1
|
Schilling K. A Gene-Expression Based Comparison of Murine and Human Inhibitory Interneurons in the Cerebellar Cortex and Nuclei. CEREBELLUM (LONDON, ENGLAND) 2025; 24:55. [PMID: 40019676 PMCID: PMC11870911 DOI: 10.1007/s12311-025-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Cerebellar information processing is critically shaped by several types of inhibitory interneurons forming various intra-cerebellar feed-forward and feed-back loops. Evidence gathered over the past decades has focused interest on a non-uniform set of cortical inhibitory interneurons distinct from "classical" Golgi, basket or stellate cells, summarily referred to as PLIs (for Purkinje cell layer interneurons). Similarly, cerebellar nuclear inhibitory interneurons have gained increasing attention. Our understanding of the functions of these cells is still fragmentary. For humans, we lack functional data, and even any dependable morphological classification for these cells. Here, I used publicly available single cell based gene expression data to compare inhibitory interneurons from the cerebellar cortex and inhibitory nuclear neurons of humans and mice. Integration of nuclear and cortical cells revealed transcriptomic similarities between subsets of these cells and suggest known characteristics of cortical cell types may be helpful to devise strategies for the further characterization of nuclear inhibitory interneurons. Comparison of human and murine PLIs indicate that these strongly differ by the expression of genes used to characterize these cells in mice. This limits their utility to identify and classify human PLIs, and leaves the question open as to the number and characteristics of non-Golgi inhibitory interneurons resident in the cerebellar granule cell and Purkinje cell layers in humans.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut- Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, D53115, Bonn, Germany.
| |
Collapse
|
2
|
Cheng Y, Xu SM, Takenaka K, Lindner G, Curry-Hyde A, Janitz M. A Unique Circular RNA Expression Pattern in the Peripheral Blood of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Gene 2023:147568. [PMID: 37328077 DOI: 10.1016/j.gene.2023.147568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with obscure aetiology. The underdiagnosis rate of ME/CFS is high due to the lack of diagnostic criteria based on objective markers. In recent years, circRNAs have emerged as potential genetic biomarkers for neurological diseases, including Parkinson's disease and Alzheimer's disease, making them likely to have the same prospect of being biomarkers in ME/CFS. However, despite the extensive amount of research that has been performed on the transcriptomes of ME/CFS patients, all of them are solely focused on linear RNAs, and the profiling of circRNAs in ME/CFS has been completely omitted. In this study, we investigated the expression profiles of circRNAs, comparing ME/CFS patients and controls before and after two sessions of cardiopulmonary exercise longitudinally. In patients with ME/CFS, the number of detected circRNAs was higher compared to healthy controls, indicating potential differences in circRNA expression associated with the disease. Additionally, healthy controls showed an increase in the number of circRNAs following exercise testing, while no similar pattern was evident in ME/CFS patients, further highlighting physiological differences between the two groups. A lack of correlation was observed between differentially expressed circRNAs and their corresponding coding genes in terms of expression and function, suggesting the potential of circRNAs as independent biomarkers in ME/CFS. Specifically, 14 circRNAs were highly expressed in ME/CFS patients but absent in controls throughout the exercise study, indicating a unique molecular signature specific to ME/CFS patients and providing potential diagnostic biomarkers for the disease. Significant enrichment of protein and gene regulative pathways were detected in relation to five of these 14 circRNAs based on their predicted miRNA target genes. Overall, this is the first study to describe the circRNA expression profile in peripheral blood of ME/CFS patients, providing valuable insights into the molecular mechanisms underlying the disease.
