1
|
Goldfarb C, King CD. Exploring the interactions between circadian rhythms and sleep on pain: a call to action. Pain 2025:00006396-990000000-00851. [PMID: 40198731 DOI: 10.1097/j.pain.0000000000003579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Affiliation(s)
- Cassandra Goldfarb
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Christopher D King
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
2
|
Wang XL, Ji YB, Li SX, Serchov T. The crosstalk between CREB and PER2 mediates the transition between mania- and depression-like behavior. Neuropsychopharmacology 2025:10.1038/s41386-025-02076-5. [PMID: 40011706 DOI: 10.1038/s41386-025-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder characterized by alternating manic and depressive episodes. The molecular mechanisms underlying the transition between mania and depression remain unclear. Utilizing a mania animal model induced by ouabain, we observed reduced phosphorylated level of cyclic AMP-responsive element-binding protein (pCREB) and Period (PER)2 expression in the cornu ammonis (CA1) region of the hippocampus, which were restored by lithium treatment. shRNA knockdown of CREB or Per2 in CA1 region induced mania-like behavior, while overexpression of both factors resulted in depression-like behavior. Furthermore, our protein analyses revealed that the upregulation or downregulation of CREB or Per2 influenced each other's expression. Co-immunoprecipitation results demonstrated that CREB interacts with PER2. Taken together, our data suggest for potential inter-regulatory crosstalk between CREB-PER2 in hippocampal CA1 region, which mediates the transition between mania- and depression-like behaviors.
Collapse
Affiliation(s)
- Xin-Ling Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Shandong University, Ji'nan, 250012, Shandong, China.
- Centre National de La Recherche Scientifque (CNRS), Université de Strasbourg, Institut Des Neurosciences Cellulaires Et Intégratives (INCI) UPR 3212, 67000, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| | - Yan-Bin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, 250012, Shandong, China
| | - Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Tsvetan Serchov
- Centre National de La Recherche Scientifque (CNRS), Université de Strasbourg, Institut Des Neurosciences Cellulaires Et Intégratives (INCI) UPR 3212, 67000, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Colita CI, Hermann DM, Filfan M, Colita D, Doepnner TR, Tica O, Glavan D, Popa-Wagner A. Optimizing Chronotherapy in Psychiatric Care: The Impact of Circadian Rhythms on Medication Timing and Efficacy. Clocks Sleep 2024; 6:635-655. [PMID: 39584972 PMCID: PMC11586979 DOI: 10.3390/clockssleep6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
In many medical settings, medications are typically administered in the morning or evening, aligning with patients' daily routines. This practice does not stem from chronotherapy, which involves scheduling drug administration to enhance its effectiveness, but rather from the way clinical operations are structured. The timing of drug administration can significantly affect a medication's effectiveness and side effects, with the impact varying by up to ten times based on circadian rhythms. Disorders such as major depression, bipolar disorder, and schizophrenia are linked to disruptions in these rhythms. Recent studies have found that circadian dysfunctions, including genetic and neurohumoral changes, underlie many psychiatric conditions. Issues such as an altered glucocorticoid rhythm due to impaired HPA axis function, disturbed melatonin balance, and sleep disturbances have been noted in psychotic disorders. Furthermore, mood disorders have been associated with changes in the expression of circadian rhythm genes such as Clock, Bmal1, and Per. Considering that the absorption, biodistribution, effects on target organs, half-life, metabolism, and elimination of drugs are all influenced by the body's circadian rhythms, this narrative review explores the optimal timing of medication administration to maximize efficacy and minimize side effects in the treatment of psychiatric disorders. By closely monitoring circadian variations in cortisol, melatonin, and key clock genes, as well as by deepening our understanding of the metabolisms and pharmacokinetics of antipsychotic medications, we propose a chronotherapy approach for psychiatric patients that could significantly enhance patient care.
