro studies that often employ supraphysiological ligand levels. Experimental data suggest that while tanshinones interact with multiple proteomic targets, only a few enzymes are significantly affected at biologically relevant concentrations. This apparent paradox may be resolved by tanshinones' ability to bind DNA and influence enzymes involved in gene expression or mRNA stability, such as RNA polymerase II and human antigen R protein. These interactions trigger secondary, widespread changes in gene expression, leading to complex proteomic alterations. Although the current understanding of tanshinone-protein interactions remains incomplete, this study provides a foundation for deciphering the molecular mechanisms underlying the therapeutic effects of S. miltiorrhiza diterpenes. Additionally, numerous tanshinone derivatives have been developed to enhance pharmacokinetic properties and biological activity. However, their safety profiles remain poorly characterized, limiting comprehensive insights into their medicinal potential. Further investigation is essential to fully elucidate the therapeutic and toxicological properties of both native and modified tanshinones.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Małgorzata Majewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Jadwiga Nowak
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| |
Collapse
|
2
|
Huang X, Jin L, Deng H, Wu D, Shen QK, Quan ZS, Zhang CH, Guo HY. Research and Development of Natural Product Tanshinone I: Pharmacology, Total Synthesis, and Structure Modifications. Front Pharmacol 2022; 13:920411. [PMID: 35903340 PMCID: PMC9315943 DOI: 10.3389/fphar.2022.920411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Salvia miltiorrhiza (S. miltiorrhiza), which has been used for thousands of years to treat cardiovascular diseases, is a well-known Chinese medicinal plant. The fat-soluble tanshinones in S. miltiorrhiza are important biologically active ingredients including tanshinone I, tanshinone IIA, dihydrotanshinone, and cryptotanshinone. Tanshinone I, a natural diterpenoid quinone compound widely used in traditional Chinese medicine, has a wide range of biological effects including anti-cancer, antioxidant, neuroprotective, and anti-inflammatory activities. To further improve its potency, water solubility, and bioavailability, tanshinone I can be used as a platform for drug discovery to generate high-quality drug candidates with unique targets and enhanced drug properties. Numerous derivatives of tanshinone I have been developed and have contributed to major advances in the identification of new drugs to treat human cancers and other diseases and in the study of related molecular mechanisms. This review focuses on the structural modification, total synthesis, and pharmacology of tanshinone I. We hope that this review will help understanding the research progress in this field and provide constructive suggestions for further research on tanshinone I.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Yan Guo
- *Correspondence: Chang-hao Zhang, ; Hong-Yan Guo,
| |
Collapse
|
3
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
4
|
Lai Z, He J, Zhou C, Zhao H, Cui S. Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Curr Med Chem 2021; 28:2807-2827. [PMID: 32436817 DOI: 10.2174/0929867327666200521124850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Tanshinones are an important type of natural products isolated from Salvia miltiorrhiza Bunge with various bioactivities. Tanshinone IIa, cryptotanshinone and tanshinone I are three kinds of tanshinones which have been widely investigated. Particularly, sodium tanshinone IIa sulfonate is a water-soluble derivative of tanshinone IIa and it is used in clinical in China for treating cardiovascular diseases. In recent years, there are increasing interests in the investigation of tanshinones derivatives in various diseases. This article presents a review of the anti-atherosclerotic effects, cardioprotective effects, anticancer activities, antibacterial activities and antiviral activities of tanshinones and structural modification work in recent years.
