1
|
Li L, Zheng Q, Xue Y, Bai M, Mu Y. Coactivation pattern analysis reveals altered whole-brain functional transient dynamics in autism spectrum disorder. Eur Child Adolesc Psychiatry 2024; 33:4313-4324. [PMID: 38814465 DOI: 10.1007/s00787-024-02474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Recent studies on autism spectrum disorder (ASD) have identified recurring states dominated by similar coactivation pattern (CAP) and revealed associations between dysfunction in seed-based large-scale brain networks and clinical symptoms. However, the presence of abnormalities in moment-to-moment whole-brain dynamics in ASD remains uncertain. In this study, we employed seed-free CAP analysis to identify transient brain activity configurations and investigate dynamic abnormalities in ASD. We utilized a substantial multisite resting-state fMRI dataset consisting of 354 individuals with ASD and 446 healthy controls (HCs, from HC groups and 2). CAP were generated from a subgroup of all HC subjects (HC group 1) through temporal K-means clustering, identifying four CAPs. These four CAPs exhibited either the activation or inhibition of the default mode network (DMN) and were grouped into two pairs with opposing spatial CAPs. CAPs for HC group 2 and ASD were identified by their spatial similarity to those for HC group 1. Compared with individuals in HC group 2, those with ASD spent more time in CAPs involving the ventral attention network but less time in CAPs related to executive control and the dorsal attention network. Support vector machine analysis demonstrated that the aberrant dynamic characteristics of CAPs achieved an accuracy of 74.87% in multisite classification. In addition, we used whole-brain dynamics to predict symptom severity in ASD. Our findings revealed whole-brain dynamic functional abnormalities in ASD from a single transient perspective, emphasizing the importance of the DMN in abnormal dynamic functional activity in ASD and suggesting that temporally dynamic techniques offer novel insights into time-varying neural processes.
Collapse
Affiliation(s)
- Lei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qingyu Zheng
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, People's Republic of China
| | - Yang Xue
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, People's Republic of China
| | - Miaoshui Bai
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, People's Republic of China
| | - Yueming Mu
- Department of Dermatology, The First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun, 130021, People's Republic of China.
| |
Collapse
|
2
|
Georgiopoulos C, Buechner MA, Falkenburger B, Engström M, Hummel T, Haehner A. Differential connectivity of the posterior piriform cortex in Parkinson's disease and postviral olfactory dysfunction: an fMRI study. Sci Rep 2024; 14:6256. [PMID: 38491209 PMCID: PMC10943068 DOI: 10.1038/s41598-024-56996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Olfactory dysfunction is a common feature of both postviral upper respiratory tract infections (PV) and idiopathic Parkinson's disease (PD). Our aim was to investigate potential differences in the connectivity of the posterior piriform cortex, a major component of the olfactory cortex, between PV and PD patients. Fifteen healthy controls (median age 66 years, 9 men), 15 PV (median age 63 years, 7 men) and 14 PD patients (median age 70 years, 9 men) were examined with task-based olfactory fMRI, including two odors: peach and fish. fMRI data were analyzed with the co-activation pattern (CAP) toolbox, which allows a dynamic temporal assessment of posterior piriform cortex (PPC) connectivity. CAP analysis revealed 2 distinct brain networks interacting with the PPC. The first network included regions related to emotion recognition and attention, such as the anterior cingulate and the middle frontal gyri. The occurrences of this network were significantly fewer in PD patients compared to healthy controls (p = 0.023), with no significant differences among PV patients and the other groups. The second network revealed a dissociation between the olfactory cortex (piriform and entorhinal cortices), the anterior cingulate gyrus and the middle frontal gyri. This second network was significantly more active during the latter part of the stimulation, across all groups, possibly due to habituation. Our study shows how the PPC interacts with areas that regulate higher order processing and how this network is substantially affected in PD. Our findings also suggest that olfactory habituation is independent of disease.
Collapse
Affiliation(s)
- Charalampos Georgiopoulos
- Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden.