Collapse
Affiliation(s)
- Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Grace Lindner
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Hegedüs L, Livingstone E, Bánkfalvi Á, Viehof J, Enyedi Á, Bilecz Á, Győrffy B, Baranyi M, Tőkés AM, Gil J, Marko-Varga G, Griewank KG, Zimmer L, Váraljai R, Sucker A, Zaremba A, Schadendorf D, Aigner C, Hegedüs B. The Prognostic Relevance of PMCA4 Expression in Melanoma: Gender Specificity and Implications for Immune Checkpoint Inhibition. Int J Mol Sci 2022; 23:3324. [PMID: 35328746 PMCID: PMC8949876 DOI: 10.3390/ijms23063324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I-III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Elisabeth Livingstone
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Ágnes Bánkfalvi
- Department of Pathology, University Medicine Essen, 45147 Essen, Germany;
| | - Jan Viehof
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Ágnes Enyedi
- Department of Transfusiology, Semmelweis University, 1085 Budapest, Hungary;
| | - Ágnes Bilecz
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1085 Budapest, Hungary;
| | - Marcell Baranyi
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 00 Lund, Sweden;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
| | - Klaus G. Griewank
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Lisa Zimmer
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Renáta Váraljai
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Antje Sucker
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Anne Zaremba
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Dirk Schadendorf
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Clemens Aigner
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Balázs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| |
Collapse
|
4
|
Structure, Function and Regulation of the Plasma Membrane Calcium Pump in Health and Disease. Int J Mol Sci 2022; 23:ijms23031027. [PMID: 35162948 PMCID: PMC8835232 DOI: 10.3390/ijms23031027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
In this review, I summarize the present knowledge of the structural and functional properties of the mammalian plasma membrane calcium pump (PMCA). It is outlined how the cellular expression of the different spliced isoforms of the four genes are regulated under normal and pathological conditions.
Collapse
|
5
|
Alhamoudi KM, Barhoumi T, Al-Eidi H, Asiri A, Nashabat M, Alaamery M, Alharbi M, Alhaidan Y, Tabarki B, Umair M, Alfadhel M. A homozygous nonsense mutation in DCBLD2 is a candidate cause of developmental delay, dysmorphic features and restrictive cardiomyopathy. Sci Rep 2021; 11:12861. [PMID: 34145321 PMCID: PMC8213761 DOI: 10.1038/s41598-021-92026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
DCBLD2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient's phenotype. This nonsense variant falls in the extracellular N-terminus of DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband's skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy.
Collapse
Affiliation(s)
- Kheloud M Alhamoudi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Hamad Al-Eidi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Asiri
- Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, 225, Bisha, 67714, Kingdom of Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Masheal Alharbi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia. .,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Merino-Wong M, Niemeyer BA, Alansary D. Plasma Membrane Calcium ATPase Regulates Stoichiometry of CD4 + T-Cell Compartments. Front Immunol 2021; 12:687242. [PMID: 34093590 PMCID: PMC8175910 DOI: 10.3389/fimmu.2021.687242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Immune responses involve mobilization of T cells within naïve and memory compartments. Tightly regulated Ca2+ levels are essential for balanced immune outcomes. How Ca2+ contributes to regulating compartment stoichiometry is unknown. Here, we show that plasma membrane Ca2+ ATPase 4 (PMCA4) is differentially expressed in human CD4+ T compartments yielding distinct store operated Ca2+ entry (SOCE) profiles. Modulation of PMCA4 yielded a more prominent increase of SOCE in memory than in naïve CD4+ T cell. Interestingly, downregulation of PMCA4 reduced the effector compartment fraction and led to accumulation of cells in the naïve compartment. In silico analysis and chromatin immunoprecipitation point towards Ying Yang 1 (YY1) as a transcription factor regulating PMCA4 expression. Analyses of PMCA and YY1 expression patterns following activation and of PMCA promoter activity following downregulation of YY1 highlight repressive role of YY1 on PMCA expression. Our findings show that PMCA4 adapts Ca2+ levels to cellular requirements during effector and quiescent phases and thereby represent a potential target to intervene with the outcome of the immune response.