Collapse
Affiliation(s)
- Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jixiao He
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Changxin Zhou
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Wang D, Yu W, Cao L, Xu C, Tan G, Zhao Z, Huang M, Jin J. Comparative pharmacokinetics and tissue distribution of cryptotanshinone, tanshinone IIA, dihydrotanshinone I, and tanshinone I after oral administration of pure tanshinones and liposoluble extract of Salvia miltiorrhiza to rats. Biopharm Drug Dispos 2020; 41:54-63. [PMID: 31943245 DOI: 10.1002/bdd.2213] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 01/01/2020] [Indexed: 11/10/2022]
Abstract
Salvia miltiorrhiza is one of the most commonly used traditional Chinese medicines in the treatment of cardiovascular and cerebrovascular diseases. Cryptotanshinone (CTS), tanshinone IIA (Tan IIA), dihydrotanshinone I (diTan I), and tanshinone I (Tan I) are the main active compounds in the liposoluble extract of Salvia miltiorrhiza. The differences in the pharmacokinetic and tissue distribution behaviors of the four tanshinones after oral administration of the liposoluble extract of Salvia miltiorrhiza and pure compounds are not clear. This study aims to compare the pharmacokinetics and tissue distribution of the four tanshinones after oral administration of pure tanshinone monomers and the liposoluble extract of Salvia miltiorrhiza. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis method was developed for the determination of the four tanshinones. The results showed that the AUC and Cmax of tanshinones in rats receiving the extract of Salvia miltiorrhiza were significantly increased compared with those receiving the pure tanshinones. In the tissue distribution experiments, the AUC of the four tanshinones in the extract was much greater than the AUC of the monomers in the lung, heart, kidney, liver, and brain, and the coexisting constituents particularly promoted the distribution of tanshinones into tissues that the drug cannot sufficiently penetrate. These findings suggested that the coexisting constituents in the liposoluble extract of Salvia miltiorrhiza play an important role in the alteration of plasma concentration and tissue distribution of the four tanshinones. Understanding these differences could be of significance for the development and application of Salvia miltiorrhiza extract and tanshinone components.
Collapse
Affiliation(s)
- Daifei Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weibang Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuncao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoyao Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Shi B, Li Q, Feng Y, Dai X, Zhao R, Zhao Y, Jia P, Wang S, Yu J, Liao S, Li YF, Zheng X. Pharmacokinetics of 13 active components in a rat model of middle cerebral artery occlusion after intravenous injection of Radix Salviae miltiorrhizae-Lignum dalbergiae odoriferae prescription. J Sep Sci 2019; 43:531-546. [PMID: 31654547 DOI: 10.1002/jssc.201900748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
As a representative formulation of Radix Salviae miltiorrhizae (Danshen)-Lignum Dalbergiae odoriferae (Jiangxiang), Xiangdan injection is widely prescribed for cardio- and cerebrovascular diseases in practice. This necessitates a pharmacokinetic investigation of this formulation to make it safer and more broadly applicable. We developed and validated a sensitive, selective, and reliable high-performance liquid chromatography with tandem mass spectrometry method for the simultaneous determination of 11 phenolic compounds including danshensu plus two diterpenoid quinones like cryptotanshinone and tanshinone IIA in rat. We applied this method for the pharmacokinetic studies of the 13 compounds in a rat model of middle cerebral artery occlusion after intravenous injection of Xiangdan injection or Danshen injection. In sham-operated rats, the animals taking Xiangdan injection exhibited significant growth of the area under the curve for danshensu, protocatechuic aldehyde, and tanshinone IIA compared with the changes seen in the data of those administrated with Danshen injection. Such a pattern was also observed in middle cerebral artery occlusion rats, whereas increased the area under the curve values were observed for danshensu, protocatechuic aldehyde, caffeic acid, rosmarinic acid, and tanshinone IIA. These results demonstrated that synergistic interactions occurred between the components of Danshen and the active compounds of Jiangxiang both in sham-operated and middle cerebral artery occlusion rats, increasing the bioavailability of Danshen. The results presented herein can be used to determine a reference dose for the clinical application of Xiangdan injection, and to elucidate the synergistic mechanism of Danshen and Jiangxiang.
