1
|
Aljoudi S, Hamdan H, Abd-Elrahman KS. Sexual dimorphism of G protein-coupled receptor signaling in the brain. Neural Regen Res 2024; 19:1635-1636. [PMID: 38103217 PMCID: PMC10960278 DOI: 10.4103/1673-5374.389637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Sara Aljoudi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Khaled S. Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Wu X, Guo D, Li Y, Xie X, Su L, Cai M, Zheng L, Lin N, Liang B, Huang H, Xu L. Prenatal diagnosis of non-mosaic sex chromosome abnormalities: a 10-year experience from a tertiary referral center. J Perinat Med 2023; 51:904-912. [PMID: 37138453 DOI: 10.1515/jpm-2022-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES The aim of this study was to explore the frequency and profile of non-mosaic sex chromosome abnormalities detected in prenatal diagnosis over the past 10 years. METHODS We retrospectively reviewed pregnancies diagnosed with non-mosaic sex chromosome abnormalities between January 2012 and December 2021, using karyotyping and/or single nucleotide polymorphism (SNP) array. Maternal age, indications for testing, and outcomes were recorded. RESULTS Traditional karyotyping identified 269 (0.90 %) cases of non-mosaic sex chromosome abnormalities among 29,832 fetuses, including 249 cases of numerical abnormalities, 15 unbalanced structural abnormalities, and 5 balanced structural abnormalities. The overall detection rate of common sex chromosome aneuploidies (SCAs) was 0.81 %, with 47,XXY, 47,XXX, 47,XYY, and 45,X accounting for 0.32 , 0.19, 0.17, and 0.13 % respectively. All showed a fluctuating upward trend over the study period, except for 45,X. During the first five years (2012-2016), the major indication for testing was advanced maternal age (AMA), followed by abnormal ultrasound, abnormal noninvasive prenatal testing (NIPT), and abnormal maternal serum screening (MSS). In the second five years (2017-2021), the most frequent indication was abnormal NIPT, followed by AMA, abnormal ultrasound, and abnormal MSS. Among the 7,780 cases that underwent SNP array in parallel, an additional 29 clinically significant aberrations were detected. The most frequent aberration was a microdeletion in the Xp22.31 region, which was associated with X-linked ichthyosis. CONCLUSIONS Fetal sex chromosome abnormalities are important findings in prenatal diagnosis. The application of NIPT and SNP array technology has greatly improved the detection of SCAs and submicroscopic aberrations associated with sex chromosomes.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Danhua Guo
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Xiaorui Xie
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Linjuan Su
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Lin Zheng
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Bin Liang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Fujian Provincial Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, Fujian, P.R. China
| |
Collapse
|
3
|
Wang B, Chen D, Jiang R, Ntim M, Lu J, Xia M, Yang X, Wang Y, Kundu S, Guan R, Li S. TIP60 buffers acute stress response and depressive behaviour by controlling PPARγ-mediated transcription. Brain Behav Immun 2022; 101:410-422. [PMID: 35114329 DOI: 10.1016/j.bbi.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
Tat-interacting protein 60 (TIP60) as nuclear receptors (NRs) coregulator, acts as a tumor suppressor and also has promising therapeutic potential to target Alzheimer's disease. Stress has been implicated in many psychiatric disorders, and these disorders are characterized by impairments in cognitive function. Until now, there are no experimental data available on the regulatory effect of TIP60 in acute stress and depression. There is also no definitive explanation on which specific modulation of target gene expression is achieved by TIP60. Here, we identify TIP60 as a novel positive regulator in response to acute restraint stress (ARS) and a potentially effective target of antidepressants. Firstly, we discovered increased hippocampal TIP60 expressions in the ARS model. Furthermore, using the TIP60 inhibitor, MG149, we proved that TIP60 function correlates with behavioral and synaptic activation in the two-hour ARS. Secondly, the lentivirus vector (LV)-TIP60overexpression (OE) was injected into the hippocampus prior to the chronic restraint stress (CRS) experiments and it was found that over-expressed TIP60 compensates for TIP60 decrease and improves depression index in CRS. Thirdly, through the intervention of TIP60 expression in vitro, we established the genetic regulation of TIP60 on synaptic proteins, confirmed the TIP60 function as a specific coactivator for PPARγ and found that the PPARγ-mediated TIP60 function modulates transcriptional activation of synaptic proteins. Finally, the LV-TIP60OE and PPARγ antagonist, GW9662, were both administered in the CRS model and the data indicated that blocking PPARγ significantly weakened the protective effect of TIP60 against the CRS-induced depression. Conclusively, these findings together support TIP60 as a novel positive factor in response to acute stress and interacts with PPARγ to modulate the pathological mechanism of CRS-induced depression.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Defang Chen
