1
|
Chen Y, Chen L, Hu L, Wang J, Zhang J, Lyu H, Xu J, Chen J, Yu H. Cerebellum abnormalities in vascular mild cognitive impairment with depression symptom patients: A multimodal magnetic resonance imaging study. Brain Res Bull 2025; 221:111213. [PMID: 39824229 DOI: 10.1016/j.brainresbull.2025.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Subcortical vascular mild cognitive impairment (svMCI) frequently occurs alongside depression symptoms, significantly affecting patients' quality of life. While cognitive decline and depression symptoms are linked to cerebellar changes, the specific relationship between these changes and cognitive status in svMCI patients with depression symptoms remains unclear. OBJECTIVE This study aimed to investigates the gray matter volume and functional alterations in the cerebellum of svMCI patients, with and without depression symptoms, and their correlation with cognitive and depressive symptoms. METHODS We enrolled 16 svMCI patients with depression symptoms (svMCI+D), 15 without (svMCI-D), and 12 normal controls (NC). Multimodal MRI scans were conducted, assessing gray matter volume and resting-state functional connectivity (RSFC) in the cerebellum. Correlations between RSFC and clinical scores from the Montreal Cognitive Assessment (MoCA) and Hamilton Depression Scale (HAMD) were analyzed. RESULTS Structural analysis indicated gray matter atrophy in left cerebellar lobules I_IV and VI (Cere6.L) in svMCI patients. svMCI+D patients showed reduced RSFC between Cere6.L and left cerebellar region IX and the left superior frontal gyrus (SFGdor.L). Both svMCI+D and svMCI-D groups showed increased RSFC between Cere6.L and the right caudate nucleus. RSFC between Cere6.L and SFGdor.L correlated negatively with HAMD scores in svMCI+D and positively with MoCA scores in svMCI-D. RSFC between Cere6.L and the right caudate nucleus also correlated positively with MoCA in the svMCI-D. CONCLUSION Cerebellar abnormalities, including the gray matter atrophy and RSFC changes, are associated with svMCI, particularly when depression symptoms are present. These results suggest potential diagnostic and therapeutic implications for svMCI and emphasize the need for further research on the cerebellum's role in cognitive and emotional disorders.
Collapse
Affiliation(s)
- Yirong Chen
- Department of Acupuncture and Moxibustion, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Liling Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Liyu Hu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jianjun Wang
- Department of Neurology and Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jinhuan Zhang
- Department of Acupuncture and Moxibustion, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Hanqing Lyu
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jianxiang Chen
- Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China.
| | - Haibo Yu
- Department of Acupuncture and Moxibustion, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China.
| |
Collapse
|
2
|
Ji S, An W, Zhang J, Zhou C, Liu C, Yu H. The different impacts of functional network centrality and connectivity on the complexity of brain signals in healthy control and first-episode drug-naïve patients with major depressive disorder. Brain Imaging Behav 2025; 19:111-123. [PMID: 39532824 DOI: 10.1007/s11682-024-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
In recent years, brain signal complexity has gained attention as an indicator of brain well-being and a predictor of disease and dysfunction. Brain entropy quantifies this complexity. Assessment of functional network centrality and connectivity reveals that information communication induces neural signal oscillations in certain brain regions. However, their relationship is uncertain. This work studied brain signal complexity, network centrality, and connectivity in both healthy and depressed individuals. The current work comprised a sample of 124 first-episode drug-naïve patients with major depressive disorder (MDD) and 105 healthy controls (HC). Six functional networks were created for each person using resting-state functional magnetic resonance imaging. For each network, entropy, centrality, and connectivity were computed. Using structural equation modeling, this study examined the associations between brain network entropy, centrality, and connectivity. The findings demonstrated substantial correlations of entropy with both centrality and connectivity in HC and these correlation patterns were disrupted in MDD. Compared to HC, MDD exhibited higher entropy in four networks and demonstrated changes in centralities across all networks. The structural equation modeling showed that network centralities, connectivity, and depression severity had impacts on brain entropy. Nevertheless, no impacts were observed in the opposite directions. This study indicated that the complexity of brain signals was influenced not only by the interactions among different areas of the brain but also by the severity level of depression. These findings enhanced our comprehension of the associations of brain entropy with its influential factors.
Collapse
Affiliation(s)
- Shanling Ji
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China
| | - Wei An
- Medical Imaging Department, Shandong Daizhuang Hospital, Shandong, China
| | - Jing Zhang
- Second Department of Psychiatry, Shandong Daizhuang Hospital, Shandong, China
| | - Cong Zhou
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China
| | - Chuanxin Liu
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China.
| | - Hao Yu
- Institute of Mental Health, Jining Medical University, Jining, 272056, Shandong, China.
| |
Collapse
|
3
|
Wang M, Chen T, He Z, Chan LWC, Guo Q, Cai S, Duan J, Zhang D, Wang X, Fang Y, Yang H. Altered dynamic functional connectivity in antagonistic state in first-episode, drug-naïve patients with major depressive disorder. BMC Psychiatry 2024; 24:909. [PMID: 39696016 DOI: 10.1186/s12888-024-06356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Major depressive disorder (MDD) is known to be characterized by disrupted brain functional network connectivity (FNC) patterns, while the dynamic change mode of different functional networks is unclear. This study aimed to characterize specific dynamic alterations pattern on intrinsic FNC in MDD by combining static FNC (sFNC) and dynamic FNC (dFNC). METHODS A total of 48 first-episode drug-naïve MDD and 48 matched healthy controls (HCs) were included in this study. The sFNC and dFNC were analyzed using complete time-series and sliding window approach, respectively. Both sFNC and dFNC differences between groups were analyzed and associations between disease severity and aberrant FNC were explored. RESULTS MDD patients exhibited lower sFNC within and between sensory and motor networks than HC. Four dFNC states were identified, including a globally-weakly-connected state, a cognitive-control-dominated state, a globally-positively-connected state, and an antagonistic state. The antagonistic state was marked by strong positive connections within the sensorimotor domain and their anti-correlations with the executive-motor control domain. Notably, MDD patients exhibited significantly longer dwell time in the globally-weakly-connected state, at the cost of significantly shorter dwell time in the antagonistic state. Further, only the mean dwell time of this antagonistic state was significantly anticorrelated to disease severity measures. CONCLUSIONS Our study highlights the altered dynamics of the antagonistic state as a fundamental aspect of disrupted FNC in early MDD.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
- School of Medicine, Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Tao Chen
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Zhongyi He
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Lawrence Wing-Chi Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China
| | - Qinger Guo
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Shuyang Cai
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Jingfeng Duan
- Department of Psychiatry, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Danbin Zhang
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Xunda Wang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Fang
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China
| | - Hong Yang
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
4
|
Liu S, Zhou J, Zhu X, Zhang Y, Zhou X, Zhang S, Yang Z, Wang Z, Wang R, Yuan Y, Fang X, Chen X, Wang Y, Zhang L, Wang G, Jin C. An objective quantitative diagnosis of depression using a local-to-global multimodal fusion graph neural network. PATTERNS (NEW YORK, N.Y.) 2024; 5:101081. [PMID: 39776853 PMCID: PMC11701859 DOI: 10.1016/j.patter.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025]
Abstract
This study developed an artificial intelligence (AI) system using a local-global multimodal fusion graph neural network (LGMF-GNN) to address the challenge of diagnosing major depressive disorder (MDD), a complex disease influenced by social, psychological, and biological factors. Utilizing functional MRI, structural MRI, and electronic health records, the system offers an objective diagnostic method by integrating individual brain regions and population data. Tested across cohorts from China, Japan, and Russia with 1,182 healthy controls and 1,260 MDD patients from 24 institutions, it achieved a classification accuracy of 78.75%, an area under the receiver operating characteristic curve (AUROC) of 80.64%, and correctly identified MDD subtypes. The system further discovered distinct brain connectivity patterns in MDD, including reduced functional connectivity between the left gyrus rectus and right cerebellar lobule VIIB, and increased connectivity between the left Rolandic operculum and right hippocampus. Anatomically, MDD is associated with thickness changes of the gray and white matter interface, indicating potential neuropathological conditions or brain injuries.