Collapse
Affiliation(s)
- Baimei Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Qiannan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Ying Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Xufen Dai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Rui Zhao
- School of Life Science, Anhui Agricultural University, Hefei, P. R. China
| | - Ye Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Jie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Yi-Fei Li
- Technology Center of China Tobacco Fujian Industrial Co., Ltd., Xiamen, P. R. China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
8
|
Ji S, Shao X, Su ZY, Ji L, Wang YJ, Ma YS, Zhao L, Du Y, Guo MZ, Tang DQ. Segmented scan modes and polarity-based LC-MS for pharmacokinetic interaction study between Fufang Danshen Dripping Pill and Clopidogrel Bisulfate Tablet. J Pharm Biomed Anal 2019; 174:367-375. [DOI: 10.1016/j.jpba.2019.05.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
|
9
|
Sheriffdeen MM, Alehaideb ZI, Law FCP. Caffeine/Angelica dahurica and caffeine/Salvia miltiorrhiza metabolic inhibition in humans: In vitro and in vivo studies. Complement Ther Med 2019; 46:87-94. [PMID: 31519293 DOI: 10.1016/j.ctim.2019.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND caffeine is a major constituent in numerous foods, beverages, dietary supplements and medications.Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav, and Salvia miltiorrhiza Bunge are traditional medicines commonly used in Asia. OBJECTIVES to compare the pharmacokinetics of caffeine in humans before and after consuming an aqueous extract of A. dahurica or S. miltiorrhiza, and to propose a mechanistic explanation for in vivo caffeine metabolism inhibition based on in vitro data obtained with human liver microsomes. METHODS Each of the four human volunteers was given a single oral dose of caffeine before and after consuming an A. dahurica or S. miltiorrhiza extract. Saliva samples were collected from the volunteers at pre-determined time points after receiving caffeine. The saliva samples were analyzed for unchanged caffeine using liquid chromatography. RESULTS A. dahurica and S. miltiorrhiza extracts were capable of inhibiting caffeine metabolism in the human volunteers. In a separate study, cytochrome (CYP) 1A2-mediated caffeine demethylase activity was studied in incubation containing human liver microsomes, β-nicotinamide adenine dinucleotide phosphate, and an herbal extract (or a pure bioactive chemical from the herbs). In all cases, CYP1A2 activity was decreased with an increasing inhibitor concentration, confirming the inhibition of caffeine metabolism in vivo. Caffeine metabolism inhibition most likely involved the competitive and/or non-competitive mechanism. CONCLUSION Because a high level of caffeine in the plasma may result in adverse health effects in humans, care must be exercised when caffeine is consumed together with A. dahurica or S. miltiorrhiza.
Collapse
Affiliation(s)
| | - Zeyad I Alehaideb
- Department of Medical Genomics, King Abdullah International Medical Research Center, P.O. Box 3660 Riyadh 11481, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, P.O. Box 22490 Riyadh 11426, Saudi Arabia.
| | - Francis C P Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., V5A, Canada.
| |
Collapse
|
10
|
Shi MJ, Dong BS, Yang WN, Su SB, Zhang H. Preventive and therapeutic role of Tanshinone ⅡA in hepatology. Biomed Pharmacother 2019; 112:108676. [DOI: 10.1016/j.biopha.2019.108676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
|
11
|
Ding C, Tian Q, Li J, Jiao M, Song S, Wang Y, Miao Z, Zhang A. Structural Modification of Natural Product Tanshinone I Leading to Discovery of Novel Nitrogen-Enriched Derivatives with Enhanced Anticancer Profile and Improved Drug-like Properties. J Med Chem 2018; 61:760-776. [DOI: 10.1021/acs.jmedchem.7b01259] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chunyong Ding
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianting Tian
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- ShanghaiTech University, Shanghai 20120, China
| | - Mingkun Jiao
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanshan Song
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingqing Wang