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, 346 Guanhai Road, Laishan District, Yantai, Shandong, China
| | - Michael Ntim
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jincheng Lu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Min Xia
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - XueWei Yang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Supratik Kundu
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Rongxiao Guan
- Department of Cardiology, Institute of Heart and Vessel Diseases of Dalian Medical University, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
4
|
Maier A, Riedel-Heller SG, Pabst A, Luppa M. Risk factors and protective factors of depression in older people 65+. A systematic review. PLoS One 2021; 16:e0251326. [PMID: 33983995 PMCID: PMC8118343 DOI: 10.1371/journal.pone.0251326] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Identifying risk factors of depression can provide a better understanding of the disorder in older people. However, to minimize bias due to the influence of confounders and to detect reverse influence, a focus on longitudinal studies using multivariate analysis is required. DESIGN A systematic literature search was conducted by searching the databases MEDLINE, Cochrane, PsycINFO and Web of Science for all relevant articles published from January 2000 to the end of March 2020. The following inclusion criteria were used: prospective design, nationally or regionally representative sample, published in English or German, analyzed risk factors for depression of individuals 65+ identified by multivariate analysis, and provided validity of diagnostic instrument. All results of multivariate analysis were reported and summarized. RESULTS Thirty articles were identified. Heterogeneous results were found for education, female gender, self-rated health, cognitive impairment and older age, although significant in several studies. Findings hinted at a protective quality of physical activity. In terms of physical health, chronic disease and difficulty initiating sleep homogeneously increased risk of depression. Mobility impairment resulted as a risk factor in three studies. IADL impairment and vision impairment were mostly identified as significant risk factors. Alcohol consumption and smoking behavior yielded heterogenous results. Psychosocial factors were assessed similarly in multiple studies and yielded heterogenous results. LIMITATIONS Research was limited to articles published in English or German. Length of follow up was not considered for the presentation of results. Adjustments for and inclusion of different variables in the studies may distort results. CONCLUSION Our findings demonstrate the necessity of refined, more comparable assessment tools for evaluating potential risk factors.
Collapse
Affiliation(s)
- Alexander Maier
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Steffi G. Riedel-Heller
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Alexander Pabst
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Melanie Luppa
- Faculty of Medicine, Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Li Q, Zhang Y, Ge BY, Li N, Sun HL, Ntim M, Sun YP, Wu XF, Yang JY, Li S. GPR50 Distribution in the Mouse Cortex and Hippocampus. Neurochem Res 2020; 45:2312-2323. [PMID: 32696324 DOI: 10.1007/s11064-020-03089-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptor 50 (GPR50) belongs to the G protein-coupled receptor which is highly homologous with the sequence of melatonin receptor MT1 and MT2. GPR50 expression has previously been reported in many brain regions, like cortex, midbrain, pons, amygdala. But, the distribution of GPR50 in the hippocampus and cortex and the cell types expressing GPR50 is not yet clear. In this study, we examined the distribution of GPR50 in adult male mice by immunofluorescence. Our results showed that GPR50 was localized in the CA1-3 pyramidal cells and the granule cells of the dentate gyrus. GPR50 was also expressed in excitatory and inhibitory neurons. As inhibitory neurons also contain many types, we found that GPR50 was localized in some interneurons in which it was co-expressed with the calcium-binding proteins calbindin, calretinin, and parvalbumin. Besides, similar results were seen in the cortex. The widespread expression of GPR50 in the hippocampus and cortex suggests that GPR50 may be associated with synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Qifa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bi-Ying Ge
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hai- Lun Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yi-Ping Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, 116044, People's Republic of China.