Collapse
Affiliation(s)
- Shuyu Liu
- Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xuequan Zhu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Ya Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- School of Electronic Information and Electronical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinzhu Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Shaoting Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Ziji Wang
- Department of Cognitive Science, Swarthmore College, Philadelphia, PA 19081, USA
| | - Ruoxi Wang
- Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yizhe Yuan
- Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Fang
- Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiongying Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | | | - Yanfeng Wang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- School of Electronic Information and Electronical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Jin
- Medical Robot Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital & Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100088, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Stanford University School of Medicine, Ground Floor, 875 Blake Wilbur Drive, Stanford, CA 94305-5847, USA
| |
Collapse
|
5
|
Hu L, Chen J, Li X, Zhang H, Zhang J, Lu Y, Lian J, Yu H, Yang N, Wang J, Lyu H, Xu J. Disruptive and complementary effects of depression symptoms on spontaneous brain activity in the subcortical vascular mild cognitive impairment. Front Aging Neurosci 2024; 16:1338179. [PMID: 39355540 PMCID: PMC11442267 DOI: 10.3389/fnagi.2024.1338179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background Although depression symptoms are commonly reported in patients with subcortical vascular mild cognitive impairment (svMCI), their impact on brain functions remains largely unknown, with diagnoses mainly dependent on behavioral assessments. Methods In this study, we analyzed resting-state fMRI data from a cohort of 34 svMCI patients, comprising 18 patients with depression symptoms (svMCI+D) and 16 patients without (svMCI-D), along with 34 normal controls (NC). The study used the fraction of the amplitude of low-frequency fluctuations (fALFF), resting-state functional connectivity, correlation analyses, and support vector machine (SVM) techniques. Results The fALFF of the right cerebellum (CERE.R) differed among the svMCI+D, svMCI-D, and NC groups. Specifically, the regional mean fALFF of CERE. R was lower in svMCI-D patients compared to NC but higher in svMCI+D patients compared to svMCI-D patients. Moreover, the adjusted fALFF of CERE. R showed a significant correlation with Montreal Cognitive Assessment (MOCA) scores in svMCI-D patients. The fALFF of the right orbital part of the superior frontal gyrus was significantly correlated with Hamilton Depression Scale scores in svMCI+D patients, whereas the fALFF of the right postcingulate cortex (PCC.R) showed a significant correlation with MOCA scores in svMCI-D patients. Furthermore, RSFC between PCC. R and right precuneus, as well as between CERE. R and the right lingual gyrus (LING.R), was significantly reduced in svMCI-D patients compared to NC. In regional analyses, the adjusted RSFC between PCC. R and PreCUN. R, as well as between CERE. R and LING. R, was decreased in svMCI-D patients compared to NC but increased in svMCI+D patients compared to svMCI-D. Further SVM analyses achieved good performances, with an area under the curve (AUC) of 0.82 for classifying svMCI+D, svMCI-D, and NC; 0.96 for classifying svMCI+D and svMCI-D; 0.82 for classifying svMCI+D and NC; and 0.92 for classifying svMCI-D and NC. Conclusion The study revealed disruptive effects of cognitive impairment, along with both disruptive and complementary effects of depression symptoms on spontaneous brain activity in svMCI. Moreover, these findings suggest that the identified features might serve as potential biomarkers for distinguishing between svMCI+D, svMCI-D, and NC, thereby guiding clinical treatments such as transcranial magnetic stimulation for svMCI.
Collapse
Affiliation(s)
- Liyu Hu
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianxiang Chen
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinbei Li
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinhuan Zhang
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yingqi Lu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Lian
- Department of Neurology and Psychiatry, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China, 5Hospital of Traditional Chinese Medicine of Zhongshan, Shenzhen, China
| | - Haibo Yu
- Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Nan Yang
- Hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Jianjun Wang
- Department of Neurology and Psychiatry, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China, 5Hospital of Traditional Chinese Medicine of Zhongshan, Shenzhen, China
| | - Hanqing Lyu
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos‐Petropulu A, Al‐Sharif N, Leaver AM, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Modulation of habenular and nucleus accumbens functional connectivity by ketamine in major depression. Brain Behav 2024; 14:e3511. [PMID: 38894648 PMCID: PMC11187958 DOI: 10.1002/brb3.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks. METHODS MDD participants (n = 58, mean age = 40.7 years, female = 28) received four ketamine infusions (0.5 mg/kg) 2-3 times weekly. Resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments were collected at baseline and 24 h post-SKI. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Changes in FC pre-to-post SKI, and correlations with changes with mood and anhedonia were examined. Comparisons of FC between patients and healthy controls (HC) at baseline (n = 55, mean age = 32.6, female = 31), and between HC assessed twice (n = 16) were conducted as follow-up analyses. RESULTS Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in mood ratings. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. No differences were observed between HC at baseline or over time. CONCLUSION Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions in MDD. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Joana R. Loureiro
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ashish K. Sahib
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Noor Al‐Sharif
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Amber M. Leaver
- Department of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | - Benjamin Wade
- Division of Neuropsychiatry and NeuromodulationMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Shantanu Joshi
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Roger P. Woods
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Katherine L. Narr
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
8
|
Lin J, Xiao Y, Yao C, Sun L, Wang P, Deng Y, Pu J, Xue SW. Linking inter-subject variability of cerebellar functional connectome to clinical symptoms in major depressive disorder. J Psychiatr Res 2024; 171:9-16. [PMID: 38219285 DOI: 10.1016/j.jpsychires.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder with remarkable inter-subject variability in clinical manifestations. Neuroimaging changes of the cerebellum have been recently proposed as a way to characterize MDD-related brain disruptions and might further explain various clinical symptoms. However, the cerebellar contributions to MDD clinical heterogeneity remain largely unknown. The analyzed data consisted of 251 MDD patients and 235 matching healthy controls (HC). The inter-subject variability of functional connectomes (IVFC) was estimated via Pearson's correlation analysis between each pair of the cerebellar and cerebral regions based on resting-state functional magnetic resonance imaging (rs-fMRI). A partial least squares (PLS) regression analysis was performed to determine the potential dimension linking the IVFC to clinical symptom measures. The results indicated that similar spatial distribution patterns of the cerebellar IVFC were observed between MDD and HC, but the MDD group exhibited abnormal IVFC alterations in the bilateral Cerebelum_4_5, bilateral Cerebelum_6, Vermis_1_2 and Vermis_8. The PLS model revealed that the IVFC pattern in the left Cerebelum_6 was significantly associated with three HAMD-17 items including the work and activities, psychomotor retardation, and depressed mood. These findings provided new evidence for the cerebellar changes in MDD. Specifically, we found that the altered inter-subject variability measurements correlated with clinical manifestations of this illness. Elucidating this variability could prove helpful for the evaluation of MDD heterogeneity as well as for understanding its pathophysiological mechanism.
Collapse
Affiliation(s)
- Jia Lin
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yang Xiao
- Peking University Sixth Hospital, Peking University, Beijing, PR China
| | - Chi Yao
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Li Sun
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Peng Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Yanxin Deng
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Jiayong Pu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
9
|
Huggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, et alHuggins AA, Baird CL, Briggs M, Laskowitz S, Hussain A, Fouda S, Haswell C, Sun D, Salminen LE, Jahanshad N, Thomopoulos SI, Veltman DJ, Frijling JL, Olff M, van Zuiden M, Koch SBJ, Nawjin L, Wang L, Zhu Y, Li G, Stein DJ, Ipser J, Seedat S, du Plessis S, van den Heuvel LL, Suarez-Jimenez B, Zhu X, Kim Y, He X, Zilcha-Mano S, Lazarov A, Neria Y, Stevens JS, Ressler KJ, Jovanovic T, van Rooij SJH, Fani N, Hudson AR, Mueller SC, Sierk A, Manthey A, Walter H, Daniels JK, Schmahl C, Herzog JI, Říha P, Rektor I, Lebois LAM, Kaufman ML, Olson EA, Baker JT, Rosso IM, King AP, Liberzon I, Angstadt M, Davenport ND, Sponheim SR, Disner SG, Straube T, Hofmann D, Qi R, Lu GM, Baugh LA, Forster GL, Simons RM, Simons JS, Magnotta VA, Fercho KA, Maron-Katz A, Etkin A, Cotton AS, O'Leary EN, Xie H, Wang X, Quidé Y, El-Hage W, Lissek S, Berg H, Bruce S, Cisler J, Ross M, Herringa RJ, Grupe DW, Nitschke JB, Davidson RJ, Larson CL, deRoon-Cassini TA, Tomas CW, Fitzgerald JM, Blackford JU, Olatunji BO, Kremen WS, Lyons MJ, Franz CE, Gordon EM, May G, Nelson SM, Abdallah CG, Levy I, Harpaz-Rotem I, Krystal JH, Dennis EL, Tate DF, Cifu DX, Walker WC, Wilde EA, Harding IH, Kerestes R, Thompson PM, Morey R. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: a mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol Psychiatry 2024; 29:611-623. [PMID: 38195980 PMCID: PMC11153161 DOI: 10.1038/s41380-023-02352-0] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p-FDR < 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.
