1
|
Class JA, Vishnubhotla RV, Zhao Y, Ooms N, Haas DM, Sadhasivam S, Radhakrishnan R. Pregnant maternal brain dorsal anterior cingulate cortex choline/creatine ratios on 1H-MR spectroscopy in opioid exposure. Front Neurosci 2025; 19:1569558. [PMID: 40309659 PMCID: PMC12040935 DOI: 10.3389/fnins.2025.1569558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
There is growing interest in understanding the effects of opioid use on the brain, yet the effects of opioid use on the pregnant maternal brain are still relatively unknown. Pregnant women with opioid exposure during pregnancy are at high risk for adverse neurological and neuropsychiatric outcomes. Much of what is currently known about the impact of opioids on the maternal brain is mainly derived from studies in animal models; however, species-specific opioid pathways and other socio-environmental factors complicate the interpretation of results. A few studies in non-pregnant adults have shown the utility of magnetic resonance spectroscopy (MRS) in risk prediction in substance exposure. We know that pregnancy alters the pharmacodynamics and pharmacokinetics of opioid metabolism, and the impact of opioids on synapses may differ during pregnancy compared to the non-pregnant state. We, therefore, aimed to understand the neurometabolic alterations in pregnant women on medications for opioid use disorder (MOUD). In our multicenter study, we utilized 1H MRS to analyze metabolic alterations in the dorsal anterior cingulate cortex (dACC) in pregnant women on MOUD (12 subjects) vs. pregnant control women (21 subjects) without substance exposure. Using multivariable linear regression, we identified a positive association between opioid exposure and choline-to-creatine (Cho/Cr) ratios after correcting for gestational age and scanner site. We also identified a significant elevation in the Cho/Cr ratio in pregnant women on MOUD and concomitant polysubstance exposure when compared to pregnant women on MOUD without exposure to other substances and control pregnant women. These altered metabolite concentrations that we identified in the dACC may provide a mechanistic understanding of the neurobiology of MOUD and insights for better management and outcomes.
Collapse
Affiliation(s)
- Jonathan A. Class
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ramana V. Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nathan Ooms
- College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - David M. Haas
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
2
|
Dehkordi O, Lin S, Mohamud SF, Millis RM, Wang P. 1H Nuclear Magnetic Resonance (NMR)-Based Metabolic Changes in Nucleus Accumbens and Medial Prefrontal Cortex Following Administration of Morphine in Mice. Cureus 2025; 17:e79972. [PMID: 40177428 PMCID: PMC11964287 DOI: 10.7759/cureus.79972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION It is well known that opiate addiction is a neurobiological disease associated with dysregulation of multiple neurotransmitters and neurochemicals. Previous ex-vivo 1H nuclear magnetic resonance (NMR) studies have yielded mixed findings concerning opiate-induced neurometabolic changes at key reward-addiction sites. Whether such changes reflect the conditions in a live animal remains unknown. The present study was therefore designed to fill this knowledge gap by determining the effects of morphine-induced neurometabolic changes under in-vivo conditions. METHODS In-vivo 1H NMR spectroscopy (SA Instruments, Stony Brook, NY) was used to measure neurochemical changes in nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) of mice, subjected to twice-daily injections of morphine (10 mg kg-1 s.c.) for five days. RESULTS Morphine induced significant changes in the concentrations of a number of metabolites in both mPFC and NAc. The glutamine component of the glutamine-glutamate-GABA excitatory-inhibitory cycle, increased in both mPFC and NAc. Significant increase in glutamate was also observed at mPFC, but not in NAc. The phosphocreatine, marker for energy metabolism, and the N-acetylaspartate marker for neuronal viability and energy metabolism decreased significantly in both mPFC and NAc. Glycerophosphocholine + phosphocholine, markers for cell membrane integrity, increased significantly in both NAc and mPFC after morphine. The antioxidant neurometabolites taurine and glutathione increased significantly in NAc; however, taurine decreased, and glutathione was unchanged in mPFC after morphine. Inositol, a marker for neuroinflammation, increased significantly in NAc. CONCLUSION The present study is the first in-vivo 1H NMR spectroscopy in mice to demonstrate morphine-induced dysregulation of multiple metabolites and neurochemicals within the reward-addiction neurocircuitry.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Neurology, Howard University College of Medicine, Washington, USA
| | - Stephen Lin
- Radiology, Howard University College of Medicine, Washington, USA
| | - Safia F Mohamud
- Neurology, Howard University College of Medicine, Washington, USA
| | | | - Paul Wang
- Radiology, Howard University College of Medicine, Washington, USA
| |
Collapse
|
3
|