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
6
|
Zhang X, Li Y, Ma L, Zhang G, Liu M, Wang C, Zheng Y, Li R. A new sex-specific underlying mechanism for female schizophrenia: accelerated skewed X chromosome inactivation. Biol Sex Differ 2020; 11:39. [PMID: 32680558 PMCID: PMC7368719 DOI: 10.1186/s13293-020-00315-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND X chromosome inactivation (XCI) is the mechanism by which the X-linked gene dosage is adjusted between the sexes. Evidence shows that many sex-specific diseases have their basis in X chromosome biology. While female schizophrenia patients often have a delayed age of disease onset and clinical phenotypes that are different from those of males, it is unknown whether the sex differences in schizophrenia are associated with X-linked gene dosage and the choice of X chromosome silencing in female cells. Previous studies demonstrated that sex chromosome aneuploidies may be related to the pathogeneses of some psychiatric diseases. Here, we examined the changes in skewed XCI in patients with schizophrenia. METHODS A total of 109 female schizophrenia (SCZ) patients and 80 age- and sex-matched healthy controls (CNTLs) were included in this study. We evaluated clinical features including disease onset age, disease duration, clinical symptoms by the Positive and Negative Syndrome Scale (PANSS) and antipsychotic treatment dosages. The XCI skewing patterns were analyzed by the methylation profile of the HUMARA gene found in DNA isolated from SCZ patient and CNTL leukocytes in the three age groups. RESULTS First, we found that the frequency of skewed XCI in SCZ patients was 4 times more than that in the age- and sex-matched CNTLs (p < 0.01). Second, we found an earlier onset of severe XCI skewing in the SCZ patients than in CNTLs. Third, we demonstrated a close relationship between the severity of skewed XCI and schizophrenic symptoms (PANSS score ≥ 90) as well as the age of disease onset. Fourth, we demonstrated that the skewed XCI in SCZ patients was not transmitted from the patients' mothers. LIMITATIONS The XCI skewing pattern might differ depending on tissues or organs. Although this is the first study to explore skewed XCI in SCZ, in the future, samples from different tissues or cells in SCZ patients might be important for understanding the impact of skewed XCI in this disease. CONCLUSION Our study, for the first time, investigated skewed XCI in female SCZ patients and presented a potential mechanism for the sex differences in SCZ. Our data also suggested that XCI might be a potential target for the development of female-specific interventions for SCZ.
Collapse
Affiliation(s)
- Xinzhu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Guofu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China. .,The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Watkins LR, Orlandi C. Orphan G Protein Coupled Receptors in Affective Disorders. Genes (Basel) 2020; 11:E694. [PMID: 32599826 PMCID: PMC7349732 DOI: 10.3390/genes11060694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022] Open
Abstract
G protein coupled receptors (GPCRs) are the main mediators of signal transduction in the central nervous system. Therefore, it is not surprising that many GPCRs have long been investigated for their role in the development of anxiety and mood disorders, as well as in the mechanism of action of antidepressant therapies. Importantly, the endogenous ligands for a large group of GPCRs have not yet been identified and are therefore known as orphan GPCRs (oGPCRs). Nonetheless, growing evidence from animal studies, together with genome wide association studies (GWAS) and post-mortem transcriptomic analysis in patients, pointed at many oGPCRs as potential pharmacological targets. Among these discoveries, we summarize in this review how emotional behaviors are modulated by the following oGPCRs: ADGRB2 (BAI2), ADGRG1 (GPR56), GPR3, GPR26, GPR37, GPR50, GPR52, GPR61, GPR62, GPR88, GPR135, GPR158, and GPRC5B.