Collapse
Affiliation(s)
| | | | - Dalia Alansary
- Molecular Biophysics, Saarland University, Homburg, Germany
| |
Collapse
|
7
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Hattangady NG, Foster J, Lerario AM, Ponce-Balbuena D, Rege J, Monticone S, Rainey WE, Mulatero P, Else T. Molecular and Electrophysiological Analyses of ATP2B4 Gene Variants in Bilateral Adrenal Hyperaldosteronism. Discov Oncol 2020; 11:52-62. [PMID: 32002807 DOI: 10.1007/s12672-019-00375-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension with a high prevalence among patients with resistant hypertension. Despite the recent discovery of somatic variants in aldosterone-producing adenoma (APA)-associated PA, causes for PA due to bilateral aldosterone production (bilateral hyperaldosteronism; BHA) remain unknown. Herein, we identified rare gene variants in ATP2B4, in a cohort of patients with BHA. ATP2B4 belongs to the same family of Ca-ATPases as ATP2B3, which is involved in the pathogenesis of APA. Endogenous ATP2B4 expression was characterized in adrenal tissue, and the gene variants were functionally analyzed for effects on aldosterone synthase (CYP11B2) expression, steroid production in basal and agonist-stimulated conditions, and for changes in biophysical properties of channel properties. Knockdown of ATP2B4 in HAC15 exhibited reduced angiotensin II stimulation in one of four shRNA clones. Stable HAC15 cell lines with doxycycline (dox) - inducible wild-type and variant forms of ATP2B4 - were generated, and dox-induced upregulation of ATP2B4 mRNA and protein was confirmed. However, ATP2B4 variants did not alter basal or agonist-stimulated CYP11B2 expression. Whole-cell recordings in HAC15 cells indicated robust endogenous ATP2B4 conductance in native cells but reduced conductance with overexpressed WT and variant ATP2B4. The previously defined PA-causing ATP2B3 variant served as a positive control and exhibited elevated CYP11B2 mRNA. In conclusion, while this study did not confirm a pathogenic role for ATP2B4 variants in BHA, we describe the sequencing analysis for familial and sporadic BHA and outline a template for the thorough in vitro characterization of gene variants.
Collapse
Affiliation(s)
- Namita Ganesh Hattangady
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jessica Foster
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
| | | | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Silvia Monticone
- Department of Medical Sciences, Division of Internal Medicine and Hypertension, University of Torino, Via Genova 3, 10126, Torino, Italy
| | - William E Rainey
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Paolo Mulatero
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Else
- Department of Internal Medicine, Division of Metabolism, Endocrinology & Diabetes, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
TrkB Signaling Influences Gene Expression in Cortistatin-Expressing Interneurons. eNeuro 2020; 7:ENEURO.0310-19.2019. [PMID: 31941661 PMCID: PMC7031852 DOI: 10.1523/eneuro.0310-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signals through its cognate receptor tropomyosin receptor kinase B (TrkB) to promote the function of several classes of inhibitory interneurons. We previously reported that loss of BDNF-TrkB signaling in cortistatin (Cort)-expressing interneurons leads to behavioral hyperactivity and spontaneous seizures in mice. We performed bulk RNA sequencing (RNA-seq) from the cortex of mice with disruption of BDNF-TrkB signaling in cortistatin interneurons, and identified differential expression of genes important for excitatory neuron function. Using translating ribosome affinity purification and RNA-seq, we define a molecular profile for Cort-expressing inhibitory neurons and subsequently compare the translatome of normal and TrkB-depleted Cort neurons, revealing alterations in calcium signaling and axon development. Several of the genes enriched in Cort neurons and differentially expressed in TrkB-depleted neurons are also implicated in autism and epilepsy. Our findings highlight TrkB-dependent molecular pathways as critical for the maturation of inhibitory interneurons and support the hypothesis that loss of BDNF signaling in Cort interneurons leads to altered excitatory/inhibitory balance.