Veksler V, Leon-Rivera R, Fleysher L, Gonzalez J, Lopez JA, Rubin LH, Morgello S, Berman JW. CD14+CD16+ monocyte transmigration across the blood-brain barrier is associated with HIV-NCI despite viral suppression. JCI Insight 2024; 9:e179855. [PMID: 39253970 PMCID: PMC11385088 DOI: 10.1172/jci.insight.179855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) affects 15%-50% of people with HIV (PWH), despite viral suppression with antiretroviral therapy (ART). HIV neuropathogenesis is mediated, in part, by transmigration of infected CD14+CD16+ monocytes across the blood-brain barrier (BBB) into the central nervous system (CNS). In the CNS, CD14+CD16+ monocytes contribute to infection and activation of parenchymal cells, resulting in production of neurotoxic viral and host factors that cause neuronal damage. Mechanisms by which CD14+CD16+ monocytes contribute to HIV-NCI have not been characterized in a study population of PWH on ART without contribution from confounders that affect cognition (e.g., substance use, hepatitis C virus coinfection). We assessed cognitive function, PBMC transmigration across the BBB, and neuronal health markers in a well-defined cohort of 56 PWH on ART using stringent criteria to eliminate confounding factors. We demonstrated that PWH on ART with HIV-NCI have significantly increased transmigration of their CD14+CD16+ monocytes across the BBB compared with those with normal cognition. We showed that hypertension and diabetes may be effect modifiers on the association between CD14+CD16+ monocyte transmigration and cognition. This study underscored the persistent role of CD14+CD16+ monocytes in HIV-NCI, even in PWH with viral suppression, suggesting them as potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Veronica Veksler
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Rosiris Leon-Rivera
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| | - Lazar Fleysher
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jairo Gonzalez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johnny A. Lopez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leah H. Rubin
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Alasmari MS, Alasmari F, Alsharari SD, Alasmari AF, Ali N, Ahamad SR, Alghamdi AM, Kadi AA, Hammad AM, Ali YSM, Childers WE, Abou-Gharbia M, Sari Y. Neuroinflammation and Neurometabolomic Profiling in Fentanyl Overdose Mouse Model Treated with Novel β-Lactam, MC-100093, and Ceftriaxone. TOXICS 2024; 12:604. [PMID: 39195706 PMCID: PMC11360732 DOI: 10.3390/toxics12080604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Opioid-related deaths are attributed to overdoses, and fentanyl overdose has been on the rise in many parts of the world, including the USA. Glutamate transporter 1 (GLT-1) has been identified as a therapeutic target in several preclinical models of substance use disorders, and β-lactams effectively enhance its expression and function. In the current study, we characterized the metabolomic profile of the nucleus accumbens (NAc) in fentanyl-overdose mouse models, and we evaluated the protective effects of the functional enhancement of GLT-1 using β-lactams, ceftriaxone, and MC-100093. BALB/c mice were divided into four groups: control, fentanyl, fentanyl/ceftriaxone, and fentanyl/MC-100093. While the control group was intraperitoneally (i.p.) injected with normal saline simultaneously with other groups, all fentanyl groups were i.p. injected with 1 mg/kg of fentanyl as an overdose after habituation with four repetitive non-consecutive moderate doses (0.05 mg/kg) of fentanyl for a period of seven days. MC-100093 (50 mg/kg) and ceftriaxone (200 mg/kg) were i.p. injected from days 5 to 9. Gas chromatography-mass spectrometry (GC-MS) was used for metabolomics, and Western blotting was performed to determine the expression of target proteins. Y-maze spontaneous alternation performance and the open field activity monitoring system were used to measure behavioral manifestations. Fentanyl overdose altered the abundance of about 30 metabolites, reduced the expression of GLT-1, and induced the expression of inflammatory mediators IL-6 and TLR-4 in the NAc. MC-100093 and ceftriaxone attenuated the effects of fentanyl-induced downregulation of GLT-1 and upregulation of IL-6; however, only ceftriaxone attenuated fentanyl-induced upregulation of TRL4 expression. Both of the β-lactams attenuated the effects of fentanyl overdose on locomotor activities but did not induce significant changes in the overall metabolomic profile. Our findings revealed that the exposure to a high dose of fentanyl causes alterations in key metabolic pathways in the NAc. Pretreatment with ceftriaxone and MC-100093 normalized fentanyl-induced downregulation of GLT-1 expression with subsequent attenuation of neuroinflammation as well as the hyperactivity, indicating that β-lactams may be promising drugs for treating fentanyl use disorder.
Collapse
Affiliation(s)
- Mohammed S. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Shakir D. Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdullah M. Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Aban A. Kadi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Alaa M. Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Yousif S. Mohamed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
| | - Wayne E. Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (W.E.C.); (M.A.-G.)