Collapse
Grants
- I01 RX002171 RRD VA
- R21MH106998 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002170 RRD VA
- 27040 Brain and Behavior Research Foundation (Brain & Behavior Research Foundation)
- R01 MH129832 NIMH NIH HHS
- R01MH105535 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX002172 RRD VA
- P41 EB015922 NIBIB NIH HHS
- P50 U.S. Department of Health & Human Services | NIH | National Institute on Alcohol Abuse and Alcoholism (NIAAA)
- I01 RX002174 RRD VA
- W81XWH-10-1-0925 U.S. Department of Defense (United States Department of Defense)
- R56 MH071537 NIMH NIH HHS
- 20ZDA079 National Natural Science Foundation of China (National Science Foundation of China)
- P30 HD003352 NICHD NIH HHS
- R01AG059874 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01MH107382 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R61NS120249 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- K01 MH122774 NIMH NIH HHS
- I01 RX003444 RRD VA
- IK2 RX002922 RRD VA
- R01AG022381 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- 31971020 National Natural Science Foundation of China (National Science Foundation of China)
- R21 MH098212 NIMH NIH HHS
- R01 MH113574 NIMH NIH HHS
- K12 HD085850 NICHD NIH HHS
- 1IK2CX001680 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R01 MH071537 NIMH NIH HHS
- HD085850 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R21 MH106998 NIMH NIH HHS
- I01 RX003442 RRD VA
- IK2 CX001680 CSRD VA
- 14848 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01 AG064955 NIA NIH HHS
- R01MH110483 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001135 CSRD VA
- 1IK2RX000709 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- R21 MH112956 NIMH NIH HHS
- W81XWH-08-2-0038 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- R01 MH105355 NIMH NIH HHS
- K23MH090366 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118428 NIMH NIH HHS
- R01 MH105535 NIMH NIH HHS
- MH101380 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- WA 1539/8-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- M01RR00039 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- M01 RR000039 NCRR NIH HHS
- I01 RX003443 RRD VA
- R01 MH111671 NIMH NIH HHS
- R01 MH106574 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01MH111671 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01MH117601 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- 1K2RX002922 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- I01 RX001880 RRD VA
- R21MH102634 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- MH071537 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 RX000622 RRD VA
- R01MH096987 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01MH122774 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 HX003155 HSRD VA
- R01MH106574 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- I01 RX001774 RRD VA
- I01 CX002097 CSRD VA
- UL1TR000454 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 RX002076 RRD VA
- R01 MH119227 NIMH NIH HHS
- K01MH118467 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- SFB/TRR 58: C06, C07 Deutsche Forschungsgemeinschaft (German Research Foundation)
- U21A20364 National Natural Science Foundation of China (National Science Foundation of China)
- BK20221554 Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
- UL1 TR000454 NCATS NIH HHS
- R01 MH107382 NIMH NIH HHS
- R01MH119227 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01 CX001246 CSRD VA
- MH098212 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R56 AG058854 NIA NIH HHS
- 40-00812-98-10041 ZonMw (Netherlands Organisation for Health Research and Development)
- T32 MH018931 NIMH NIH HHS
- R01 AG076838 NIA NIH HHS
- K23 MH101380 NIMH NIH HHS
- R01 MH043454 NIMH NIH HHS
- R21 MH102634 NIMH NIH HHS
- K01MH118428 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- HD071982 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01 HD071982 NICHD NIH HHS
- K23 MH090366 NIMH NIH HHS
- I01 RX002173 RRD VA
- R01MH105355 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- I01RX000622 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- W81XWH-12-2-0012 U.S. Department of Defense (United States Department of Defense)
- R61 NS120249 NINDS NIH HHS
- R21MH098198 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- K01 MH118467 NIMH NIH HHS
- I01 CX002096 CSRD VA
- I01 CX001820 CSRD VA
- R21MH112956 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- IK2 RX000709 RRD VA
- I01 RX001135 RRD VA
- DA 1222/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 MH096987 NIMH NIH HHS
- 1184403 Department of Health | National Health and Medical Research Council (NHMRC)
- R01 AG022381 NIA NIH HHS
- R01 AG050595 NIA NIH HHS
- M01RR00039 U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
- R01AG050595 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R01 AG059874 NIA NIH HHS
- VA Mid-Atlantic MIRECC
- Michael J. Fox Foundation for Parkinson’s Research (Michael J. Fox Foundation)
- Amsterdam Academic Medical Center grant
- South African Medical Research Council (SAMRC)
- Ghent University Special Research Fund (BOF) 01J05415
- Julia Kasparian Fund for Neuroscience Research
- McLean Hospital Trauma Scholars Fund, Barlow Family Fund, Julia Kasparian Fund for Neuroscience Research
- Foundation for the Social Development Project of Jiangsu No. BE2022705
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor’s Research Center Grant
- Center for Brain and Behavior Research Pilot Grant, South Dakota Governor ’s Research Center Grant
- Fondation Pierre Deniker pour la Recherche et la Prévention en Santé Mentale (Fondation Pierre Deniker pour la Recherche & la Prévention en Santé Mentale)
- PHRC, SFR FED4226
- Dana Foundation (Charles A. Dana Foundation)
- UW | Institute for Clinical and Translational Research, University of Wisconsin, Madison (UW Institute for Clinical and Translational Research)
- National Science Foundation (NSF)
- US VA VISN17 Center of Excellence Pilot funding
- VA National Center for PTSD, Beth K and Stuart Yudofsky Chair in the Neuropsychiatry of Military Post Traumatic Stress Syndrome
- US VA National Center for PTSD, NCATS
- This work was supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense, through the Psychological Health/Traumatic Brain Injury Research Program Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC) Award/W81XWH-18-PH/TBIRP-LIMBIC under Awards No. W81XWH1920067 and W81XWH-13-2-0095, and by the U.S. Department of Veterans Affairs Awards No. I01 CX002097, I01 CX002096, I01 CX001820, I01 HX003155, I01 RX003444, I01 RX003443, I01 RX003442, I01 CX001135, I01 CX001246, I01 RX001774, I01 RX 001135, I01 RX 002076, I01 RX 001880, I01 RX 002172, I01 RX 002173, I01 RX 002171, I01 RX 002174, and I01 RX 002170. The U.S. Army Medical Research Acquisition Activity, 839 Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.
- HFP90-020
- VA VISN6 MIRECC
Collapse
Affiliation(s)
- Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Melvin Briggs
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Sarah Laskowitz
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Ahmed Hussain
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Samar Fouda
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, USA
| | - Courtney Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
- Department of Psychology, The Education University of Hong Kong, Ting Kok, Hong Kong
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Dick J Veltman
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jessie L Frijling
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Olff
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Mirjam van Zuiden
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Saskia B J Koch
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Nawjin
- Amsterdam UMC Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC University of Amsterdam, Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Center for Global Health Equity, New York University Shanghai, Shanghai, China
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Unit on the Genomics of Brain Disorders (GBD), Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | | | - Amit Lazarov
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Pavel Říha
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Ivan Rektor
- CEITEC-Central European Institute of Technology, Multimodal and Functional Neuroimaging Research Group, Masaryk University, Brno, Czech Republic
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Justin T Baker
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Anthony P King
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Isreal Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, Texas, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Disaster Mental Health Institute, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent A Magnotta
- Departments of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Wissam El-Hage
- UMR1253, Université de Tours, Inserm, Tours, France
- CIC1415, CHRU de Tours, Inserm, Tours, France
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bruce
- Department of Psychological Sciences, Center for Trauma Recovery University of Missouri-St. Louis, St. Louis, MO, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | - Marisa Ross
- Northwestern Neighborhood and Network Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carissa W Tomas
- Comprehensive Injury Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Epidemiology and Social Sciences, Institute of Health and Equity, Medical College of Wisconsin Milwaukee, Milwaukee, WI, USA
| | | | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Dept. of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Chadi G Abdallah
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Departments of Comparative Medicine, Neuroscience and Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
- Departments of Psychiatry and of Psychology, Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - David X Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
| | - William C Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Veterans Affairs (VA) Richmond Health Care, Richmond, VA, USA
| | - Elizabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Vic, Australia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| |
Collapse
|
10
|
Jin P, Cui F, Xu M, Ren Y, Zhang L. Altered brain function and structure pre- and post- COVID-19 infection: a longitudinal study. Neurol Sci 2024; 45:1-9. [PMID: 38049550 DOI: 10.1007/s10072-023-07236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Evidence indicates that the SARS-CoV-2 virus can infect the brain, resulting in central nervous system symptoms. However, there is a lack of a longitudinal imaging study investigating the impact of Coronavirus disease 2019 (COVID-19) infection on brain function. Consequently, this study aimed to fill this knowledge gap using functional magnetic resonance imaging (fMRI). METHODS Twenty-one participants underwent two resting-state fMRI scans before and after infection. The amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were assessed to identify the brain function changes. Additionally, voxel-based morphometry (VBM) was utilized to assess changes in brain structure. Subsequently, brain regions that showed significant differences were identified as regions of interest (ROI) in functional connectivity analysis (FC). RESULTS After infection, ALFF was increased in the bilateral paracentral lobe and postcentral gyrus while decreased in the bilateral precuneus. Moreover, ReHo was decreased in the cerebellar vermis, accompanied by a decrease in FC with the bilateral postcentral gyrus. Furthermore, gray matter volume (GMV) reduction was observed in the left thalamus. The results of the correlation analysis revealed a negative correlation between ALFF values in the bilateral precuneus and scores on the self-rating anxiety scale (SAS) in pre- and post-infection datasets. CONCLUSION Neuroimaging alterations may occur before the manifestation of clinical symptoms, indicating that the functioning of the motor and sensory systems, as well as their connection, might be affected following infection. This alteration can potentially increase the potential of maladaptive responses to environmental stimuli. Furthermore, patients may be susceptible to future emotional disorders.