Collapse
Affiliation(s)
- Cezar-Ivan Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Madalina Filfan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Thorsten R. Doepnner
- Department of Neurology, University Medical Center, Klinikstraße 33, 35392 Gießen, Germany;
| | - Oana Tica
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Aurel Popa-Wagner
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
4
|
Li X, Yu J, Jiang S, Fang L, Li Y, Ma S, Kong H, Qin X, Zhu D. Circadian rhythms of melatonin and its relationship with anhedonia in patients with mood disorders: a cross-sectional study. BMC Psychiatry 2024; 24:165. [PMID: 38413912 PMCID: PMC10900661 DOI: 10.1186/s12888-024-05606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Mood disorders are strongly associated with melatonin disturbances. However, it is unclear whether there is a difference in melatonin concentrations and melatonin circadian rhythm profiles between depression and bipolar disorder. In addition, the relationship between anhedonia, a common symptom of affective disorders, and its melatonin circadian rhythm remains under-investigated. METHODS Thirty-four patients with depression disorder, 20 patients diagnosed with bipolar disorder and 21 healthy controls participated in this study. The Revised Physical Anhedonia Scale (RPAS) was performed to assess anhedonia. Saliva samples were collected from all subjects at fixed time points (a total of 14 points) in two consecutive days for measuring the melatonin concentrations to fit circadian rhythms of subjects. Melatonin circadian rhythms were compared between the three groups using ANOVA. Partial correlation analysis and linear regression analysis were used to explore the correlation between melatonin rhythm variables and anhedonia. RESULTS We found that the peak phase of melatonin in the depression group was significantly advanced compared to the control group (P < 0.001) and the bipolar disorder group (P = 0.004). The peak phase of melatonin and RPAS showed a negative correlation (P = 0.003) in depression patients, which was also demonstrated in the multiple linear regression model (B=-2.47, P = 0.006). CONCLUSIONS These results suggest that circadian rhythms of melatonin are differentiated in depression and bipolar disorder and correlate with anhedonia in depression. Future research needs to explore the neurobiological mechanisms linking anhedonia and melatonin circadian rhythms in depressed patients.
Collapse
Affiliation(s)
- Xinyu Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, 230032, Hefei, China
- Department of Sleep Disorders, Anhui Mental Health Center, 230022, Hefei, China
- Department of Sleep Disorders, Hefei Fourth People's Hospital, 230022, Hefei, China
| | - Jiakuai Yu
- Department of Sleep Disorders, Anhui Mental Health Center, 230022, Hefei, China
- Department of Sleep Disorders, Hefei Fourth People's Hospital, 230022, Hefei, China
| | - Shuo Jiang
- Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, China
| | - Liang Fang
- Department of Sleep Disorders, Anhui Mental Health Center, 230022, Hefei, China
- Department of Sleep Disorders, Hefei Fourth People's Hospital, 230022, Hefei, China
| | - Yifei Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, 230032, Hefei, China
- Department of Sleep Disorders, Anhui Mental Health Center, 230022, Hefei, China
- Department of Sleep Disorders, Hefei Fourth People's Hospital, 230022, Hefei, China
| | - Shuangshuang Ma
- School of Nursing, Anhui Medical University, 230032, Hefei, China
| | - Hui Kong
- The School of Mental Health and Psychological Sciences, Anhui Medical University, 230032, Hefei, China
- Department of Sleep Disorders, Anhui Mental Health Center, 230022, Hefei, China
- Department of Sleep Disorders, Hefei Fourth People's Hospital, 230022, Hefei, China
| | - Ximing Qin
- Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, China.
| | - Daomin Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, 230032, Hefei, China.
- Department of Sleep Disorders, Anhui Mental Health Center, 230022, Hefei, China.
- Department of Sleep Disorders, Hefei Fourth People's Hospital, 230022, Hefei, China.
| |
Collapse
|
5
|
Melloni EMT, Paolini M, Dallaspezia S, Lorenzi C, Poletti S, d'Orsi G, Yoshiike T, Zanardi R, Colombo C, Benedetti F. Melatonin secretion patterns are associated with cognitive vulnerability and brain structure in bipolar depression. Chronobiol Int 2023; 40:1279-1290. [PMID: 37781880 DOI: 10.1080/07420528.2023.2262572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Circadian rhythm disruption is a core symptom of bipolar disorder (BD), also reflected in altered patterns of melatonin release. Reductions of grey matter (GM) volumes are well documented in BD. We hypothesized that levels and timing of melatonin secretion in bipolar depression could be associated with depressive psychopathology and brain GM integrity. The onset of melatonin secretion under dim light conditions (DLMO) and the amount of time between DLMO and midsleep (i.e. phase angle difference; PAD) were used as circadian rhythm markers. To study the time course of melatonin secretion, an exponential curve fitting the melatonin values was calculated, and the slope coefficients (SLP) were obtained for each participant. Significant differences were found between HC and BD in PAD measures and melatonin profiles. Correlations between PAD and depressive psychopathology were identified. Melatonin secretion patterns were found to be associated with GM volumes in the Striatum and Supramarginal Gyrus in BD. Our findings emphasized the role of melatonin secretion role as a biological marker of circadian synchronization in bipolar depression and provided a novel insight for a link between melatonin release and brain structure.