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (W.E.C.); (M.A.-G.)
| | - Youssef Sari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (F.A.); (S.D.A.); (A.F.A.); (N.A.); (A.M.A.); (A.A.K.)
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
5
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Khatri SN, Ulangkaya H, Maher EE, Sadek S, Hong M, Woodcox AM, Stoops WW, Gipson CD. Oxycodone withdrawal is associated with increased cocaine self-administration and aberrant accumbens glutamate plasticity in rats. Neuropharmacology 2024; 242:109773. [PMID: 37865136 PMCID: PMC10842432 DOI: 10.1016/j.neuropharm.2023.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Individuals with opioid use disorder (OUD) frequently use other substances, including cocaine. Opioid withdrawal is associated with increased likelihood of cocaine use, which may represent an attempt to ameliorate opioid withdrawal effects. Clinically, 30% of co-using individuals take opioids and cocaine exclusively in a sequential manner. Preclinical studies evaluating mechanisms of drug use typically study drugs in isolation. However, polysubstance use is a highly prevalent clinical issue and thus, we established a novel preclinical model of sequential oxycodone and cocaine self-administration (SA) whereby rats acquired oxycodone and cocaine SA in an A-B-A-B design. Somatic signs of withdrawal were evaluated at 0, 22, and 24h following oxycodone SA, with the 24h timepoint representing somatic signs immediately following cocaine SA. Preclinically, aberrant glutamate signaling within the nucleus accumbens core (NAcore) occurs following use of cocaine or opioids, whereby medium spiny neurons (MSNs) rest in a potentiated or depotentiated state, respectively. Further, NAcore glial glutamate transport via GLT-1 is downregulated following SA of either drug alone. However, it is not clear if cocaine can exacerbate opioid-induced changes in glutamate signaling. In this study, NAcore GLT-1 protein and glutamate plasticity were measured (via AMPA/NMDA ratio) following SA. Rats acquired SA of both oxycodone and cocaine regardless of sex, and the acute oxycodone-induced increase in somatic signs at 22h was positively correlated with cocaine consumption during the cocaine testing phase. Cocaine use following oxycodone SA downregulated GLT-1 and reduced AMPA/NMDA ratios compared to cocaine use following food SA. Further, oxycodone SA alone was associated with reduced AMPA/NMDA ratio. Together, behavioral signs of oxycodone withdrawal may drive cocaine use and further dysregulate NAcore glutamate signaling.
Collapse
Affiliation(s)
- Shailesh N Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Hanaa Ulangkaya
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Mei Hong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Andrea M Woodcox
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - William W Stoops
- Department of Behavioral Science, University of Kentucky, Lexington, KY, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
7
|
O'Neill J, Diaz MP, Alger JR, Pochon JB, Ghahremani D, Dean AC, Tyndale RF, Petersen N, Marohnic S, Karaiskaki A, London ED. Smoking, tobacco dependence, and neurometabolites in the dorsal anterior cingulate cortex. Mol Psychiatry 2023; 28:4756-4765. [PMID: 37749232 PMCID: PMC10914613 DOI: 10.1038/s41380-023-02247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Cigarette smoking has a major impact on global health and morbidity, and positron emission tomographic research has provided evidence for reduced inflammation in the human brain associated with cigarette smoking. Given the consequences of inflammatory dysfunction for health, the question of whether cigarette smoking affects neuroinflammation warrants further investigation. The goal of this project therefore was to validate and extend evidence of hypoinflammation related to smoking, and to examine the potential contribution of inflammation to clinical features of smoking. Using magnetic resonance spectroscopy, we measured levels of neurometabolites that are putative neuroinflammatory markers. N-acetyl compounds (N-acetylaspartate + N-acetylaspartylglutamate), glutamate, creatine, choline-compounds (phosphocholine + glycerophosphocholine), and myo-inositol, have all been linked to neuroinflammation, but they have not been examined as such with respect to smoking. We tested whether people who smoke cigarettes have brain levels of these metabolites consistent with decreased neuroinflammation, and whether clinical features of smoking are associated with levels of these metabolites. The dorsal anterior cingulate cortex was chosen as the region-of-interest because of previous evidence linking it to smoking and related states. Fifty-four adults who smoked daily maintained overnight smoking abstinence before testing and were compared with 37 nonsmoking participants. Among the smoking participants, we tested for associations of metabolite levels with tobacco dependence, smoking history, craving, and withdrawal. Levels of N-acetyl compounds and glutamate were higher, whereas levels of creatine and choline compounds were lower in the smoking group as compared with the nonsmoking group. In the smoking group, glutamate and creatine levels correlated negatively with tobacco dependence, and creatine correlated negatively with lifetime smoking, but none of the metabolite levels correlated with craving or withdrawal. The findings indicate a link between smoking and a hypoinflammatory state in the brain, specifically in the dorsal anterior cingulate cortex. Smoking may thereby increase vulnerability to infection and brain injury.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Maylen Perez Diaz