Collapse
Affiliation(s)
- Ping Jin
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Stadium Road 453#, Xihu District, Hangzhou City, 310000, Zhejiang Province, China
| | - Feng Cui
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Stadium Road 453#, Xihu District, Hangzhou City, 310000, Zhejiang Province, China
| | - Min Xu
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Stadium Road 453#, Xihu District, Hangzhou City, 310000, Zhejiang Province, China
| | - Yue Ren
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Stadium Road 453#, Xihu District, Hangzhou City, 310000, Zhejiang Province, China
| | - Luping Zhang
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Stadium Road 453#, Xihu District, Hangzhou City, 310000, Zhejiang Province, China.
| |
Collapse
|
11
|
Feng L, Wu D, Ma S, Dong L, Yue Y, Li T, Tang Y, Ye Z, Mao G. Resting-state functional connectivity of the cerebellum-cerebrum in older women with depressive symptoms. BMC Psychiatry 2023; 23:732. [PMID: 37817133 PMCID: PMC10566116 DOI: 10.1186/s12888-023-05232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Although there has been much neurobiological research on major depressive disorder, research on the neurological function of depressive symptoms (DS) or subclinical depression is still scarce, especially in older women with DS. OBJECTIVES Resting-state functional magnetic resonance imaging (rs-fMRI) was used to compare functional connectivity (FC) between the cerebellum and cerebral in older women with DS and normal controls (NC), to explore unique changes in cerebellar FC in older women with DS. METHODS In all, 16 older women with DS and 17 NC were recruited. All subjects completed rs-fMRI. The 26 sub-regions of the cerebellum divided by the AAL3 map were used as regions of interest (ROI) to analyze the difference in FC strength of cerebellar seeds from other cerebral regions between the two groups. Finally, partial correlation analysis between abnormal FC strength and Geriatric Depression Scale (GDS) score and Reminiscence Functions Scale (RFS) score in the DS group. RESULTS Compared with NC group, the DS group showed significantly reduced FC between Crus I, II and the left frontoparietal region, and reduced FC between Crus I and the left temporal gyrus. Reduced FC between right insula (INS), right rolandic operculum (ROL), right precentral gyrus (PreCG) and the Lobule IX, X. Moreover, the negative FC between Crus I, II, Lobule IX and visual regions was reduced in the DS group. The DS group correlation analysis showed a positive correlation between the left Crus I and the right cuneus (CUN) FC and GDS. In addition, the abnormal FC strength correlated with the scores in different dimensions of the RFS, such as the negative FC between the Crus I and the left middle temporal gyrus (MTG) was positively associated with intimacy maintenance, and so on. CONCLUSION Older women with DS have anomalous FC between the cerebellum and several regions of the cerebrum, which may be related to the neuropathophysiological mechanism of DS in the DS group.
Collapse
Affiliation(s)
- Lanling Feng
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongmei Wu
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shaolun Ma
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuchuan Yue
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Li
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixun Tang
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixiang Ye
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guoju Mao
- Nursing Department, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Balasa A, Bala A, Olejnik A, Marchel A, Kunert P. Pain-depression relationship, quality of life and acceptance of illness among patients with Chiari malformation type I: A cross-sectional study. Medicine (Baltimore) 2023; 102:e33738. [PMID: 37335726 PMCID: PMC10194810 DOI: 10.1097/md.0000000000033738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/20/2023] [Indexed: 06/21/2023] Open
Abstract
Chiari malformation type I (CM-I) is a congenital anomaly of the hindbrain. The most common symptoms include suboccipital tussive headache, dizziness and neck pain. Recently there has been growing interest in the psychological and psychiatric aspects of functioning in patients with CM-I, which have a significant effect on treatment outcomes and quality of life (QoL). The aim of the study was to assess the severity of depressive symptoms and the QoL in patients with CM-I and to identify the main factors responsible for these phenomena. A total of 178 people participated in the study and were divided into 3 groups: patients with CM-I who had undergone surgery (n = 59); patients with CM-I who had not undergone surgery (n = 63); and healthy volunteers (n = 56). Psychological evaluation included a set of questionnaires: the Beck Depression Inventory II, the World Health Organization shortened version of the WHOQOL-100 quality of life questionnaire, the Acceptance of Illness Scale and the Beliefs about Pain Control Questionnaire. Results showed that the control group participants obtained significantly better results than both groups of CM-I patients in terms of all indicators of QoL, symptoms of depression, acceptance of illness, pain level (average and present) and perceived influence of doctors regarding coping with pain. Patients with CM-I (operated and non-operated) obtained similar results in most of the questionnaires and the QoL indices correlated significantly with the majority of the analyzed variables. Moreover, CM-I patients with higher depression scores described their pain as more severe and had a stronger belief that pain levels were not influenced by them but only by doctors, or that it could be controlled randomly; they were also less willing to accept their illness. CM-I symptoms affect the mood and QoL of patients. Psychological and psychiatric care should be the golden standard in managing this clinical group.
Collapse
Affiliation(s)
- Artur Balasa
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Andrzej Marchel
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Kunert
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Sun F, Yang J, Liu X, Huang G, Kong Z, Liu Y, Zhu Y, Peng Y, Yang M, Jia X. Characteristics of amplitude of low-frequency fluctuations in the resting-state functional magnetic resonance imaging of alcohol-dependent patients with depression. Cereb Cortex 2023:7169130. [PMID: 37197790 DOI: 10.1093/cercor/bhad184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
The high comorbidity of alcohol use disorder and depressive disorder is associated with poor patient prognosis. The mechanisms underlying this comorbidity, however, are largely unknown. By applying the amplitude of low-frequency fluctuations parameter in resting-state functional magnetic resonance imaging, this study investigated changes in the brain functioning of alcohol-dependent patients with and without depression. Alcohol-dependent patients (n = 48) and healthy controls (n = 31) were recruited. The alcohol-dependent patients were divided into those with and without depression, according to Patients Health Questionnaire-9 scores. Amplitude of low-frequency fluctuations in resting-state brain images were compared among the alcohol-dependent patients with depression, alcohol-dependent patients without depression, and healthy controls groups. We further examined associations between amplitude of low-frequency fluctuations alterations, alcohol-dependence severity, and depressive levels (assessed with scales). Compared with the healthy controls group, both alcohol groups showed amplitude of low-frequency fluctuations enhancement in the right cerebellum and amplitude of low-frequency fluctuations abatement in the posterior central gyrus. The alcohol-dependent patients with depression group had higher amplitude of low-frequency fluctuations in the right cerebellum than the alcohol-dependent patients without depression group. Additionally, we observed a positive correlation between amplitude of low-frequency fluctuations value and Patients Health Questionnaire-9 score in the right superior temporal gyrus in the alcohol-dependent patients with depression group. Alcohol-dependent subjects showed abnormally increased spontaneous neural activity in the right cerebellum, which was more significant in alcohol-dependent patients with depression. These findings may support a targeted intervention in this brain location for alcohol and depressive disorder comorbidity.