Collapse
|
10
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Gong D, Chi X, Ren K, Huang G, Zhou G, Yan N, Lei J, Zhou Q. Structure of the human plasma membrane Ca 2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nat Commun 2018; 9:3623. [PMID: 30190470 PMCID: PMC6127144 DOI: 10.1038/s41467-018-06075-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022] Open
Abstract
Plasma membrane Ca2+-ATPases (PMCAs) are key regulators of global Ca2+ homeostasis and local intracellular Ca2+ dynamics. Recently, Neuroplastin (NPTN) and basigin were identified as previously unrecognized obligatory subunits of PMCAs that dramatically increase the efficiency of PMCA-mediated Ca2+ clearance. Here, we report the cryo-EM structure of human PMCA1 (hPMCA1) in complex with NPTN at a resolution of 4.1 Å for the overall structure and 3.9 Å for the transmembrane domain. The single transmembrane helix of NPTN interacts with the TM8-9-linker and TM10 of hPMCA1. The subunits are required for the hPMCA1 functional activity. The NPTN-bound hPMCA1 closely resembles the E1-Mg2+ structure of endo(sarco)plasmic reticulum Ca2+ ATPase and the Ca2+ site is exposed through a large open cytoplasmic pathway. This structure provides insight into how the subunits bind to the PMCAs and serves as an important basis for understanding the functional mechanisms of this essential calcium pump family. The plasma membrane Ca2+ ATPase (PMCA) is essential for maintaining Ca2+ homeostasis in eukaryotic cells, and neuroplastin (NPTN) was recently identified as an obligatory subunit of PMCA. Here the authors present the cryo-EM structure of NPTN bound to human PMCA1, which reveals that the NPTN transmembrane (TM) helix interacts with TM10 and the TM8-9-linker of PMCA1.
Collapse
Affiliation(s)
- Deshun Gong
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Ximin Chi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kang Ren
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gewei Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Nieng Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiang Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Travaglini L, Aiello C, Stregapede F, D’Amico A, Alesi V, Ciolfi A, Bruselles A, Catteruccia M, Pizzi S, Zanni G, Loddo S, Barresi S, Vasco G, Tartaglia M, Bertini E, Nicita F. The impact of next-generation sequencing on the diagnosis of pediatric-onset hereditary spastic paraplegias: new genotype-phenotype correlations for rare HSP-related genes. Neurogenetics 2018; 19:111-121. [DOI: 10.1007/s10048-018-0545-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
|
13
|
Chen M, Laursen SH, Habekost M, Knudsen CH, Buchholdt SH, Huang J, Xu F, Liu X, Bolund L, Luo Y, Nissen P, Febbraro F, Denham M. Central and Peripheral Nervous System Progenitors Derived from Human Pluripotent Stem Cells Reveal a Unique Temporal and Cell-Type Specific Expression of PMCAs. Front Cell Dev Biol 2018; 6:5. [PMID: 29468158 PMCID: PMC5808168 DOI: 10.3389/fcell.2018.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/19/2018] [Indexed: 01/23/2023] Open
Abstract
The P-type ATPases family consists of ion and lipid transporters. Their unique diversity in function and expression is critical for normal development. In this study we investigated human pluripotent stem cells (hPSC) and different neural progenitor states to characterize the expression of the plasma membrane calcium ATPases (PMCAs) during human neural development and in mature mesencephalic dopaminergic (mesDA) neurons. Our RNA sequencing data identified a dynamic change in ATPase expression correlating with the differentiation time of the neural progenitors, which was independent of the neuronal progenitor type. Expression of ATP2B1 and ATP2B4 were the most abundantly expressed, in accordance with their main role in Ca2+ regulation and we observed all of the PMCAs to have a subcellular punctate localization. Interestingly in hPSCs ATP2B1 and ATP2B3 were highly expressed in a cell cycle specific manner and ATP2B2 and ATP2B4 were highly expressed in a hPSC sub-population. In neural rosettes a strong apical PMCA expression was identified in the luminal region. Lastly, we confirmed all PMCAs to be expressed in mesDA neurons, however at varying levels. Our results reveal that PMCA expression dynamically changes during stem cell differentiation and highlights the diverging needs of cell populations to regulate and properly integrate Ca2+ changes, which can ultimately correspond to changes in specific stem cell transcription states.