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
- Biogen, Inc., Nashville, TN, USA
| | - Jeffry R Alger
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jean-Baptiste Pochon
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dara Ghahremani
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrew C Dean
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, and Department of Psychiatry, University of Toronto, and Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Nicole Petersen
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shane Marohnic
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrea Karaiskaki
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D London
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Kumar AS, Khanra S, Goyal N, Dharani R, Roy C. Adjunctive High-Definition Transcranial Direct Current Stimulation in Brain Glutamate-Glutamine and γ-Aminobutyric Acid, Withdrawal and Craving During Early Abstinence Among Patients With Opioid Use Disorder on Buprenorphine-Naloxone: A Proton Magnetic Resonance Spectroscopy-Based Pilot Study. J ECT 2022; 38:124-132. [PMID: 35537121 DOI: 10.1097/yct.0000000000000820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Our study aimed to (1) examine the effect of adjunctive high-definition transcranial direct current stimulation (HD-tDCS) in craving and withdrawal among patients with opioid use disorder on buprenorphine-naloxone, and (2) examine effect of HD-tDCS changes in glutamate-glutamine and γ-aminobutyric acid (GABA) at the left dorsolateral prefrontal cortex (DLPFC) among patients with opioid use disorder on buprenorphine-naloxone. METHODS This was a pilot randomized double-blind, sham-controlled parallel-group study. A total of 28 patients on buprenorphine-naloxone (6/1.5 mg/d) were randomly allocated into 2 groups for active and sham HD-tDCS stimulation. High-definition transcranial direct current stimulation was administered twice daily for consecutive 5 days, from days 2 to 6. The Clinical Opiate Withdrawal Scale (COWS), the Desire for Drug Questionnaire (DDQ), the Obsessive-Compulsive Drug Use Scale (OCDUS), and glutamate-glutamine and GABA at DLPFC via proton magnetic resonance spectroscopy were measured at baseline and on day 7. RESULTS Both active and sham groups had comparable changes in DDQ, OCDUS (except 2 subcomponents), COWS, and glutamate-glutamine and GABA at DLPFC. In the active HD-tDCS group, statistically significant reductions were observed in DDQ, OCDUS, and COWS but not in glutamate-glutamine and GABA. CONCLUSIONS The adjunctive active HD-tDCS group showed comparable changes in craving and withdrawal, and glutamate-glutamine and GABA at DLPFC compared with sham HD-tDCS. Craving and withdrawal but not glutamate-glutamine and GABA at DLPFC decreased significantly with adjunctive HD-tDCS. Future studies with larger sample size and online assessment of glutamate-glutamine and GABA would enhance our knowledge.
Collapse
Affiliation(s)
| | | | - Nishant Goyal
- Cognitive Neuroscience, Central Institute of Psychiatry, Ranchi, India
| | | | - Chandramouli Roy
- Cognitive Neuroscience, Central Institute of Psychiatry, Ranchi, India
| |
Collapse
|
9
|
Demchenko I, Tassone VK, Kennedy SH, Dunlop K, Bhat V. Intrinsic Connectivity Networks of Glutamate-Mediated Antidepressant Response: A Neuroimaging Review. Front Psychiatry 2022; 13:864902. [PMID: 35722550 PMCID: PMC9199367 DOI: 10.3389/fpsyt.2022.864902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional monoamine-based pharmacotherapy, considered the first-line treatment for major depressive disorder (MDD), has several challenges, including high rates of non-response. To address these challenges, preclinical and clinical studies have sought to characterize antidepressant response through monoamine-independent mechanisms. One striking example is glutamate, the brain's foremost excitatory neurotransmitter: since the 1990s, studies have consistently reported altered levels of glutamate in MDD, as well as antidepressant effects following molecular targeting of glutamatergic receptors. Therapeutically, this has led to advances in the discovery, testing, and clinical application of a wide array of glutamatergic agents, particularly ketamine. Notably, ketamine has been demonstrated to rapidly improve mood symptoms, unlike monoamine-based interventions, and the neurobiological basis behind this rapid antidepressant response is under active investigation. Advances in brain imaging techniques, including functional magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, enable the identification of the brain network-based characteristics distinguishing rapid glutamatergic modulation from the effect of slow-acting conventional monoamine-based pharmacology. Here, we review brain imaging studies that examine brain connectivity features associated with rapid antidepressant response in MDD patients treated with glutamatergic pharmacotherapies in contrast with patients treated with slow-acting monoamine-based treatments. Trends in recent brain imaging literature suggest that the activity