Collapse
Affiliation(s)
- Fengwei Sun
- School of Mental Health, Jining Medical University, Jining 272067, China
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Jihui Yang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Xiaoying Liu
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Gengdi Huang
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Zhi Kong
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Yu Liu
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Yingmei Zhu
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Mei Yang
- School of Mental Health, Jining Medical University, Jining 272067, China
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| |
Collapse
|
14
|
Shunkai L, Su T, Zhong S, Chen G, Zhang Y, Zhao H, Chen P, Tang G, Qi Z, He J, Zhu Y, Lv S, Song Z, Miao H, Hu Y, Jia Y, Wang Y. Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression. Psychol Med 2023; 53:2923-2935. [PMID: 34870570 DOI: 10.1017/s0033291721004906] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Previous studies have demonstrated structural and functional changes of the hippocampus in patients with major depressive disorder (MDD). However, no studies have analyzed the dynamic functional connectivity (dFC) of hippocampal subregions in melancholic MDD. We aimed to reveal the patterns for dFC variability in hippocampus subregions - including the bilateral rostral and caudal areas and its associations with cognitive impairment in melancholic MDD. METHODS Forty-two treatment-naive MDD patients with melancholic features and 55 demographically matched healthy controls were included. The sliding-window analysis was used to evaluate whole-brain dFC for each hippocampal subregions seed. We assessed between-group differences in the dFC variability values of each hippocampal subregion in the whole brain and cognitive performance on the MATRICS Consensus Cognitive Battery (MCCB). Finally, association analysis was conducted to investigate their relationships. RESULTS Patients with melancholic MDD showed decreased dFC variability between the left rostral hippocampus and left anterior lobe of cerebellum compared with healthy controls (voxel p < 0.005, cluster p < 0.0125, GRF corrected), and poorer cognitive scores in working memory, verbal learning, visual learning, and social cognition (all p < 0.05). Association analysis showed that working memory was positively correlated with the dFC variability values of the left rostral hippocampus-left anterior lobe of the cerebellum (r = 0.338, p = 0.029) in melancholic MDD. CONCLUSIONS These findings confirmed the distinct dynamic functional pathway of hippocampal subregions in patients with melancholic MDD, and suggested that the dysfunction of hippocampus-cerebellum connectivity may be underlying the neural substrate of working memory impairment in melancholic MDD.
Collapse
Affiliation(s)
- Lai Shunkai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yunxia Zhu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zijin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Haofei Miao
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yilei Hu
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| |
Collapse
|
15
|
Fu Z, Abbott CC, Miller J, Deng ZD, McClintock SM, Sendi MSE, Sui J, Calhoun VD. Cerebro-cerebellar functional neuroplasticity mediates the effect of electric field on electroconvulsive therapy outcomes. Transl Psychiatry 2023; 13:43. [PMID: 36746924 PMCID: PMC9902462 DOI: 10.1038/s41398-023-02312-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe depression and works by applying an electric current through the brain. The applied current generates an electric field (E-field) and seizure activity, changing the brain's functional organization. The E-field, which is determined by electrode placement (right unilateral or bitemporal) and pulse amplitude (600, 700, or 800 milliamperes), is associated with the ECT response. However, the neural mechanisms underlying the relationship between E-field, functional brain changes, and clinical outcomes of ECT are not well understood. Here, we investigated the relationships between whole-brain E-field (Ebrain, the 90th percentile of E-field magnitude in the brain), cerebro-cerebellar functional network connectivity (FNC), and clinical outcomes (cognitive performance and depression severity). A fully automated independent component analysis framework determined the FNC between the cerebro-cerebellar networks. We found a linear relationship between Ebrain and cognitive outcomes. The mediation analysis showed that the cerebellum to middle occipital gyrus (MOG)/posterior cingulate cortex (PCC) FNC mediated the effects of Ebrain on cognitive performance. In addition, there is a mediation effect through the cerebellum to parietal lobule FNC between Ebrain and antidepressant outcomes. The pair-wise t-tests further demonstrated that a larger Ebrain was associated with increased FNC between cerebellum and MOG and decreased FNC between cerebellum and PCC, which were linked with decreased cognitive performance. This study implies that an optimal E-field balancing the antidepressant and cognitive outcomes should be considered in relation to cerebro-cerebellar functional neuroplasticity.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | | | - Jeremy Miller
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Shawn M McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mohammad S E Sendi
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
16
|
Accrombessi G, Galineau L, Tauber C, Serrière S, Moyer E, Brizard B, Le Guisquet AM, Surget A, Belzung C. An ecological animal model of subthreshold depression in adolescence: behavioral and resting state 18F-FDG PET imaging characterization. Transl Psychiatry 2022; 12:356. [PMID: 36050307 PMCID: PMC9436927 DOI: 10.1038/s41398-022-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
The different depressive disorders that exist can take root at adolescence. For instance, some functional and structural changes in several brain regions have been observed from adolescence in subjects that display either high vulnerability to depressive symptoms or subthreshold depression. For instance, adolescents with depressive disorder have been shown to exhibit hyperactivity in hippocampus, amygdala and prefrontal cortex as well as volume reductions in hippocampus and amygdala (prefrontal cortex showing more variable results). However, no animal model of adolescent subthreshold depression has been developed so far. Our objective was to design an animal model of adolescent subthreshold depression and to characterize the neural changes associated to this phenotype. For this purpose, we used adolescent Swiss mice that were evaluated on 4 tests assessing cognitive abilities (Morris water maze), anhedonia (sucrose preference), anxiety (open-field) and stress-coping strategies (forced swim test) at postnatal day (PND) 28-35. In order to identify neural alterations associated to behavioral profiles, we assessed brain resting state metabolic activity in vivo using 18F-FDG PET imaging at PND 37. We selected three profiles of mice distinguished in a composite Z-score computed from performances in the behavioral tests: High, Intermediate and Low Depressive Risk (HDR, IDR and LDR). Compared to both IDR and LDR, HDR mice were characterized by passive stress-coping behaviors, low cognition and high anhedonia and anxiety and were associated with significant changes of 18F-FDG uptakes in several cortical and subcortical areas including prelimbic cortex, infralimbic cortex, nucleus accumbens, amygdala, periaqueductal gray and superior colliculus, all displaying higher metabolic activity, while only the thalamus was associated with lower metabolic activity (compared to IDR). LDR displayed an opposing behavioral phenotype and were associated with significant changes of 18F-FDG uptakes in the dorsal striatum and thalamus that both exhibited markedly lower metabolic activity in LDR. In conclusion, our study revealed changes in metabolic activities that can represent neural signatures for behavioral profiles predicting subthreshold depression at adolescence in a mouse model.
Collapse
Affiliation(s)
- Georgine Accrombessi
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Laurent Galineau
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Clovis Tauber
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Sophie Serrière
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Esteban Moyer
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Bruno Brizard
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Anne-Marie Le Guisquet
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Alexandre Surget
- grid.411167.40000 0004 1765 1600UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Catherine Belzung
- UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032, Tours, France.
| |
Collapse
|
17
|
Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. eLife 2022; 11:72981. [PMID: 35156922 PMCID: PMC8843095 DOI: 10.7554/elife.72981] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.
Collapse
Affiliation(s)
- Soo Ji Baek
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Sung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
18
|
Neuner I, Veselinović T, Ramkiran S, Rajkumar R, Schnellbaecher GJ, Shah NJ. 7T ultra-high-field neuroimaging for mental health: an emerging tool for precision psychiatry? Transl Psychiatry 2022; 12:36. [PMID: 35082273 PMCID: PMC8791951 DOI: 10.1038/s41398-022-01787-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Given the huge symptom diversity and complexity of mental disorders, an individual approach is the most promising avenue for clinical transfer and the establishment of personalized psychiatry. However, due to technical limitations, knowledge about the neurobiological basis of mental illnesses has, to date, mainly been based on findings resulting from evaluations of average data from certain diagnostic groups. We postulate that this could change substantially through the use of the emerging ultra-high-field MRI (UHF-MRI) technology. The main advantages of UHF-MRI include high signal-to-noise ratio, resulting in higher spatial resolution and contrast and enabling individual examinations of single subjects. Thus, we used this technology to assess changes in the properties of resting-state networks over the course of therapy in a naturalistic study of two depressed patients. Significant changes in several network property measures were found in regions corresponding to prior knowledge from group-level studies. Moreover, relevant parameters were already significantly divergent in both patients at baseline. In summary, we demonstrate the feasibility of UHF-MRI for capturing individual neurobiological correlates of mental diseases. These could serve as a tool for therapy monitoring and pave the way for a truly individualized and predictive clinical approach in psychiatric care.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- JARA-BRAIN, Jülich/Aachen, Germany.