Collapse
Affiliation(s)
- Muwan Chen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sofie H Laursen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mette Habekost
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Camilla H Knudsen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Susanne H Buchholdt
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jinrong Huang
- Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China
| | - Fengping Xu
- Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Liu
- Beijing Genomics Institute, Shenzhen, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Poul Nissen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Fabia Febbraro
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
The PMCA pumps in genetically determined neuronal pathologies. Neurosci Lett 2018; 663:2-11. [DOI: 10.1016/j.neulet.2017.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
|
15
|
Pang SYY, Teo KC, Hsu JS, Chang RSK, Li M, Sham PC, Ho SL. The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: a review. Transl Neurodegener 2017; 6:27. [PMID: 29046784 PMCID: PMC5639582 DOI: 10.1186/s40035-017-0098-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
The clinical diagnosis of neurodegenerative disorders based on phenotype is difficult in heterogeneous conditions with overlapping symptoms. It does not take into account the disease etiology or the highly variable clinical course even amongst patients diagnosed with the same disorder. The advent of next generation sequencing (NGS) has allowed for a system-wide, unbiased approach to identify all gene variants in the genome simultaneously. With the plethora of new genes being identified, genetic rather than phenotype-based classification of Mendelian diseases such as spinocerebellar ataxia (SCA), hereditary spastic paraplegia (HSP) and Charcot-Marie-Tooth disease (CMT) has become widely accepted. It has also become clear that gene variants play a role in common and predominantly sporadic neurodegenerative diseases such as Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). The observation of pleiotropy has emerged, with mutations in the same gene giving rise to diverse phenotypes, which further increases the complexity of phenotype-genotype correlation. Possible mechanisms of pleiotropy include different downstream effects of different mutations in the same gene, presence of modifier genes, and oligogenic inheritance. Future directions include development of bioinformatics tools and establishment of more extensive public genotype/phenotype databases to better distinguish deleterious gene variants from benign polymorphisms, translation of genetic findings into pathogenic mechanisms through in-vitro and in-vivo studies, and ultimately finding disease-modifying therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Kay-Cheong Teo
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Jacob Shujui Hsu
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Richard Shek-Kwan Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Miaoxin Li
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China.,Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, People's Republic of China
| | - Pak-Chung Sham
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
16
|
Abstract
Hereditary spastic paraplegia comprises a wide and heterogeneous group of inherited neurodegenerative and neurodevelopmental disorders resulting from primary retrograde dysfunction of the long descending fibers of the corticospinal tract. Although spastic paraparesis and urinary dysfunction represent the most common clinical presentation, a complex group of different neurological and systemic compromise has been recognized recently and a growing number of new genetic subtypes were described in the last decade. Clinical characterization of individual and familial history represents the main step during diagnostic workup; however, frequently, few and unspecific data allows a low rate of definite diagnosis based solely in clinical and neuroimaging basis. Likewise, a wide group of neurological acquired and inherited disorders should be included in the differential diagnosis and properly excluded after a complete laboratorial, neuroimaging, and genetic evaluation. The aim of this review article is to provide an extensive overview regarding the main clinical and genetic features of the classical and recently described subtypes of hereditary spastic paraplegia (HSP).