of brain regions is organized into coherent functionally distinct networks, termed intrinsic connectivity networks (ICNs). We provide an overview of major ICNs implicated in depression and explore how treatment response following glutamatergic modulation alters functional connectivity of limbic, cognitive, and executive nodes within ICNs, with well-characterized anti-anhedonic effects and the enhancement of "top-down" executive control. Alterations within and between the core ICNs could potentially exert downstream effects on the nodes within other brain networks of relevance to MDD that are structurally and functionally interconnected through glutamatergic synapses. Understanding similarities and differences in brain ICNs features underlying treatment response will positively impact the trajectory and outcomes for adults suffering from MDD and will facilitate the development of biomarkers to enable glutamate-based precision therapeutics.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katharine Dunlop
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Chen T, Tan H, Lei H, Li X, Wu Q, Xu X, Ye Y, Zhong N, Du J, Jiang H, Su H, Zhao M. Nature of glutamate alterations in substance dependence: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Psychiatry Res Neuroimaging 2021; 315:111329. [PMID: 34271295 DOI: 10.1016/j.pscychresns.2021.111329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Animal studies have reported the brain glutamatergic dysfunction in substance dependence. However, proton magnetic resonance spectroscopy (1H-MRS) studies of glutamate in substance-dependent patients published contradicting results. In order to investigate the characteristics of brain glutamatergic alterations in substance-dependent patients, we conducted systematic reviews and meta-analyses of 1H-MRS studies that have investigated the glutamate, glutamine, and Glx (glutamate + glutamine) concentration in substance-dependent patients. Multiple databases were searched until Sep 10, 2020. Twenty-nine studies comprising 982 patients and 787 controls were included. There was significantly decreased glutamate level in dorsolateral prefrontal cortex in patients compared with controls. Higher glutamate levels in medial prefrontal cortex and basal ganglia region were also demonstrated in patients compared with controls. Subgroup analyses based on the substance type and abstinence period (short vs medium-term abstinence period) were performed. The results revealed Glx and glutamate concentrations in all investigated brain regions were not different in patients with any types of substance dependence compared with controls. The abstinence period had no effect on the glutamate levels. In summary, substance dependence is associated with glutamatergic dysfunction of prefrontal cortex and basal ganglia. Present findings partially support the hypothesis that addiction is associated with abnormal brain glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Haoye Tan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Huiting Lei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Qianying Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Xiaomin Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Yujian Ye
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China.
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Wronikowska O, Zykubek M, Michalak A, Pankowska A, Kozioł P, Boguszewska-Czubara A, Kurach Ł, Łazorczyk A, Kochalska K, Talarek S, Słowik T, Pietura R, Kurzepa J, Budzyńska B. Insight into Glutamatergic Involvement in Rewarding Effects of Mephedrone in Rats: In Vivo and Ex Vivo Study. Mol Neurobiol 2021; 58:4413-4424. [PMID: 34021482 PMCID: PMC8487417 DOI: 10.1007/s12035-021-02404-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
Mephedrone is a widely used drug of abuse, exerting its effects by interacting with monoamine transporters. Although this mechanism has been widely studied heretofore, little is known about the involvement of glutamatergic transmission in mephedrone effects. In this study, we comprehensively evaluated glutamatergic involvement in rewarding effects of mephedrone using an interdisciplinary approach including (1) behavioural study on effects of memantine (non-selective NMDA antagonist) on expression of mephedrone-induced conditioned place preference (CPP) in rats; (2) evaluation of glutamate concentrations in the hippocampus of rats following 6 days of mephedrone administration, using in vivo magnetic resonance spectroscopy (MRS); and (3) determination of glutamate levels in the hippocampus of rats treated with mephedrone and subjected to MRS, using ion-exchange chromatography. In the presented research, we confirmed priorly reported mephedrone-induced rewarding effects in the CPP paradigm and showed that memantine (5 mg/kg) was able to reverse the expression of this effect. MRS study showed that subchronic mephedrone administration increased glutamate level in the hippocampus when measured in vivo 24 h (5 mg/kg, 10 mg/kg and 20 mg/kg) and 2 weeks (5 mg/kg and 20 mg/kg) after last injection. Ex vivo chromatographic analysis did not show significant changes in hippocampal glutamate concentrations; however, it showed similar results as obtained in the MRS study proving its validity. Taken together, the presented study provides new insight into glutamatergic involvement in rewarding properties of mephedrone.