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehong Miao
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- ShanghaiTech University, Shanghai 20120, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Affiliation(s)
- Jie Li
- ShanghaiTech University, Shanghai 201210, China
| | - Yu Xue
- Department
of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhoulong Fan
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyong Ding
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- ShanghaiTech University, Shanghai 201210, China
- CAS
Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State
key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Cai HD, Su SL, Li Y, Zhu Z, Guo J, Zhu Y, Guo S, Qian D, Duan J. Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats. Molecules 2016; 21:molecules21121630. [PMID: 27916808 PMCID: PMC6274205 DOI: 10.3390/molecules21121630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/23/2022] Open
Abstract
Salvia miltiorrhiza, one of the major traditional Chinese medicines, is commonly used and the main active ingredients—tanshinones—possess the ability to improve renal function. In this paper, the UPLC-TQ/MS method of simultaneously determining four tanshinones—tanshinone IIA, dihydrotanshinone I, tanshinone I, and cryptotanshinone—was established and applied to assess the pharmacokinetics in normal and chronic renal failure (CRF) rat plasma. The pharmacokinetics of tanshinones in rats were studied after separately intragastric administration of Salvia miltiorrhiza ethanol extract (SMEE) (0.65 g/kg), SMEE (0.65 g/kg) combined with Salvia miltiorrhiza water extract (SMWE) (1.55 g/kg). The results showed Cmax and AUC0–t of tanshinone IIA, tanshinone I, cryptotanshinone reduced by 50%~80% and CLz/F increased by 2~4 times (p < 0.05) in model group after administrated with SMEE. Nevertheless, after intragastric administration of a combination of SMWE and SMEE, the Cmax and AUC0–t of four tanshinones were upregulated and CLz/F was downregulated, which undulated similarity from the model group to the normal group with compatibility of SMEE and SMWE. These results hinted that SMWE could improve the bioavailability of tanshinones in CRF rats, which provides scientific information for further exploration the mechanism of the combination of SMWE and SMEE and offers a reference for clinical administration of Salvia miltiorrhiza.
Collapse
Affiliation(s)
- Hong-Die Cai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China.
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Ren H, Qian D, Su S, Guan H, Zhang W, Shang E, Duan J. Simultaneous determination of tanshinones and polyphenolics in rat plasma by UPLC-MS/MS and its application to the pharmacokinetic interaction between them. Drug Test Anal 2016; 8:744-54. [PMID: 26382027 DOI: 10.1002/dta.1840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2015] [Accepted: 06/14/2015] [Indexed: 11/06/2022]
Abstract
The aim of this study was to investigate the pharmacokinetic interaction between tanshinones and polyphenolics which act as the main bioactive compounds in Saliva miltiorrhiza Bunge (SMB). Thus, a rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine the concentrations of Tanshinone IIA (TSIIA), Tanshinone I (TI), Cryptotanshinone (CT), Salvianolic acid B (Sal B), Protocatechuic aldehyde (PAL), Rosmarinic acid (RA), and Danshensu (DSS) in rat plasma. The Sprague-Dawley rats were allocated to three groups which orally administered tanshinones (DST), polyphenolics (DFS), and a mixture of tanshinones and polyphenolics (DTF). These samples were processed by a simple liquid-liquid extraction (LLE) method with ethyl acetate. Chromatographic separation was achieved on an Acquity BEH C18 column (100 mm × 2. 