- Department of Radiology, Section of Neuroradiology and Odontology, Skånes Universitetssjukhus, Entrégatan 7, 221 85, Lund, Sweden.
| | | | | | - Maria Engström
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Islam S, Khanra P, Nakuci J, Muldoon SF, Watanabe T, Masuda N. State-transition dynamics of resting-state functional magnetic resonance imaging data: model comparison and test-to-retest analysis. BMC Neurosci 2024; 25:14. [PMID: 38438838 PMCID: PMC10913599 DOI: 10.1186/s12868-024-00854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Electroencephalogram (EEG) microstate analysis entails finding dynamics of quasi-stable and generally recurrent discrete states in multichannel EEG time series data and relating properties of the estimated state-transition dynamics to observables such as cognition and behavior. While microstate analysis has been widely employed to analyze EEG data, its use remains less prevalent in functional magnetic resonance imaging (fMRI) data, largely due to the slower timescale of such data. In the present study, we extend various data clustering methods used in EEG microstate analysis to resting-state fMRI data from healthy humans to extract their state-transition dynamics. We show that the quality of clustering is on par with that for various microstate analyses of EEG data. We then develop a method for examining test-retest reliability of the discrete-state transition dynamics between fMRI sessions and show that the within-participant test-retest reliability is higher than between-participant test-retest reliability for different indices of state-transition dynamics, different networks, and different data sets. This result suggests that state-transition dynamics analysis of fMRI data could discriminate between different individuals and is a promising tool for performing fingerprinting analysis of individuals.
Collapse
Affiliation(s)
- Saiful Islam
- Institute for Artificial Intelligence and Data Science, University at Buffalo, State University of New York at Buffalo, 215 Lockwood Hall, Buffalo, 14260, NY, USA
| | - Pitambar Khanra
- Department of Mathematics , University at Buffalo, State University of New York at Buffalo, 244 Mathematics Building , Buffalo, 14260, NY, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, North Avenue, Atlanta, 30332, GA, USA
| | - Sarah F Muldoon
- Department of Mathematics , University at Buffalo, State University of New York at Buffalo, 244 Mathematics Building , Buffalo, 14260, NY, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, State University of New York at Buffalo, 215 Lockwood Hall, Buffalo, 14260, NY, USA
- Neuroscience Program, University at Buffalo, State University of New York at Buffalo, 955 Main Street, Buffalo, 14203, NY, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 731 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Masuda
- Department of Mathematics , University at Buffalo, State University of New York at Buffalo, 244 Mathematics Building , Buffalo, 14260, NY, USA.
- Institute for Artificial Intelligence and Data Science, University at Buffalo, State University of New York at Buffalo, 215 Lockwood Hall, Buffalo, 14260, NY, USA.
| |
Collapse
|
4
|
Zong X, Wu K, Li L, Zhang J, Ma S, Kang L, Zhang N, Lv L, Sang D, Weng S, Chen H, Zheng J, Hu M. Striatum-related spontaneous coactivation patterns predict treatment response on positive symptoms of drug-naive first-episode schizophrenia with risperidone monotherapy. Front Psychiatry 2023; 14:1093030. [PMID: 37009110 PMCID: PMC10050338 DOI: 10.3389/fpsyt.2023.1093030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundEvidence from functional magnetic resonance imaging (fMRI) studies of schizophrenia suggests that interindividual variation in the stationary striatal functional circuit may be correlated with antipsychotic treatment response. However, little is known about the role of the dynamic striatum-related network in predicting patients’ clinical improvement. The spontaneous coactivation pattern (CAP) technique has recently been found to be important for elucidating the non-stationary nature of functional brain networks.MethodsForty-two drug-naive first-episode schizophrenia patients underwent fMRI and T1W imaging before and after 8 weeks of risperidone monotherapy. The striatum was divided into 3 subregions, including the putamen, pallidum, and caudate. Spontaneous CAPs and CAP states were utilized to measure the dynamic characteristics of brain networks. We used DPARSF and Dynamic Brain Connectome software to analyze each subregion-related CAP and CAP state for each group and then compared the between-group differences in the neural network biomarkers. We used Pearson’s correlation analysis to determine the associations between the neuroimaging measurements with between-group differences and the improvement in patients’ psychopathological symptoms.ResultsIn the putamen-related CAPs, patients showed significantly increased intensity in the bilateral thalamus, bilateral supplementary motor areas, bilateral medial, and paracingulate gyrus, left paracentral lobule, left medial superior frontal gyrus, and left anterior cingulate gyrus compared with healthy controls. After treatment, thalamic signals in the putamen-related CAP 1 showed a significant increase, while the signals of the medial and paracingulate gyrus in the putamen-related CAP 3 revealed a significant decrease. The increase in thalamic signal intensity in the putamen-related CAP 1 was significantly and positively correlated with the percentage reduction in PANSS_P.ConclusionThis study is the first to combine striatal CAPs and fMRI to explore treatment response-related biomarkers in the early phase of schizophrenia. Our findings suggest that dynamic changes in CAP states in the putamen-thalamus circuit may be potential biomarkers for predicting patients’ variation in the short-term treatment response of positive symptoms.