Collapse
Affiliation(s)
- Olga Wronikowska
- Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland.,Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Maria Zykubek
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Anna Pankowska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Paulina Kozioł
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Artur Łazorczyk
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Katarzyna Kochalska
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland
| | - Tymoteusz Słowik
- Centre of Experimental Medicine, Medical University of Lublin, Jaczewskiego 8 Street, 20-090, Lublin, Poland
| | - Radosław Pietura
- Department of Radiography, Medical University of Lublin, Staszica 16 Street, 20-081, Lublin, Poland
| | - Joanna Kurzepa
- I Department of Medical Radiology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090, Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Chair and Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a Street, 20-093, Lublin, Poland.
| |
Collapse
|
12
|
Bryant BM, Eaton E, Li L. A Systematic Review of Opioid Use Disorder and Related Biomarkers. Front Psychiatry 2021; 12:708283. [PMID: 34456765 PMCID: PMC8385272 DOI: 10.3389/fpsyt.2021.708283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 02/05/2023] Open
Abstract
The objective of this systematic review is to examine the relationship between opioid use disorder (OUD) and its related biomarkers, as well as the effects of pharmacotherapy for OUD on biomarkers. The eligibility criteria are the inclusion of human population studies focusing on biomarkers, including the immune system, related to OUD or opioid-related disorders. English, peer reviewed, original research, case studies or case series, and clinical trials were included in this review. Papers were excluded if they met one or more of the following criteria: animal studies, review articles, studies focusing only on OUD or opioid-related disorders without mention of potential biomarkers, studies focusing only on biomarkers and/or the immune system without relating to OUD or opioid-related disorders, and studies that focused on other substance use disorders other than OUD specifically. A PubMed, PsycINFO, and Cochrane databases search on August 25, 2020, yielded 101 results; only 14 articles met inclusion criteria that were included in this review. However, heterogeneity of study definitions and measurements should be noted. Various potential biomarkers indicated systemic, peripheral, and chronic inflammation in patients with OUD or opioid-related disorders. Medications, including buprenorphine and methadone, significantly decreased chronic inflammation in this population. Our results suggest that patients with OUD or opioid-related disorders have potential biomarkers that can be targeted to provide optimal treatment options for this population. A better understanding of potential biomarkers may assist to identify at-risk populations, monitor disease progression and treatment response, and develop therapeutic strategies for OUD. Systematic Review Registration: This review has been registered in PROSPERO (CRD42020202014).
Collapse
Affiliation(s)
- Bianca M Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ellen Eaton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Li Li
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
No evidence of abnormal metabolic or inflammatory activity in the brains of patients with rheumatoid arthritis: results from a preliminary study using whole-brain magnetic resonance spectroscopic imaging (MRSI). Clin Rheumatol 2020; 39:1765-1774. [PMID: 32002761 PMCID: PMC7237391 DOI: 10.1007/s10067-019-04923-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/21/2019] [Accepted: 12/29/2019] [Indexed: 01/15/2023]
Abstract
Introduction/objectives Many individuals with rheumatoid arthritis (RA) report persistent fatigue even after management of peripheral disease activity. This study used whole-brain magnetic resonance spectroscopic imaging (MRSI) to investigate whether abnormal inflammatory activity in the central nervous system may be associated with such symptoms. We hypothesized that RA patients would show higher brain choline (CHO), myo-inositol (MI), and lactate (LAC), and higher brain temperature than healthy controls. We further hypothesized that the metabolite levels would be positively correlated with self-reported fatigue. Method Thirteen women with RA provided fatigue severity ratings and underwent whole-brain MRSI and a joint examination. Thirteen healthy controls (HC) provided comparison imaging and fatigue data. CHO, MI, LAC, and brain temperature in 47 brain regions were contrasted between groups using independent-samples t tests. Significant differences were determined using a false discovery rate (FDR)-adjusted p value threshold of ≤ 0.0023. Secondary analyses obtained correlations between imaging and clinical outcomes in the RA group. Results No brain metabolic differences were identified between the groups. In the RA group, fatigue severity was positively correlated with CHO in several brain regions—most strongly the right frontal lobe (rs = 0.823, p < 0.001). MI was similarly correlated with fatigue, particularly in the right calcarine fissure (rs = 0.829, p < 0.001). CHO in several regions was positively correlated with joint swelling and tenderness. Conclusions We conclude that abnormal brain metabolites are not a common feature of RA, but may been seen in patients with persistent fatigue or disease activity after conventional treatment.Key Points • Whole-brain magnetic resonance spectroscopy revealed no metabolic abnormalities in the brain in patients with rheumatoid arthritis. • Brain choline levels were correlated with fatigue severity reported by RA patients and with peripheral joint swelling and tenderness. • Brain myo-inositol levels were similarly correlated with fatigue severity in RA patients. |