Collapse
Affiliation(s)
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
8
|
Duarte IDAE, Milenkovic D, Borges TKDS, Rosa AJDM, Morand C, de Oliveira LDL, Costa AM. Acute Effects of the Consumption of Passiflora setacea Juice on Metabolic Risk Factors and Gene Expression Profile in Humans. Nutrients 2020; 12:nu12041104. [PMID: 32316129 PMCID: PMC7231153 DOI: 10.3390/nu12041104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Passiflora setacea (PS) is a passionfruit variety of the Brazilian savannah and is a rich source of plant food bioactives with potential anti-inflammatory activity. This study aimed to investigate the effect of an acute intake of PS juice upon inflammation, metabolic parameters, and gene expression on circulating immune cells in humans. Methods: Overweight male volunteers (n = 12) were enrolled in two double-blind placebo-controlled studies. Blood samples were collected from fasting volunteers 3 h after the consumption of 250 mL of PS juice or placebo (PB). Metabolic parameters (insulin, glucose, total cholesterol, high-density lipoprotein (LDL), high-density lipoprotein (HDL), and total triglycerides) and circulating cytokines were evaluated (study 1). Peripheral blood mononuclear cell (PBMC) from the same subjects were isolated and RNA was extracted for transcriptomic analyses using microarrays (study 2). Results: Insulin and homeostatic model assessment for insulin resistance (HOMA-IR) levels decreased statistically after the PS juice intake, whereas HDL level increased significantly. Interleukin (IL)-17A level increased after placebo consumption, whereas its level remained unchanged after PS juice consumption. Nutrigenomic analyses revealed 1327 differentially expressed genes after PS consumption, with modulated genes involved in processes such as inflammation, cell adhesion, or cytokine–cytokine receptor. Conclusion: Taken together, these clinical results support the hypothesis that PS consumption may help the prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília DF 70.910-900, Brazil;
- Correspondence: ; Tel.: +55-61-99996-8004
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (D.M.); (C.M.)
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | | | | | - Christine Morand
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France; (D.M.); (C.M.)
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília DF 70.910-900, Brazil;
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil; (A.J.d.M.R.); (A.M.C.)
| |
Collapse
|
9
|
Bache WK, DeLisi LE. The Sex Chromosome Hypothesis of Schizophrenia: Alive, Dead, or Forgotten? A Commentary and Review. MOLECULAR NEUROPSYCHIATRY 2018; 4:83-89. [PMID: 30397596 DOI: 10.1159/000491489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
Abstract
The X chromosome has long been an intriguing site for harboring genes that have importance in brain development and function. It has received the most attention for having specific genes underlying the X-linked inherited intellectual disabilities, but has also been associated with schizophrenia in a number of early studies. An X chromosome hypothesis for a genetic predisposition for schizophrenia initially came from the X chromosome anomaly population data showing an excess of schizophrenia in Klinefelter's (XXY) males and triple X (XXX) females. Crow and colleagues later expanded the X chromosome hypothesis to include the possibility of a locus on the Y chromosome and, specifically, genes on X that escaped inactivation and are X-Y homologous loci. Some new information about possible risk loci on these chromosomes has come from the current large genetic consortia genome-wide association studies, suggesting that perhaps this hypothesis needs to be revisited for some schizophrenias. The following commentary reviews the early and more recent literature supporting or refuting this dormant hypothesis and emphasizes the possible candidate genes still of interest that could be explored in further studies.
Collapse
Affiliation(s)
- William K Bache
- VA Boston Healthcare System, Brockton, Massachusetts, USA.,Harvard South Shore Residency Program, Brockton, Massachusetts, USA
| | - Lynn E DeLisi
- VA Boston Healthcare System, Brockton, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Pinares-Garcia P, Stratikopoulos M, Zagato A, Loke H, Lee J. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci 2018; 8:E154. [PMID: 30104506 PMCID: PMC6120011 DOI: 10.3390/brainsci8080154] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Males and females sometimes significantly differ in their propensity to develop neurological disorders. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD) and autism. Despite this, biological sex is rarely considered when making treatment decisions in neurological disorders. A better understanding of the molecular mechanism(s) underlying sex differences in the healthy and diseased brain will help to devise diagnostic and therapeutic strategies optimal for each sex. Thus, the aim of this review is to discuss the available evidence on sex differences in neuropsychiatric and neurodegenerative disorders regarding prevalence, progression, symptoms and response to therapy. We also discuss the sex-related factors such as gonadal sex hormones and sex chromosome genes and how these might help to explain some of the clinically observed sex differences in these disorders. In particular, we highlight the emerging role of the Y-chromosome gene, SRY, in the male brain and its potential role as a male-specific risk factor for disorders such as PD, autism, and ADHD in many individuals.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Marielle Stratikopoulos
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Alice Zagato
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Hannah Loke
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | - Joohyung Lee
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
11
|
Zhang X, Yang J, Li Y, Ma X, Li R. Sex chromosome abnormalities and psychiatric diseases. Oncotarget 2018; 8:3969-3979. [PMID: 27992373 PMCID: PMC5354807 DOI: 10.18632/oncotarget.13962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/07/2016] [Indexed: 12/02/2022] Open
Abstract
Excesses of sex chromosome abnormalities in patients with psychiatric diseases have recently been observed. It remains unclear whether sex chromosome abnormalities are related to sex differences in some psychiatric diseases. While studies showed evidence of susceptibility loci over many sex chromosomal regions related to various mental diseases, others demonstrated that the sex chromosome aneuploidies may be the key to exploring the pathogenesis of psychiatric disease. In this review, we will outline the current evidence on the interaction of sex chromosome abnormalities with schizophrenia, autism, ADHD and mood disorders.