Collapse
|
17
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Robertson SYT, Wen X, Yin K, Chen J, Smith CE, Paine ML. Multiple Calcium Export Exchangers and Pumps Are a Prominent Feature of Enamel Organ Cells. Front Physiol 2017; 8:336. [PMID: 28588505 PMCID: PMC5440769 DOI: 10.3389/fphys.2017.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Calcium export is a key function for the enamel organ during all stages of amelogenesis. Expression of a number of ATPase calcium transporting, plasma membrane genes (ATP2B1-4/PMCA1-4), solute carrier SLC8A genes (sodium/calcium exchanger or NCX1-3), and SLC24A gene family members (sodium/potassium/calcium exchanger or NCKX1-6) have been investigated in the developing enamel organ in earlier studies. This paper reviews the calcium export pathways that have been described and adds novel insights to the spatiotemporal expression patterns of PMCA1, PMCA4, and NCKX3 during amelogenesis. New data are presented to show the mRNA expression profiles for the four Atp2b1-4 gene family members (PMCA1-4) in secretory-stage and maturation-stage rat enamel organs. These data are compared to expression profiles for all Slc8a and Slc24a gene family members. PMCA1, PMCA4, and NCKX3 immunolocalization data is also presented. Gene expression profiles quantitated by real time PCR show that: (1) PMCA1, 3, and 4, and NCKX3 are most highly expressed during secretory-stage amelogenesis; (2) NCX1 and 3, and NCKX6 are expressed during secretory and maturation stages; (3) NCKX4 is most highly expressed during maturation-stage amelogenesis; and (4) expression levels of PMCA2, NCX2, NCKX1, NCKX2, and NCKX5 are negligible throughout amelogenesis. In the enamel organ PMCA1 localizes to the basolateral membrane of both secretory and maturation ameloblasts; PMCA4 expression is seen in the basolateral membrane of secretory and maturation ameloblasts, and also cells of the stratum intermedium and papillary layer; while NCKX3 expression is limited to Tomes' processes, and the apical membrane of maturation-stage ameloblasts. These new findings are discussed in the perspective of data already present in the literature, and highlight the multiplicity of calcium export systems in the enamel organ needed to regulate biomineralization.
Collapse
Affiliation(s)
- Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Xin Wen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| | - Junjun Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States.,Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China.,Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Charles E Smith
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill UniversityMontreal, QC, Canada
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern CaliforniaLos Angeles, CA, United States
| |
Collapse
|
19
|
Minich RR, Li J, Tempel BL. Early growth response protein 1 regulates promoter activity of α-plasma membrane calcium ATPase 2, a major calcium pump in the brain and auditory system. BMC Mol Biol 2017; 18:14. [PMID: 28532435 PMCID: PMC5441030 DOI: 10.1186/s12867-017-0092-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Along with sodium/calcium (Ca2+) exchangers, plasma membrane Ca2+ ATPases (ATP2Bs) are main regulators of intracellular Ca2+ levels. There are four ATP2B paralogs encoded by four different genes. Atp2b2 encodes the protein pump with the fastest activation, ATP2B2. In mice, the Atp2b2 transcript has several alternate transcriptional start site variants: α, β, µ and δ. These variants are expressed in developmental and tissue specific manners. The α and β Atp2b2 transcripts are equally expressed in the brain. αAtp2b2 is the only transcript found in the outer hair cells of young mice (Silverstein RS, Tempel BL. in Neuroscience 141:245-257, 2006). Mutations in the coding region of the mouse Atp2b2 gene indicate a narrow window for tolerated dysfunction of the ATP2B2 protein, specifically in the auditory system. This highlights the necessity of tight regulation of this gene for normal cell physiology. RESULTS Although ATP2Bs are important regulators of Ca2+ in many cell types, little is known about their transcriptional regulation. This study identifies the proximal promoter of the αAtp2b2 transcript. Further investigations indicate that ATOH1 and EGR1 modulate promoter activity. Additionally, we report that EGR1 increases endogenous expression of Atp2b2 transcript in two cell lines. Electrophoretic mobility shift assays (EMSA) indicate that EGR1 binds to a specific site in the CpG island of the αAtp2b2 promoter. CONCLUSION This study furthers our understanding of Atp2b2 regulation by: (I) elucidating transcriptional regulatory mechanisms for Atp2b2, and (II) identifying transcription factors that modulate expression of Atp2b2 in the brain and peripheral auditory system and (III) allows for future studies modulating gene expression of Atp2b2.