| | - Tanja Veselinović
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Shukti Ramkiran
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
| | | | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Jülich/Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
19
|
Wei Q, Ji Y, Bai T, Zu M, Guo Y, Mo Y, Ji G, Wang K, Tian Y. Enhanced cerebro-cerebellar functional connectivity reverses cognitive impairment following electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2021; 15:798-806. [PMID: 32361944 DOI: 10.1007/s11682-020-00290-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electroconvulsive therapy (ECT), a rapidly acting and effective treatment for major depressive disorder (MDD), is frequently accompanied by cognitive impairment. Recent studies have documented that ECT reorganizes dysregulated inter/intra- connected cerebral networks, including the affective network, the cognitive control network(CCN) and default mode network (DMN).Moreover, cerebellum is thought to play an important role in emotion regulation and cognitive processing. However, little is known about the relationship between cerebro-cerebellar connectivity alterations following ECT and antidepressant effects or cognitive impairment. We performed seed-based resting-state functional connectivity (RSFC) analyses in 28 MDD patients receiving ECT and 20 healthy controls to identify cerebro-cerebellar connectivity differences related to MDD and changes induced by ECT. Six seed regions (three per hemisphere) in the cerebrum were selected for RSFC, corresponding to the affective network, CCN and DMN, to establish cerebro-cerebellar functional connectivity with cerebellum. MDD patients showed increased RSFC between left sgACC and left cerebellar lobule VI after ECT. Ggranger causality analyses (GCA) identified the causal interaction is from left cerebellar lobule VI to left sgACC. Furthermore, increased effective connectivity from left cerebellar lobule VI to left sgACC exhibited positively correlated with the change in verbal fluency test (VFT) score following ECT (r = 0.433, p = 0.039). Our findings indicate that the enhanced cerebro-cerebellar functional connectivity from left lobule VI to left sgACC may ameliorate cognitive impairment induced by ECT. This study identifies a potential neural pathway for mitigation of cognitive impairment following ECT.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Meidan Zu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Yuanyuan Guo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Yuting Mo
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| | - Gongjun Ji
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China.
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.
- Department of Medical Psychology, Anhui Medical University, 230022, Hefei, China.
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China.
- Collaborative Innovation Centre of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| |
Collapse
|
20
|
Batail JM, Coloigner J, Soulas M, Robert G, Barillot C, Drapier D. Structural abnormalities associated with poor outcome of a major depressive episode: The role of thalamus. Psychiatry Res Neuroimaging 2020; 305:111158. [PMID: 32889511 DOI: 10.1016/j.pscychresns.2020.111158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
Abstract
An identification of precise biomarkers contributing to poor outcome of a major depressive episode (MDE) has the potential to improve therapeutic strategies by reducing time to symptomatic relief. In a cross-sectional volumetric study with a 6 month clinical follow-up, we performed baseline brain grey matter volume analysis between 2 groups based on illness improvement: 27 MDD patients in the "responder" (R) group (Clinical Global Impression- Improvement (CGI-I) score ≤ 2) and 30 in the "non-responder" (NR) group (CGI-I > 2), using a Voxel Based-Morphometry analysis. NR had significantly smaller Grey Matter (GM) volume in the bilateral thalami, in precentral gyrus, middle temporal gyrus, precuneus and middle cingulum compared to R at baseline. Additionally, they exhibited significant greater GM volume increase in the left anterior lobe of cerebellum and posterior cingulate cortex. The latter result was not significant when participants with bipolar disorder were excluded from the analysis. NR group had higher baseline anxiety scores. Our study has pointed out the role of thalamus in prognosis of MDE. These findings highlight the involvement of emotion regulation in the outcome of MDE. The present study provides a step towards the understanding of neurobiological processes of treatment resistant depression.
Collapse
Affiliation(s)
- J M Batail
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France.
| | - J Coloigner
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - M Soulas
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France
| | - G Robert
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| | - C Barillot
- Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France
| | - D Drapier
- Centre Hospitalier Guillaume Régnier, Academic Psychiatry Department, Rennes F-35703, France; Univ Rennes, INRIA, CNRS, IRISA, INSERM, Empenn U1228 ERL, Rennes F-35042, France; Univ Rennes, "Comportement et noyaux gris centraux" research unit (EA 4712), Rennes F-35000, France
| |
Collapse
|
21
|
Mao N, Che K, Chu T, Li Y, Wang Q, Liu M, Ma H, Wang Z, Lin F, Wang B, Ji H. Aberrant Resting-State Brain Function in Adolescent Depression. Front Psychol 2020; 11:1784. [PMID: 32903315 PMCID: PMC7396538 DOI: 10.3389/fpsyg.2020.01784] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
To explore the changes of brain function and conduct clinical differential diagnosis based on support vector machine (SVM) in adolescent patients with depression. A total of 24 adolescent patients with depression according to CCMD-3 and DSM-5 and 23 gender, education level, body mass index, and age matched healthy controls were assessed with 17-item Hamilton Depression Rating Scale (HAMD). HAMD scores were requested from ≥17 of patients. Three−dimensional T1 and resting-state functional magnetic resonance imaging data were acquired from all participants. The data were analyzed using SPM 12 and REST1.8. Two-sample t-test was conducted to compare regional homogeneity (ReHo) values among the groups of participants. Finally, based on SVM classification, clinical differential diagnosis of the patients was carried out. The receiver operator characteristic (ROC) curve were used to confirm the performance of the SVM model. An increase ReHo values were observed in the lingual gyrus, middle occipital gyrus, postcentral gyrus, and precentral gyrus, whereas a decrease in ReHo was found in vermis compared with the control group. The SVM model showed good performance in classification prediction of adolescent depression, with an area under curve (AUC) of 0.778 [95% confidence interval (CI), 0.661–0.797]. The changes in the spontaneous neural activity of these regions may play an important role in the neuropathological mechanism of adolescent depression and may provide promising markers for clinical evaluation.
Collapse
Affiliation(s)
- Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yuna Li
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Qinglin Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Meijie Liu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Zhongyi Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Fan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Haixia Ji
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
22
|
Bogie BJM, Kapczinski FP, McCabe RE, McKinnon MC, Frey BN. Emotional reactivity and explicit emotional memory biases in major depressive disorder during euthymia. Psychiatry Res 2020; 285:112847. [PMID: 32058877 DOI: 10.1016/j.psychres.2020.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
Major depressive disorder (MDD) is associated with information processing deficits across several cognitive domains. Two examples include biased reactivity (e.g., emotional arousal/reaction) to, and explicit (episodic) memory for, emotional information. Recent research suggests that, compared to healthy controls (HCs), acute depressive states may be associated with reduced reactivity to emotional information in the absence of explicit emotional memory biases; however, our understanding of the cognitive phenotypes of these phenomena during euthymia (i.e., clinical remission) remain unclear. Sixty-one participants completed the current study (30 euthymic MDD, 31 matched HCs). Participants rated the emotional intensity (i.e., emotional reactivity) of 48 negative, 48 neutral, and 48 positive images before returning one week later for a surprise recognition memory task. We found main effects of valence across analyses of the emotional reactivity and memory data, such that: (1) both groups displayed higher mean intensity ratings for negative versus positive images (p < 0.0001), for positive versus neutral images (p < 0.0001), and for negative versus neutral images (p < 0.0001); (2) both groups displayed reduced memory sensitivity (e.g., the ability to accurately discriminate between signal (i.e., old stimuli) and noise (i.e., new stimuli) for positive compared to neutral (p = 0.007) and negative (p = 0.03) images; and (3) both groups displayed reduced normalized memory sensitivity for positive versus negative images (p = 0.006). The euthymic MDD group did not differ from the HC group on emotional reactivity or emotional memory performance. These findings contribute to growing evidence that emotional reactivity and explicit emotional memory may not be affected in individuals with MDD during euthymia.
Collapse
Affiliation(s)
- Bryce J M Bogie
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Flávio P Kapczinski
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Randi E McCabe
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.