1 mm, 1.7 µm) with the mobile phase consisting of 0.1% (v/v) formic acid and acetonitrile by gradient elution at a flow rate of 0.4 mL/min. The detection was performed on a triple quadrupole-tandem mass spectrometer TQ-MS/MS equipped with negative and positive electrospray ionization (ESI) interface in multiple reaction monitoring (MRM) mode. The statistical analysis was performed by the Student's t-test with P ≤ 0.05 as the level of significance. The method showed good precision, accuracy, recovery, sensitivity, linearity, and stability. The pharmacokinetic profiles and parameters of these polyphenolics changed when co-administrated with tanshinones. The tanshinones improved the bioavailability of DSS, accelerated the eliminating rate of RA and Sal B and promoted their distribution in vivo. They also contributed to promoting the biotransformation of Sal B to DSS. The polyphenolics could affect the pharmacokinetic of tanshinones, especially CT and TSIIA. Furthermore, the biotransformation of CT to TSIIA and the bioavailability of TSIIA were both improved. This study may provide useful information to avoid unexpected increase of the plasma drug concentration in the clinical practice. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hao Ren
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shulan Su
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hanliang Guan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Erxin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
15
|
Ma W, Peng Y, Wang W, Bian Q, Wang N, Lee DYW, Dai R. Pharmacokinetic comparison of five tanshinones in normal and arthritic rats after oral administration of Huo Luo Xiao Ling Dan or its single herb extract by UPLC-MS/MS. Biomed Chromatogr 2016; 30:1573-81. [DOI: 10.1002/bmc.3722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Wen Ma
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Yan Peng
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Weihui Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Qiaoxia Bian
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - Nannan Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| | - David Y.-W. Lee
- Mailman Research Center, McLean Hospital; Harvard Medical School; Boston MA USA
| | - Ronghua Dai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang 110016 China
| |
Collapse
|
16
|
Li J, Li D, Li L, Deng W, Ding L, Xu H, Zhou Y. Simultaneous quantification of salvianolic acid B and tanshinone IIA of salvia tropolone tablets by UPLC-MRM-MS/MS for pharmacokinetic studies. ACTA CHROMATOGR 2014. [DOI: 10.1556/achrom.26.2014.4.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
He H, Li H, Gao Y, Chen D, Shi L, Peng J, Du S, Chen L. A Novel Molecularly Imprinted Polymer for the Solid-Phase Extraction of Tanshinones from Serum. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.930865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Synergistic Effect between Cryptotanshinone and Antibiotics against Clinic Methicillin and Vancomycin-Resistant Staphylococcus aureus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:450572. [PMID: 24782909 PMCID: PMC3982256 DOI: 10.1155/2014/450572] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 11/18/2022]
Abstract
Cryptotanshinone (CT), a major tanshinone of medicinal plant Salvia miltiorrhiza Bunge, demonstrated strong antibacterial activity against clinic isolated methicillin and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA) in this experiment. The CT was determined against clinic isolated MRSA 1–16 with MIC and MBC values ranging from 4 to 32 and 8 to 128 μg/mL; for MSSA 1-2 from 16 to 32 μg/mL and 64 to 128 μg/mL; for VRSA 1-2 from 2 to 4 μg/mL and 4 to 16 μg/mL, respectively. The range of MIC50 and MIC90 of CT was 0.5–8 μg/mL and 4–64 μg/mL, respectively. The combination effects of CT with antibiotics were synergistic (FIC index <0.5) against most of tested clinic isolated MRSA, MSSA, and VRSA except additive, MRSA 4 and 16 in oxacillin, MRSA 6, 12, and 15 in ampicillin, and MRSA 6, 11, and 15 in vancomycin (FIC index < 0.75–1.0). Furthermore, a time-kill study showed that the growth of the tested bacteria was completely attenuated after 2–6 h of treatment with the 1/2 MIC of CT, regardless of whether it was administered alone or with ampicillin, oxacillin, or vancomycin. The results suggest that CT could be employed as a natural antibacterial agent against multidrug-resistant pathogens infection.
Collapse
|
19
|
Chen X, Kotani A, Hakamata H, Du S, Wang J, Kusu F. Determination of Cryptotanshinone, Tanshinone I, and Tanshinone IIA inSalvia Miltiorrhizaby Micro HPLC with Amperometric Detection. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.730593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Abstract
Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones.