Collapse
Affiliation(s)
- Xinzhu Zhang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China
| | - Xin Ma
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China
| | - Rena Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China.,Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, USA
| |
Collapse
|
12
|
Khan MZ, He L. Neuro-psychopharmacological perspective of Orphan receptors of Rhodopsin (class A) family of G protein-coupled receptors. Psychopharmacology (Berl) 2017; 234:1181-1207. [PMID: 28289782 DOI: 10.1007/s00213-017-4586-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND In the central nervous system (CNS), G protein-coupled receptors (GPCRs) are the most fruitful targets for neuropsychopharmacological drug development. Rhodopsin (class A) is the most studied class of GPCR and includes orphan receptors for which the endogenous ligand is not known or is unclear. Characterization of orphan GPCRs has proven to be challenging, and the production pace of GPCR-based drugs has been incredibly slow. OBJECTIVE Determination of the functions of these receptors may provide unexpected insight into physiological and neuropathological processes. Advances in various methods and techniques to investigate orphan receptors including in situ hybridization and knockdown/knockout (KD/KO) showed extensive expression of these receptors in the mammalian brain and unmasked their physiological and neuropathological roles. Due to these rapid progress and development, orphan GPCRs are rising as a new and promising class of drug targets for neurodegenerative diseases and psychiatric disorders. CONCLUSION This review presents a neuropsychopharmacological perspective of 26 orphan receptors of rhodopsin (class A) family, namely GPR3, GPR6, GPR12, GPR17, GPR26, GPR35, GPR39, GPR48, GPR49, GPR50, GPR52, GPR55, GPR61, GPR62, GPR63, GPR68, GPR75, GPR78, GPR83, GPR84, GPR85, GPR88, GPR153, GPR162, GPR171, and TAAR6. We discussed the expression of these receptors in mammalian brain and their physiological roles. Furthermore, we have briefly highlighted their roles in neurodegenerative diseases and psychiatric disorders including Alzheimer's disease, Parkinson's disease, neuroinflammation, inflammatory pain, bipolar and schizophrenic disorders, epilepsy, anxiety, and depression.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China.
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, Jiangsu Province, 210009, China
| |
Collapse
|
13
|
Khan MZ, He L, Zhuang X. The emerging role of GPR50 receptor in brain. Biomed Pharmacother 2016; 78:121-128. [PMID: 26898433 DOI: 10.1016/j.biopha.2016.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023] Open
Abstract
GPR50 receptor one of the member of G protein-coupled receptors (GPCRs) is extensively expressed in the pituitary, hypothalamus,cortex, midbrain, pons, amygdala, and in several brainstem nuclei. The exact function of this receptor in brain is remains unclear. This review presents current knowledge regarding the function of GPR50 receptor in brain, with a focus on role of this receptor in the hypothalamus-pituitary-adrenal (HPA) axis and the glucocorticoid receptor (GR) signaling, leptin signaling, adaptive thermogenesis, torpor, neurite outgrowth, and self-renewal and neuronal differentiation of neural progenitor cells NPCs. Although the results are encouraging, further research is needed to clarify GPR50 role in neurobiology of mood disorders, adaptive thermogenesis, torpor, and in the pathophysiology of neurological disorders.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| | - Ling He
- China Pharmaceutical University, Department of Pharmacology, No. 24 Tong Jia Xiang, Nanjing,Jiang Su Province 210009, China
| | - Xuxu Zhuang
- China Pharmaceutical University, Department of Pharmacology, No. 24 Tong Jia Xiang, Nanjing,Jiang Su Province 210009, China
| |
Collapse
|