Collapse
Affiliation(s)
- Rebecca R. Minich
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Jin Li
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
| | - Bruce L. Tempel
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA 98195 USA
- Department of Otolaryngology-HNS, School of Medicine, University of Washington, Box 357923, Seattle, WA 98195 USA
- Virginia Merrill Bloedel Hearing Research Center, School of Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
20
|
Basit S, Albalawi AM, Alharby E, Khoshhal KI. Exome sequencing identified rare variants in genes HSPG2 and ATP2B4 in a family segregating developmental dysplasia of the hip. BMC MEDICAL GENETICS 2017; 18:34. [PMID: 28327142 PMCID: PMC5361705 DOI: 10.1186/s12881-017-0393-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022]
Abstract
Background Developmental dysplasia of the hip (DDH) is a common pathological condition of the musculoskeletal system in infants which results in a congenital and developmental malformation of the hip joint. DDH is a spectrum of pathologies affecting the infant hip ranging from asymptomatic subtle radiographic signs through mild instability to frank dislocations with acetabular dysplasia. A Saudi family with three affected individuals with DDH was identified and genetic analysis was performed to detect the possible genetic defect(s) underlying DDH in the affected members of the family. Methods We performed whole genome genotyping using Illumina HumanOmni 2.5 M array and whole exome sequencing (WES) using Nextera Rapid capture kit and Illumina NextSeq500 instrument in four individuals of a family with DDH. Results SNP data analysis did not identify any runs of homozygosity and copy number variations. Identity-by-descent (IBD) analysis on whole genome genotyping data identified a shared haplotypes on chromosome 1 in affected individuals. An analysis of the WES data identified rare heterozygous variants in HSPG2 and ATP2B4 genes in the affected individuals. Multiple prediction software predicted that the variants identified are damaging. Moreover, in silico analysis showed that HSPG2 regulates ATP2B4 expression using a variety of transcription factors. Conclusion Our results indicate that there might be a functional epistatic interaction between HSPG2 and ATP2B4, and DDH in the family studied is due to a combined effect of both variants. These variants are also present in the asymptomatic mother suggesting that the variants in HSPG2 and ATP2B4 are incompletely penetrant. This study provides the first evidence of digenic inheritance of DDH in a family and extends the spectrum of genetic heterogeneity in this human disorder. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0393-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sulman Basit
- Centre for Genetics and Inherited Diseases, Taibah University, Almadinah Almunawwarah, 30001, Saudi Arabia.
| | - Alia M Albalawi
- Centre for Genetics and Inherited Diseases, Taibah University, Almadinah Almunawwarah, 30001, Saudi Arabia
| | - Essa Alharby
- Centre for Genetics and Inherited Diseases, Taibah University, Almadinah Almunawwarah, 30001, Saudi Arabia
| | - Khalid I Khoshhal
- Department of Orthopedic Surgery, College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| |
Collapse
|
21
|
Calì T, Brini M, Carafoli E. Regulation of Cell Calcium and Role of Plasma Membrane Calcium ATPases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:259-296. [PMID: 28526135 DOI: 10.1016/bs.ircmb.2017.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The plasma membrane Ca2+ ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It has 10 transmembrane helices and 2 cytosolic loops, one of which contains the catalytic center. Its most distinctive feature is a C-terminal tail that contains most of the regulatory sites including that for calmodulin. The pump is also regulated by acidic phospholipids, kinases, a dimerization process, and numerous protein interactors. In mammals, four genes code for the four basic isoforms. Isoform complexity is increased by alternative splicing of primary transcripts. Pumps 2 and 3 are expressed preferentially in the nervous system. The pumps coexist with more powerful systems that clear Ca2+ from the bulk cytosol: their role is thus the regulation of Ca2+ in selected subplasma membrane microdomains, where a number of important Ca2+-dependent enzymes interact with them. Malfunctions of the pump lead to disease phenotypes that affect the nervous system preferentially.
Collapse
Affiliation(s)
- T Calì
- University of Padova, Padova, Italy
| | - M Brini
- University of Padova, Padova, Italy
| | - E Carafoli
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
22
|
Brini M, Carafoli E, Calì T. The plasma membrane calcium pumps: focus on the role in (neuro)pathology. Biochem Biophys Res Commun 2017; 483:1116-1124. [DOI: 10.1016/j.bbrc.2016.07.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
|
23
|
Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1351-63. [PMID: 26707182 DOI: 10.1016/j.bbamcr.2015.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 11/20/2022]
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
|