Collapse
|
21
|
Jeong JH, Kim DK, Ji HY, Oh SR, Lee HK, Lee HS. Liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry for the simultaneous determination of dimethoxyaschantin, dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin in rat plasma. Biomed Chromatogr 2010; 25:879-89. [PMID: 21058411 DOI: 10.1002/bmc.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/04/2010] [Accepted: 09/06/2010] [Indexed: 11/06/2022]
Abstract
A rapid, selective, and sensitive liquid chromatography-atmospheric pressure chemical ionization (APCI) tandem mass spectrometry method was developed for the simultaneous determination of dimethoxyaschantin, dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin, the pharmacologically active ingredients of Magnolia fargesii in rat plasma. These tetrahydrofurofuranoid lignans were extracted from rat plasma using tert-butyl methyl ether at pH 7.4. The analytes were separated on a Pinnacle DB biphenyl column with 65% methanol in 10 mm ammonium formate (pH 3.0) and detected by APCI tandem mass spectrometry in the selective reaction monitoring mode. The calibration curves were linear (r(2) ≥ 0.996) over the concentration range of 20.0-1000 ng/mL for six tetrahydrofurofuranoid lignans. The lower limit of quantification for these lignans was 20.0 ng/mL with 50 µL of plasma sample. The intra- and inter-assay coefficient of variation and relative error for the six tetrahydrofurofuranoid lignans at four quality control concentrations were 0.2-9.9% and -8.5-8.2%, respectively. There was no matrix effect for the six tetrahydrofurofuranoid lignans and tolterodine (internal standard). The pharmacokinetics of dimethylliroresinol, dimethylpinoresinol, epimagnolin A, fargesin and magnolin were evaluated after oral administration of a purified extract isolated from dried flower buds of Magnolia fargesii at doses of 5.5, 11.0 and 22.0 mg/kg in male rats.
Collapse
Affiliation(s)
- Ji Hyun Jeong
- National Research Laboratory for Drug Metabolism and Bioanalysis, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Liu Y, Li X, Li Y, Wang L, Xue M. Simultaneous determination of danshensu, rosmarinic acid, cryptotanshinone, tanshinone IIA, tanshinone I and dihydrotanshinone I by liquid chromatographic-mass spectrometry and the application to pharmacokinetics in rats. J Pharm Biomed Anal 2010; 53:698-704. [PMID: 20430561 DOI: 10.1016/j.jpba.2010.03.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/27/2010] [Accepted: 03/31/2010] [Indexed: 02/06/2023]
Abstract
A sensitive and specific liquid chromatography-tandem mass spectrometry method (LC-MS) was developed and validated for the separation and simultaneous determination of danshensu, rosmarinic acid and tanshinone compounds including cryptotanshinone, tanshinone I, dihydrotanshinone I and tanshinone IIA in rat plasma. Chromatographic separation of the analytes was successfully achieved on a C(18) column using a mobile phase composed of acetonitrile-water containing 0.5% glacial acetic acid. This method demonstrated good linearity and did not have endogenous material interfering with the active compounds and I.S. peaks. The limit of quantification of danshensu, rosmarinic acid, cryptotanshinone, dihydrotanshinone I, tanshinone I and tanshinone IIA were 5, 0.75, 0.1, 0.1, 1 and 0.5 ng/mL. The average extraction recoveries of these analytes from rat plasma were all over 60%. The precisions determined from five days were all within 10%. This method has been successfully applied in the simultaneous quantification and the pharmacokinetic studies of these six compounds in animals which were orally administered with danshen preparations.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pharmacology, School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Youanmen, Beijing 100069, PR China
| | | | | | | | | |
Collapse
|
23
|
Park EJ, Oh SR, Lee HK, Lee HS. Liquid chromatography-mass spectrometry for the simultaneous determination of the catalpol-related iridoid glucosides, verproside, isovanilloylcatalpol, catalposide and 6-O-veratroyl catalpol in rat plasma. Biomed Chromatogr 2009; 23:980-6. [PMID: 19353737 DOI: 10.1002/bmc.1211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Verproside, isovanilloylcatalpol, catalposide and 6-O-veratroyl catalpol are bioactive iridoid glucosides isolated from in a number of folk medicinal plants. A rapid, sensitive and selective liquid chromatography/mass spectrometric (LC/MS) method for the simultaneous determination of verproside, isovanilloylcatalpol, catalposide and 6-O-veratroyl catalpol in rat plasma was developed. The analytes were extracted from 50 microL of rat plasma with ethyl acetate using 7-carboxymethyloxy-3',4',5-trimethoxyflavone as internal standard and analyzed on an X-Bridge C(18) column within 6.5 min with 40% methanol in 10 mm ammonium formate (pH 3.0). The analytes were quantified using an electrospray ionization mass spectrometry in the selected ion monitoring mode. The standard curves were linear over the concentration ranges of 10-2000 ng/mL for verproside, isovanilloylcatalpol and catalposide and 20-2000 ng/mL for 6-O-veratroyl catalpol. The coefficients of variation and relative errors of verproside, isovanilloylcatalpol, catalposide and 6-O-veratroyl catalpol for intra- and inter-assay at four quality control levels were 2.5-8.0 and-4.0-6.6%, respectively. This method was successfully applied to the pharmacokinetic study of verproside and its possible metabolite isovanilloylcatalpol after intravenous administration of verproside, a candidate anti-asthma drug, in male Sprague-Dawley rats.