Collapse
Affiliation(s)
- Elisa M T Melloni
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Greta d'Orsi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Takuya Yoshiike
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Raffaella Zanardi
- University Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Mood Disorder Unit, Milano, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Milano, Italy
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Mood Disorder Unit, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
6
|
Hu X, Yu C, Dong T, Yang Z, Fang Y, Jiang Z. Biomarkers and detection methods of bipolar disorder. Biosens Bioelectron 2022; 220:114842. [DOI: 10.1016/j.bios.2022.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2022]
|
7
|
A Pattern to Link Adenosine Signaling, Circadian System, and Potential Final Common Pathway in the Pathogenesis of Major Depressive Disorder. Mol Neurobiol 2022; 59:6713-6723. [PMID: 35999325 PMCID: PMC9525429 DOI: 10.1007/s12035-022-03001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Several studies have reported separate roles of adenosine receptors and circadian clockwork in major depressive disorder. While less evidence exists for regulation of the circadian clock by adenosine signaling, a small number of studies have linked the adenosinergic system, the molecular circadian clock, and mood regulation. In this article, we review relevant advances and propose that adenosine receptor signaling, including canonical and other alternative downstream cellular pathways, regulates circadian gene expression, which in turn may underlie the pathogenesis of mood disorders. Moreover, we summarize the convergent point of these signaling pathways and put forward a pattern by which Homer1a expression, regulated by both cAMP-response element binding protein (CREB) and circadian clock genes, may be the final common pathogenetic mechanism in depression.
Collapse
|
8
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
9
|
Katsuyama M, Narita T, Nakashima M, Kusaba K, Ochiai M, Kunizawa N, Kawaraya A, Kuwahara Y, Horiuchi M, Nakamoto K. How emotional changes affect skin odor and its impact on others. PLoS One 2022; 17:e0270457. [PMID: 35771844 PMCID: PMC9246182 DOI: 10.1371/journal.pone.0270457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/12/2022] [Indexed: 11/18/2022] Open
Abstract
The gas emanating from human skin is known to vary depending on one's physical condition and diet. Thus, skin gas has been gaining substantial scholarly attention as an effective noninvasive biomarker for understanding different physical conditions. This study focuses on the relationship between psychological stress and skin gas, which has remained unclear to date. It has been deduced that when participants were subjected to interviews confirmed as stressful by physiological indicators, their skin emitted an odor similar to stir-fried leeks containing allyl mercaptan and dimethyl trisulfide. This characteristic, recognizable odor appeared reproducibly during the stress-inducing situations. Furthermore, the study deduced that individuals who perceive this stress odor experience subjective tension, confusion, and fatigue (Profile of Mood States scale). Thus, the study findings indicate the possibility of human nonverbal communication through odor, which could enhance our understanding of human interaction.