Electronic supplementary material The online version of this article (10.1007/s10067-019-04923-5) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Kruyer A, Chioma VC, Kalivas PW. The Opioid-Addicted Tetrapartite Synapse. Biol Psychiatry 2020; 87:34-43. [PMID: 31378302 PMCID: PMC6898767 DOI: 10.1016/j.biopsych.2019.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
Opioid administration in preclinical models induces long-lasting adaptations in reward and habit circuitry. The latest research demonstrates that in the nucleus accumbens, opioid-induced excitatory synaptic plasticity involves presynaptic and postsynaptic elements as well as adjacent astroglial processes and the perisynaptic extracellular matrix. We outline opioid-induced modifications within each component of the tetrapartite synapse and provide a neurobiological perspective on how these adaptations converge to produce addiction-related behaviors in rodent models. By incorporating changes observed at each of the excitatory synaptic compartments into a unified framework of opioid-induced glutamate dysregulation, we highlight new avenues for restoring synaptic homeostasis that might limit opioid craving and relapse vulnerability.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Vivian C Chioma
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
15
|
Li JN, Liu XL, Li L. Prefrontal GABA and glutamate levels correlate with impulsivity and cognitive function of prescription opioid addicts: A 1 H-magnetic resonance spectroscopy study. Psychiatry Clin Neurosci 2020; 74:77-83. [PMID: 31599080 DOI: 10.1111/pcn.12940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
AIM Prescription opioids are psychoactive substances that can elicit many neuropsychological effects. There are no studies that directly demonstrate the effects of prescription opioid addiction (POA) on the human brain. This study aimed to quantify γ-aminobutyric acid (GABA) and glutamate (Glu) levels in the prefrontal cortex (PFC) of POA patients using proton magnetic resonance spectroscopy (1 H-MRS), and to explore their association with impulsive behavior and cognitive impairment. METHODS Thirty-five patients with a definitive clinical diagnosis of codeine-containing cough syrup dependence and 35 matched healthy controls underwent neuropsychological assessments, namely the Barratt Impulsiveness Scale (BIS-11) and the Montreal Cognitive Assessment Scale (MoCA). Point-resolved spectroscopy was performed to detect GABA and glutamate within the medial PFC, and the corresponding levels were estimated using jMRUI and corrected for fraction of cerebrospinal fluid in the 1 H-MRS voxel. The difference in metabolite levels between groups and the correlation between metabolite levels and psychometric scores in patients were analyzed statistically. RESULTS The peak level predominantly consisting of GABA with a relatively small influence of other chemicals (GABA+) was lower and that of glutamate was higher in the PFC of POA patients than in healthy controls. GABA+ levels correlated negatively with BIS-11 scores but correlated positively with MoCA scores. In contrast, glutamate levels showed a positive correlation with BIS-11 scores but no significant correlation with MoCA scores. CONCLUSION The quantitative in vivo measurement of GABA and glutamate levels in the PFC by 1 H-MRS could be a reliable way to evaluate impulsivity and cognitive function of POA.
Collapse
Affiliation(s)
- Jian-Neng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xi-Long Liu
- Department of Diagnostic Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Estimating Mental Health Conditions of Patients with Opioid Use Disorder. JOURNAL OF ADDICTION 2019; 2019:8586153. [PMID: 31662946 PMCID: PMC6791239 DOI: 10.1155/2019/8586153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/14/2019] [Accepted: 08/21/2019] [Indexed: 01/11/2023]
Abstract
Objectives Noninvasive estimation of cortical activity aberrance may be a challenge but gives valuable clues of mental health in patients. The goal of the present study was to characterize specificity of electroencephalogram (EEG) electrodes used to assess spectral powers associated with mental health conditions of patients with opioid use disorder. Methods This retrospective study included 16 patients who had been diagnosed with opioid use disorder in comparison with 16 sex- and age-matched healthy controls. EEG electrodes were placed in the frontal (FP1, FP2, F3, F4, F7, F8, and Fz), central (C3, C4, and Cz), temporal (T3, T4, T5, and T6), parietal (P3, P4, and Pz), and occipital scalp (O1 and O2). Spectral powers of δ, θ, α, β, and γ oscillations were determined, and their distribution was topographically mapped with those electrodes on the scalp. Results Compared to healthy controls, the spectral powers at low frequencies (<8 Hz; δ and θ) were increased in most electrodes across the scalp, while powers at the high frequencies (>12 Hz; β and γ) were selectively increased only at electrodes located in the frontal and central scalp. Among 19 electrodes, F3, F4, Fz, and Cz were highly specific in detecting increases in δ, θ, β, and γ powers of patients with opioid use disorders. Conclusion Results of the present study demonstrate that spectral powers are topographically distributed across the scalp, which can be quantitatively characterized. Electrodes located at F3, F4, Fz, and Cz could be specifically utilized to assess mental health in patients with opioid use disorders. Mechanisms responsible for neuroplasticity involving cortical pyramidal neurons and μ-opioid receptor regulations are discussed within the context of changes in EEG microstates.