| |
Collapse
|
23
|
Zhang Y, Yang Y, Zhu L, Zhu Q, Jia Y, Zhang L, Peng Q, Wang J, Liu J, Fan W, Wang J. Volumetric Deficit Within the Fronto-Limbic-Striatal Circuit in First-Episode Drug Naïve Patients With Major Depression Disorder. Front Psychiatry 2020; 11:600583. [PMID: 33551870 PMCID: PMC7854541 DOI: 10.3389/fpsyt.2020.600583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Depression is a major psychiatric disorder and the leading cause of disability worldwide. Previous evidence suggested certain pattern of structural alterations were induced by major depression disorder (MDD) with heterogeneity due to patients' clinical characteristics and proposed that early impairment of fronto-limbic-striatal circuit was involved. Yet the hypothesis couldn't be replicated fully. Accordingly, this study aimed to validate this hypothesis in a new set of first-episode, drug naïve MDD patients and further explore the neuroimaging biomarker of illness severity using whole-brain voxel-based morphometry (VBM). Materials and Methods: A total of 93 participants, 30 patients with first-episode medication-naïve MDD, and 63 healthy controls were enrolled in the study. VBM was applied to analyze differences in the gray matter volume (GMV) between these two groups. The correlation between the GMV of the identified brain regions and the severity of clinical symptoms quantified by the Hamilton Depression Scale (HAMD) was further conducted in the post-hoc analysis to confirm the role of GMV structural alteration in clinical symptoms. Results: Our results revealed that the brain gray matter volume of the prefrontal lobe, limbic system, striatum, cerebellum, temporal lobe, and bilateral lingual gyri were significantly decreased in MDD patients compared with healthy controls. Besides, the HAMD scores were negatively correlated with GMV of the right insula and positively correlated with that of the right lingual gyrus. Conclusions: Our findings provide robust evidence that gray matter structural abnormalities within the prefronto-limbic-striatal circuit are implicated in the pathophysiology of MDD at an early stage without confounding influence of medication status. Besides, our data suggest that the cerebellum, lingual gyrus, and fusiform gyrus should also be integrated into the brain alterations in MDD. Future synthesis of individual neuroimaging studies and more advanced statistical analysis comparing subfields of the aforementioned regions are warranted to further shed light on the neurobiology of the disease and assist in the diagnosis of this burdensome disorder.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yun Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qinmu Peng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Wang
- Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
24
|
Cheng C, Dong D, Jiang Y, Ming Q, Zhong X, Sun X, Xiong G, Gao Y, Yao S. State-Related Alterations of Spontaneous Neural Activity in Current and Remitted Depression Revealed by Resting-State fMRI. Front Psychol 2019; 10:245. [PMID: 30804860 PMCID: PMC6378291 DOI: 10.3389/fpsyg.2019.00245] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Although efforts have been made to identify neurobiological characteristic of major depressive disorder (MDD) in recent years, trait- and state-related biological characteristics of MDD still remains unclear. Using functional magnetic resonance imaging (fMRI), the aim of this study was to explore whether altered spontaneous neural activities in MDD are trait- or state- related. Materials and Methods: Resting-state fMRI data were analyzed for 72 current MDD (cMDD) patients (first-episode, medication-naïve), 49 remitted MDD (rMDD) patients, and 78 age- and sex- matched healthy control (HC) subjects. The values of amplitude of low-frequency fluctuation (ALFF) were compared between groups. Results: Compared with the cMDD group, the rMDD group had increased ALFF values in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe. Besides, compared with the HC group, the cMDD group had decreased ALFF values in the left middle occipital gyrus. Further analysis explored that the mean ALFF values in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe were correlated positively with BDI scores in rMDD patients. Conclusion: Abnormal activity in the left middle occipital gyrus, left middle temporal gyrus and right cerebellum anterior lobe may be state-specific in current (first-episode, medication-naïve) and remitted (medication-naïve) depression patients. Furthermore, the state-related compensatory effect was found in these brain areas.
Collapse
Affiliation(s)
- Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Preschool Education Department, Changsha Normal University, Changsha, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qingsen Ming
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Park YK, Kim JH, Choi SJ, Kim ST, Joo EY. Altered Regional Cerebral Blood Flow Associated with Mood and Sleep in Shift Workers: Cerebral Perfusion Magnetic Resonance Imaging Study. J Clin Neurol 2019; 15:438-447. [PMID: 31591830 PMCID: PMC6785470 DOI: 10.3988/jcn.2019.15.4.438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Shift work disrupts the body's circadian rhythms and increases the risk of health problems. Despite evidence of neuropsychological disturbances in shift workers (SW), the brain functional status as measured by brain perfusion in chronic shift work has not been evaluated previously. We investigated the regional cerebral blood flow (rCBF) in SW using perfusion MRI (pMRI) and evaluated the relationships between altered rCBF and sleep, mood, psychometric measures, and quality of life. METHODS Fifteen rotational SW and 15 day workers (DW) were enrolled. The participants were all female nurses working at a university-affiliated hospital. During 2 weeks of actigraphy they underwent pMRI scanning and psychometric testing on the last day immediately after working. Demographic characteristics, insomnia, daytime sleepiness, and mood were compared between the groups. RESULTS The participants were aged 35.3±2.9 years (mean±SD) and had been performing their current work for more than 2 years. The demographic characteristics did not differ between SW and DW, but the levels of insomnia, anxiety, depression, and hyperactivity-restlessness in psychometric measures were higher in SW than in DW. Cerebral perfusion in SW was significantly decreased in the cuneus, fusiform/parahippocampal gyri, and cerebellum of the right hemisphere, while it was increased in the inferior occipital gyrus of the left hemisphere. Perfusion changes in SW were significantly correlated with depression and insomnia severity. The onset and duration irregularity of sleep among SW were related to insomnia, mood, hyperactivity/ restlessness, and quality of life. CONCLUSIONS SW experience considerably more insomnia and mood disturbances than do DW, and this is significantly related to perfusion changes in multiple brain areas.
Collapse
Affiliation(s)
- Yun Kyung Park
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam, Korea
| | - Jae Hun Kim
- Department Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jung Choi
- Department of Nursing, Samsung Medical Center, Department of Clinical Nursing Science, Graduate School of Clinical Nursing Science, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Neuroscience Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Tae Kim
- Department Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
26
|
Chai H, Liu B, Zhan H, Li X, He Z, Ye J, Guo Q, Chen J, Zhang J, Li S. Antidepressant Effects of Rhodomyrtone in Mice with Chronic Unpredictable Mild Stress-Induced Depression. Int J Neuropsychopharmacol 2018; 22:157-164. [PMID: 30407505 PMCID: PMC6368369 DOI: 10.1093/ijnp/pyy091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodomyrtone is one of the main active compounds derived from Rhodomyrtus tomentosa, which belongs to the Myrtaceae family. In the current study, we investigated the properties of rhodomyrtone as a potential drug candidate for the treatment of stress-caused depression. METHODS We assessed the function of rhodomyrtone in chronic unpredictable mild stress, a well-validated depression model in mice. Depression-like behavior tests, including a sucrose performance test, social interaction test, and forced swimming test, were used to validate the antidepressant effects of rhodomyrtone. The Morris water maze was used to evaluate the mice's learning and memory ability. Spine density, glycogen synthase kinase-3β, brain-derived neurotrophic factor, postsynaptic density protein 95, and apoptosis-associated protein were detected to reveal the underlying mechanism. RESULTS Rhodomyrtone was found to prevent source consumption decrease, decreased social behaviors, and increase immobility in the forced swimming test, suggesting a protective effect of rhodomyrtone against depression-like behaviors. Additionally, rhodomyrtone prevented the impairment of spatial memory in mice exposed to chronic unpredictable mild stress. Rhodomyrtone administration also reversed dendritic spine density defects in chronic unpredictable mild stress. Furthermore, rhodomyrtone inhibited the increase of glycogen synthase kinase-3β activity and reversed the decrease of brain-derived neurotrophic factor and postsynaptic density protein 95 in chronic unpredictable mild stress mice. Elevated expression of apoptosis-associated protein Bax and cleaved-caspase 3 was also reversed by rhodomyrtone treatment. CONCLUSIONS These results suggested that the antidepressant effect of rhodomyrtone involves the regulation of neurogenesis, neuronal survival, and synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Huihui Chai
- Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, Guangdong Province, China
| | - Bin Liu
- Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, Guangdong Province, China
| | - Haoqiang Zhan
- Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, Guangdong Province, China
| | - Xueqian Li
- Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, Guangdong Province, China
| | - Zhipeng He
- Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, Guangdong Province, China
| | - Jingan Ye
- Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, Guangdong Province, China
| | - Qiang Guo
- Department of Epilepsy Surgery, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong Province, China
| | - Junxi Chen
- Department of Epilepsy Surgery, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong Province, China
| | - Jun Zhang
- Department of Neurosurgery, Dalang Hospital, Dongguan, Guangdong Province, China,Correspondence: Jun Zhang, PhD, Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, 523059, Guangdong Province, China (); and Shao-Peng Li, Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, 523059, Guangdong Province, China ()
| | - Shaopeng Li
- Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, Guangdong Province, China,Correspondence: Jun Zhang, PhD, Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, 523059, Guangdong Province, China (); and Shao-Peng Li, Department of Neurosurgery, Dongguan People’s Hospital, Affiliated Dongguan People’s Hospital of Southern Medical University, Dongguan, 523059, Guangdong Province, China ()
| |
Collapse
|
27
|
Çavdar S, Özgur M, Kuvvet Y, Bay HH. The Cerebello-Hypothalamic and Hypothalamo-Cerebellar Pathways via Superior and Middle Cerebellar Peduncle in the Rat. THE CEREBELLUM 2018; 17:517-524. [PMID: 29637507 DOI: 10.1007/s12311-018-0938-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The connections between the cerebellum and the hypothalamus have been well documented. However, the specific cerebellar peduncle through which the hypothalamo-cerebellar and cerebello-hypothalamic connections pass has not been demonstrated. The present study aims to define the specific cerebellar peduncle through which connects the cerebellum to specific hypothalamic nuclei. Seventeen male albino rats received 20-50-nl pressure injections of either Fluoro-Gold (FG) or biotinylated dextran amine (BDA) tracer into the superior (SCP), middle (MCP), and inferior (ICP) cerebellar peduncle. Following 7-10 days of survival period, the animals were processed according to the appropriate protocol for the two tracers used. Labeled cells and axons were documented using light or fluorescence microscopy. The present study showed connections between the hypothalamus and the cerebellum via both the SCP and the MCP but not the ICP. The hypothalamo-cerebellar connections via the SCP were from the lateral, dorsomedial, paraventricular, and posterior hypothalamic nuclei, and cerebello-hypothalamic connections were to the preoptic and lateral hypothalamic nuclei. The hypothalamo-cerebellar connections via the MCP were from the lateral, dorsomedial, ventromedial, and mammillary hypothalamic nuclei; and cerebello-hypothalamic connections were to the posterior, arcuate, and ventromedial hypothalamic nuclei. The hypothlamo-cerebellar connections were denser compared to the cerebello-hypothlamic connections via both the SCP and the MCP. The connection between the cerebellum and the hypothalamus was more prominent via the SCP than MCP. Both the hypothlamo-cerebellar and cerebello-hypothalamic connections were bilateral, with ipsilateral preponderance. Reciprocal connections were with the lateral hypothalamic nucleus via the SCP and the ventromedial nucleus via the MCP were observed. Cerebellum takes part in the higher order brain functions via its extensive connections. The knowledge of hypothalamo-cerebellar and cerebello-hypothalamic connections conveyed within the SCP and MCP can be important for the lesions involving the MCP and SCP. These connections can also change the conceptual architecture of the cerebellar circuitry and deepen current understanding.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey.