Collapse
Affiliation(s)
- Masako Katsuyama
- Shiseido Global Innovation Center, Shiseido Co. Ltd., Yokohama, Kanagawa, Japan
- * E-mail:
| | - Tomomi Narita
- Shiseido Global Innovation Center, Shiseido Co. Ltd., Yokohama, Kanagawa, Japan
| | - Masaya Nakashima
- Shiseido Global Innovation Center, Shiseido Co. Ltd., Yokohama, Kanagawa, Japan
| | - Kentaro Kusaba
- Shiseido Global Innovation Center, Shiseido Co. Ltd., Yokohama, Kanagawa, Japan
| | - Masatoshi Ochiai
- Shiseido Global Innovation Center, Shiseido Co. Ltd., Yokohama, Kanagawa, Japan
| | - Naomi Kunizawa
- Shiseido Global Innovation Center, Shiseido Co. Ltd., Yokohama, Kanagawa, Japan
| | - Akihiro Kawaraya
- Corporate Research & Development Division, Takasago International Corporation, Hiratsuka, Kanagawa, Japan
| | - Yukari Kuwahara
- Corporate Research & Development Division, Takasago International Corporation, Hiratsuka, Kanagawa, Japan
| | | | | |
Collapse
|
10
|
Thakre TP, Kulkarni H, Adams KS, Mischel R, Hayes R, Pandurangi A. Polysomnographic identification of anxiety and depression using deep learning. J Psychiatr Res 2022; 150:54-63. [PMID: 35358832 DOI: 10.1016/j.jpsychires.2022.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Anxiety and depression are common psychiatric conditions associated with significant morbidity and healthcare costs. Sleep is an evolutionarily conserved health state. Anxiety and depression have a bidirectional relationship with sleep. This study reports on the use of analysis of polysomnographic data using deep learning methods to detect the presence of anxiety and depression. Polysomnography data on 940 patients performed at an academic sleep center during the 3-year period from 01/01/2016 to 12/31/2018 were identified for analysis. The data were divided into 3 subgroups: 205 patients with Anxiety/Depression, 349 patients with no Anxiety/Depression, and 386 patients with likely Anxiety/Depression. The first two subgroups were used for training and testing of the deep learning algorithm, and the third subgroup was used for external validation of the resulting model. Hypnograms were constructed via automatic sleep staging, with the 12-channel PSG data being transformed into three-channel RGB (red, green, blue channels) images for analysis. Composite patient images were generated and utilized for training the Xception model, which provided a validation set accuracy of 0.9782 on the ninth training epoch. In the independent test set, the model achieved a high accuracy (0.9688), precision (0.9533), recall (0.9630), and F1-score (0.9581). Classification performance of most other mainstream deep learning models was comparable. These findings suggest that machine learning techniques have the potential to accurately detect the presence of anxiety and depression from analysis of sleep study data. Further studies are needed to explore the utility of these techniques in the field of psychiatry.
Collapse
Affiliation(s)
- Tushar P Thakre
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Center for Sleep Medicine, Virginia Commonwealth University Health, Richmond, VA, USA
| | | | - Katie S Adams
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Department of Pharmacy Services, Virginia Commonwealth University Health, Richmond, VA, USA
| | - Ryan Mischel
- Department of Psychiatry, Washington University at St. Louis School of Medicine, St. Louis, MO, USA
| | - Ronnie Hayes
- Center for Sleep Medicine, Virginia Commonwealth University Health, Richmond, VA, USA
| | - Ananda Pandurangi
- Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
11
|
Mylona I, Floros GD. Blue Light Blocking Treatment for the Treatment of Bipolar Disorder: Directions for Research and Practice. J Clin Med 2022; 11:jcm11051380. [PMID: 35268469 PMCID: PMC8911317 DOI: 10.3390/jcm11051380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Recent results from a small number of clinical studies have resulted in the suggestion that the process of blocking the transmission of shorter-wavelength light (‘blue light’ with a wave length of 450 nm to 470 nm) may have a beneficial role in the treatment of bipolar disorder. This critical review will appraise the quality of evidence so far as to these claims, assess the neurobiology that could be implicated in the underlying processes while introducing a common set of research criteria for the field.