Collapse
Affiliation(s)
- Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Wu
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangbo Zhang
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Simeng Ma
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijun Kang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Deen Sang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shenhong Weng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Shenhong Weng,
| | - Huafu Chen
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Huafu Chen,
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
- Junjie Zheng,
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Maolin Hu,
| |
Collapse
|
5
|
Paakki J, Rahko JS, Kotila A, Mattila M, Miettunen H, Hurtig TM, Jussila KK, Kuusikko‐Gauffin S, Moilanen IK, Tervonen O, Kiviniemi VJ. Co-activation pattern alterations in autism spectrum disorder-A volume-wise hierarchical clustering fMRI study. Brain Behav 2021; 11:e02174. [PMID: 33998178 PMCID: PMC8213933 DOI: 10.1002/brb3.2174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION There has been a growing effort to characterize the time-varying functional connectivity of resting state (RS) fMRI brain networks (RSNs). Although voxel-wise connectivity studies have examined different sliding window lengths, nonsequential volume-wise approaches have been less common. METHODS Inspired by earlier co-activation pattern (CAP) studies, we applied hierarchical clustering (HC) to classify the image volumes of the RS-fMRI data on 28 adolescents with autism spectrum disorder (ASD) and their 27 typically developing (TD) controls. We compared the distribution of the ASD and TD groups' volumes in CAPs as well as their voxel-wise means. For simplification purposes, we conducted a group independent component analysis to extract 14 major RSNs. The RSNs' average z-scores enabled us to meaningfully regroup the RSNs and estimate the percentage of voxels within each RSN for which there was a significant group difference. These results were jointly interpreted to find global group-specific patterns. RESULTS We found similar brain state proportions in 58 CAPs (clustering interval from 2 to 30). However, in many CAPs, the voxel-wise means differed significantly within a matrix of 14 RSNs. The rest-activated default mode-positive and default mode-negative brain state properties vary considerably in both groups over time. This division was seen clearly when the volumes were partitioned into two CAPs and then further examined along the HC dendrogram of the diversifying brain CAPs. The ASD group network activations followed a more heterogeneous distribution and some networks maintained higher baselines; throughout the brain deactivation state, the ASD participants had reduced deactivation in 12/14 networks. During default mode-negative CAPs, the ASD group showed simultaneous visual network and either dorsal attention or default mode network overactivation. CONCLUSION Nonsequential volume gathering into CAPs and the comparison of voxel-wise signal changes provide a complementary perspective to connectivity and an alternative to sliding window analysis.
Collapse
Affiliation(s)
- Jyri‐Johan Paakki
- Faculty of Medicine, Health and Biosciences Doctoral ProgrammeUniversity of Oulu Graduate SchoolUniversity of OuluOuluFinland
- The Faculty of MedicineResearch Unit of Medical Imaging, Physics and TechnologyOulu Functional NeuroImaging GroupUniversity of OuluOuluFinland
- Department of Diagnostic RadiologyMedical Research CenterOulu University HospitalOuluFinland
| | - Jukka S. Rahko
- Faculty of Medicine, Health and Biosciences Doctoral ProgrammeUniversity of Oulu Graduate SchoolUniversity of OuluOuluFinland
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Aija Kotila
- Faculty of HumanitiesResearch Unit of LogopedicsUniversity of OuluOuluFinland
| | - Marja‐Leena Mattila
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Helena Miettunen
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Tuula M. Hurtig
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
- Research Unit of Clinical Neuroscience, PsychiatryUniversity of OuluOuluFinland
| | - Katja K. Jussila
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Sanna Kuusikko‐Gauffin
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Irma K. Moilanen
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Osmo Tervonen
- The Faculty of MedicineResearch Unit of Medical Imaging, Physics and TechnologyOulu Functional NeuroImaging GroupUniversity of OuluOuluFinland
- Department of Diagnostic RadiologyMedical Research CenterOulu University HospitalOuluFinland
| | - Vesa J. Kiviniemi
- The Faculty of MedicineResearch Unit of Medical Imaging, Physics and TechnologyOulu Functional NeuroImaging GroupUniversity of OuluOuluFinland
- Department of Diagnostic RadiologyMedical Research CenterOulu University HospitalOuluFinland
| |
Collapse
|