| | - Merve Özgur
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey
| | - Yasemin Kuvvet
- Department of Anatomy, School of Medicine, Koç University, 34450, Sarıyer Istanbul, Turkey
| | | |
Collapse
|
28
|
Data-Driven Clustering Reveals a Link Between Symptoms and Functional Brain Connectivity in Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:16-26. [PMID: 29980494 DOI: 10.1016/j.bpsc.2018.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Depression is a complex disorder with large interindividual variability in symptom profiles that often occur alongside symptoms of other psychiatric domains, such as anxiety. A dimensional and symptom-based approach may help refine the characterization of depressive and anxiety disorders and thus aid in establishing robust biomarkers. We use resting-state functional magnetic resonance imaging to assess the brain functional connectivity correlates of a symptom-based clustering of individuals. METHODS We assessed symptoms using the Beck Depression and Beck Anxiety Inventories in individuals with or without a history of depression (N = 1084) and high-dimensional data clustering to form subgroups based on symptom profiles. We compared dynamic and static functional connectivity between subgroups in a subset of the total sample (n = 252). RESULTS We identified five subgroups with distinct symptom profiles, which cut across diagnostic boundaries with different total severity, symptom patterns, and centrality. For instance, inability to relax, fear of the worst, and feelings of guilt were among the most severe symptoms in subgroups 1, 2, and 3, respectively. The distribution of individuals was 32%, 25%, 22%, 10%, and 11% in subgroups 1 to 5, respectively. These subgroups showed evidence of differential static brain-connectivity patterns, in particular comprising a frontotemporal network. In contrast, we found no significant associations with clinical sum scores, dynamic functional connectivity, or global connectivity. CONCLUSIONS Adding to the pursuit of individual-based treatment, subtyping based on a dimensional conceptualization and unique constellations of anxiety and depression symptoms is supported by distinct patterns of static functional connectivity in the brain.
Collapse
|
29
|
Geng X, Xu J, Liu B, Shi Y. Multivariate Classification of Major Depressive Disorder Using the Effective Connectivity and Functional Connectivity. Front Neurosci 2018; 12:38. [PMID: 29515348 PMCID: PMC5825897 DOI: 10.3389/fnins.2018.00038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) is a mental disorder characterized by at least 2 weeks of low mood, which is present across most situations. Diagnosis of MDD using rest-state functional magnetic resonance imaging (fMRI) data faces many challenges due to the high dimensionality, small samples, noisy and individual variability. To our best knowledge, no studies aim at classification with effective connectivity and functional connectivity measures between MDD patients and healthy controls. In this study, we performed a data-driving classification analysis using the whole brain connectivity measures which included the functional connectivity from two brain templates and effective connectivity measures created by the default mode network (DMN), dorsal attention network (DAN), frontal-parietal network (FPN), and silence network (SN). Effective connectivity measures were extracted using spectral Dynamic Causal Modeling (spDCM) and transformed into a vectorial feature space. Linear Support Vector Machine (linear SVM), non-linear SVM, k-Nearest Neighbor (KNN), and Logistic Regression (LR) were used as the classifiers to identify the differences between MDD patients and healthy controls. Our results showed that the highest accuracy achieved 91.67% (p < 0.0001) when using 19 effective connections and 89.36% when using 6,650 functional connections. The functional connections with high discriminative power were mainly located within or across the whole brain resting-state networks while the discriminative effective connections located in several specific regions, such as posterior cingulate cortex (PCC), ventromedial prefrontal cortex (vmPFC), dorsal cingulate cortex (dACC), and inferior parietal lobes (IPL). To further compare the discriminative power of functional connections and effective connections, a classification analysis only using the functional connections from those four networks was conducted and the highest accuracy achieved 78.33% (p < 0.0001). Our study demonstrated that the effective connectivity measures might play a more important role than functional connectivity in exploring the alterations between patients and health controls and afford a better mechanistic interpretability. Moreover, our results showed a diagnostic potential of the effective connectivity for the diagnosis of MDD patients with high accuracies allowing for earlier prevention or intervention.
Collapse
Affiliation(s)
- Xiangfei Geng
- Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, China
| | - Junhai Xu
- Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Neural Imaging, Keck School of Medicine, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Baolin Liu
- Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, China
- State Key Laboratory of Intelligent Technology and Systems, National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Yonggang Shi
- Laboratory of Neural Imaging, Keck School of Medicine, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Xu LY, Xu FC, Liu C, Ji YF, Wu JM, Wang Y, Wang HB, Yu YQ. Relationship between cerebellar structure and emotional memory in depression. Brain Behav 2017; 7:e00738. [PMID: 28729943 PMCID: PMC5516611 DOI: 10.1002/brb3.738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A few studies have been conducted on the relationship between cerebellar volume and emotional memory or clinical severity in major depressive disorder (MDD). In this study, we aimed to compare the volume and density of the cerebellar gray matter (GM) in patients with MDD and in healthy controls (HCs) and explore the association between these cerebellar parameters and measurements of emotional memory and clinical severity. METHOD Voxel-based morphometry (VBM) and Individual Brain Atlases using Statistical Parametric Mapping (IBASPM) were used to assess GM density and volume in the cerebellum, respectively, in patients with MDD and the HCs. Indicators of emotional memory performance were measured, including the hit rate (HR), rate of false alarm (FA), precision (Pr = HR - FA) and emotional memory enhancement [∆Pr = Pr(emotion) - Pr(neutral)] values. Beck Depression Inventory (BDI) scores were used to measure the severity of depression. RESULTS In the patients with MDD, the GM density was decreased in three cerebellar cortical regions and increased in three cerebellar cortical regions (p < .005). The GM volumes in eight cerebellar cortical regions were significantly smaller in the patients with MDD than in the HC subjects (p < .05). In the patients with MDD, the GM volume was correlated with the ∆Pr (p < .05) in two cerebellar cortical regions. The BDI scores were significantly correlated with the relative GM densities (p < .05) in 5 cerebellar cortical regions, and the GM volumes in 13 cerebellar cortical regions were correlated with the BDI scores in patients with MDD. CONCLUSIONS Emotional memory and the severity of depressive symptoms are associated with structural changes in both the posterior and anterior GM regions in the cerebellum in patients with MDD. These findings could be useful for improving our understanding of the neurobiological mechanisms underlying emotional memory and explaining the abnormalities of the neural correlates that are associated with MDD.
Collapse
Affiliation(s)
- Li-Yan Xu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Fang-Cheng Xu
- Department of Neurology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Can Liu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Yi-Fu Ji
- The Centre of Anhui Mental Health and The Fourth Hospital of Hefei Hefei China
| | - Jin-Min Wu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Ying Wang
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Hai-Bao Wang
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Yong-Qiang Yu
- Department of Radiology The First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|