Collapse
Affiliation(s)
- Eun Jeong Park
- National Research Laboratory for Drug Metabolism and Bioanalysis, College of Pharmacy, Wonkwang University, Iksan, Korea
| | | | | | | |
Collapse
|
24
|
Simultaneous determination of magnolin and epimagnolin A in rat plasma by liquid chromatography with tandem mass spectrometry: Application to pharmacokinetic study of a purified extract of the dried flower buds of Magnolia fargesii, NDC-052 in rats. J Pharm Biomed Anal 2009; 50:53-7. [PMID: 19409747 DOI: 10.1016/j.jpba.2009.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/28/2009] [Accepted: 03/30/2009] [Indexed: 11/23/2022]
Abstract
A purified extract isolated from the dried flower buds of Magnolia fargesii (NDC-052) is currently being evaluated for phase III clinical trials as a new anti-asthma drug. A rapid, sensitive and selective liquid chromatography-tandem mass spectrometric (LC/MS/MS) method for the simultaneous determination of magnolin and epimagnolin A, the major bioactive components of NDC-052, in rat plasma was developed. After liquid-liquid extraction with tolterodine as an internal standard, magnolin and epimagnolin A were separated on a Luna phenyl-hexyl column with the mobile phase of 70% methanol in 10mM ammonium formate. The analytes were detected by an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. The standard curves were linear over the concentration range of 50-2500ng/mL for magnolin and epimagnolin A in rat plasma. The intra- and inter-day coefficients of variation and relative errors for magnolin and epimagnolin A at four QC concentrations were 1.5-11.4% and 5.9-12.5%, respectively. The lower limits of quantification for magnolin and epimagnolin A were 50.0ng/mL using 50microL of plasma. This method was successfully applied to the pharmacokinetic study of magnolin and epimagnolin A after an oral administration of NDC-052 in male Sprague-Dawley rats.
Collapse
|
25
|
Abstract
Traditional Chinese medicines (TCMs) are getting more and more popular nowadays in the whole world for improving health condition of human beings as well as preventing and healing diseases. TCM is a multi-component system with components mostly unknown, and only a few compounds are responsible for the pharmaceutical and/or toxic effects. The large numbers of other components in the TCM make the screening and analysis of the bioactive components extremely difficult. So, separation and analysis of the desired chemical components in TCM are very important subjects for modernization research of TCM. Thus, many novel separation techniques with significant advantages over conventional methods were introduced and applied to separation and analysis of the chemical constituents in TCM. This review presents just a brief outline of the applications of different separation methods for the isolation and analysis of TCM constituents.
Collapse
Affiliation(s)
- Shao Liu
- College of Chemistry and Chemical Engineering, Research Center of Modernization of Chinese Medicines, Central South University, Changsha, PR China
| | | | | |
Collapse
|