Collapse
Affiliation(s)
- Ioanna Mylona
- 2nd Department of Ophthalmology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Georgios D. Floros
- 2nd Department of Psychiatry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-69-4432-4565
| |
Collapse
|
12
|
Roloff T, Haussleiter I, Meister K, Juckel G. Sleep disturbances in the context of neurohormonal dysregulation in patients with bipolar disorder. Int J Bipolar Disord 2022; 10:6. [PMID: 35229223 PMCID: PMC8885957 DOI: 10.1186/s40345-022-00254-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/31/2022] [Indexed: 12/27/2022] Open
Abstract
Background Sleep dysfunction is a core symptom in bipolar disorder (BD), especially during major mood episodes. This study investigated the possible link between subjective and objective sleep disturbances in inter-episode BD, changes in melatonin and cortisol levels, and circadian melatonin alignment. The study included 21 euthymic BD patients and 24 healthy controls. Participants had to wear an actigraphy device, keep a weekly sleep diary and take salivary samples: five samples on the last evening to determine the dim light melatonin onset (DLMO) and one the following morning to measure rising cortisol. Sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI) and Regensburg Insomnia Scale (RIS), and circadian alignment by the phase angle difference (PAD). Results In comparison to healthy controls, BD patients had: (1) higher PSQI (5.52 ± 3.14 vs. 3.63 ± 2.18; p = 0.022) (significant after controlling for age and gender), and higher RIS scores (8.91 ± 5.43 vs. 5.83 ± 3.76; p = 0.031); (2) subjective a longer mean TST (p = 0.024) and TIB (p = 0.002) (both significant after controlling for age and gender), longer WASO (p = 0.019), and worse SE (p = 0.036) (significant after controlling for gender); (3) actigraphically validated earlier sleep onset (p = 0.002), less variation in sleep onset time (p = 0.005) and no longer TST (p = 0.176); (4) no differing melatonin levels (4.06 ± 2.77 vs. 3.35 ± 2.23 p = 0.352), an 1.65 h earlier DLMO (20.17 ± 1.63 vs. 21.82 ± 1.50; p = 0. 001) (significant after controlling for gender), and a phase advance of melatonin (6.35 ± 1.40 vs. 7.48 ± 1.53; p = 0.017) (significant after controlling for gender); and (5) no differing cortisol awakening response (16.97 ± 10.22 vs 17.06 ± 5.37 p = 0.969). Conclusions Patients with BD, even in euthymic phase, have a significantly worse perception of their sleep. Advanced sleep phases in BD might be worth further investigation and could help to explain the therapeutic effects of mood stabilizers such as lithium and valproate.
Collapse
Affiliation(s)
- Tom Roloff
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791, Bochum, Germany
| | - Ida Haussleiter
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791, Bochum, Germany
| | - Klara Meister
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791, Bochum, Germany
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Alexandrinenstr. 1, 44791, Bochum, Germany.
| |
Collapse
|
13
|
Fang L, Yu Q, Yin F, Yu J, Zhang Y, Zhang Y, Zhu D, Qin X. Combined cortisol and melatonin measurements with detailed parameter analysis can assess the circadian rhythms in bipolar disorder patients. Brain Behav 2021; 11:e02186. [PMID: 34096190 PMCID: PMC8323050 DOI: 10.1002/brb3.2186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Bipolar disorder (BD) is a common chronic mental illness. The circadian clock disorder shows a significant correlation with the pathogenesis, phenotype and recurrence of BD. We aim to evaluate non-invasive methods that can comprehensively assess the circadian rhythmicity in BD patients. METHODS We non-invasively collected salivary samples and oral epithelial cells from recruited subjects. Then the levels of cortisol and melatonin in saliva were measured and the circadian clock gene expressions (PER2 and BMAL1) of epithelial cells were analyzed. Due to the disease characteristics of the manic patients who were difficult to cooperate with the protocol, only one patient at manic episode was recruited. Besides, 11 patients at the depressive episode, 15 healthy controls and four patients at recovery stage were recruited. RESULTS Our results exhibited that the peak phase of cortisol level mainly manifested around 8:00 a.m., and the maximal melatonin level reached around 5:00 a.m. The phase of cortisol in patients with depression did not change significantly, but the level of cortisol decreased significantly, while the phase of melatonin level moved forward about 2.5 hr. Furthermore, the levels and phases of cortisol and melatonin in recovery patients tended to be similar to those of healthy controls. CONCLUSIONS With detailed parameter analysis, the combined detection of melatonin and cortisol can better judge the biological clock disorder of bipolar patients. The circadian rhythms of patients at the recovery stage tend to be normal. The clock gene expression examination needs strict quality control and more investigations before being applied to assess human circadian rhythms.
Collapse
Affiliation(s)
- Liang Fang
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Sleep Medicine, Anhui Mental Health Center, Hefei, China
| | - Quanmei Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Fanfan Yin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jiakuai Yu
- Department of Sleep Medicine, Anhui Mental Health Center, Hefei, China.,Department of Sleep Medicine, Hefei Fourth People's Hospital, Hefei, China
| | - Yunfei Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yu Zhang
- Department of Sleep Medicine, Anhui Mental Health Center, Hefei, China.,Department of Sleep Medicine, Hefei Fourth People's Hospital, Hefei, China
| | - Daomin Zhu
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Sleep Medicine, Anhui Mental Health Center, Hefei, China.,Department of Sleep Medicine, Hefei Fourth People's Hospital, Hefei, China
| | - Ximing Qin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|