Collapse
|
17
|
Yimer EM, Hishe HZ, Tuem KB. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front Neurosci 2019; 13:236. [PMID: 30971875 PMCID: PMC6444273 DOI: 10.3389/fnins.2019.00236] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
To date, there is no cure or disease-modifying agents available for most well-known neurological disorders. Current therapy is typically focused on relieving symptoms and supportive care in improving the quality of life of affected patients. Furthermore, the traditional de novo drug discovery technique is more challenging, particularly for neurological disorders. Therefore, the repurposing of existing drugs for these conditions is believed to be an efficient and dynamic approach that can substantially reduce the investments spent on drug development. Currently, there is emerging evidence that suggests the potential effect of a beta-lactam antibiotic, ceftriaxone (CEF), to alleviate the symptoms of different experimentally-induced neurological disorders: Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, epileptic-seizure, brain ischemia, traumatic brain injuries, and neuropathic pain. CEF also affects the markers of oxidative status and neuroinflammation, glutamatergic systems as well as various aggregated toxic proteins involved in the pathogenesis of different neurological disorders. Moreover, it was found that CEF administration to drug dependent animal models improved the withdrawal symptoms upon drug discontinuation. Thus, this review aimed to describe the effects of CEF against multiple models of neurological illnesses, drug dependency, and withdrawal. It also emphasizes the possible mechanisms of neuroprotective actions of CEF with respective neurological maladies.
Collapse
Affiliation(s)
- Ebrahim M Yimer
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hailemichael Zeru Hishe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
18
|
Strasser A, Xin L, Gruetter R, Sandi C. Nucleus accumbens neurochemistry in human anxiety: A 7 T 1H-MRS study. Eur Neuropsychopharmacol 2019; 29:365-375. [PMID: 30600114 DOI: 10.1016/j.euroneuro.2018.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
Individual differences in anxiety provide a differential predisposition to develop neuropsychiatric disorders. The neurochemical underpinnings of anxiety remain elusive, particularly in deep structures, such as the nucleus accumbens (NAc) whose involvement in anxiety is being increasingly recognized. We examined the associations between the neurochemical profile of human NAc metabolites involved in neural excitation and inhibition and inter-individual variation in temperamental and situational anxiety. Twenty-seven healthy 20-30 years-old human males were phenotyped with questionnaires for state and trait anxiety (State-Trait Anxiety Inventory, STAI), social anxiety (Liebowitz Social Anxiety Scale), negative mood (Beck Depression Inventory, BDI) and fatigue (Mental and Physical State Energy and Fatigue Scales, SEF). Using proton magnetic resonance spectroscopy (1H-MRS) at 7 Tesla (7T), we measured metabolite levels for glutamate, glutamine, GABA and taurine in the NAc. Salivary cortisol was also measured. Strikingly, trait anxiety was negatively associated with NAc taurine content. Perceived situational stress was negatively associated with NAc GABA, while positively with the Glu/GABA ratio. No correlation was observed between NAc taurine or GABA and other phenotypic variables examined (i.e., state anxiety, social anxiety, negative mood, or cortisol), except for a negative correlation between taurine and state physical fatigue. This first 7T study of NAc neurochemistry shows relevant metabolite associations with individual variation in anxiety traits and situational stress and state anxiety measurements. The novel identified association between NAc taurine levels and trait anxiety may pave the way for clinical studies aimed at identifying new treatments for anxiety and related disorders.
Collapse
Affiliation(s)
- Alina Strasser
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core, Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Radiology, University of Lausanne, Lausanne, Switzerland; Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
19
|
Liu XL, Li L, Li JN, Rong JH, Liu B, Hu ZX. Reliability of Glutamate Quantification in Human Nucleus Accumbens Using Proton Magnetic Resonance Spectroscopy at a 70-cm Wide-Bore Clinical 3T MRI System. Front Neurosci 2017; 11:686. [PMID: 29259538 PMCID: PMC5723319 DOI: 10.3389/fnins.2017.00686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
The human nucleus accumbens is a challenging region to study using proton magnetic resonance spectroscopy (1H-MRS) on a 70-cm wide-bore clinical 3T MRI system. The aim of this study was to investigate the reliability for quantitative measurement of glutamate concentration in the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI. 1H-MRS of the nucleus accumbens was acquired using the Point-Resolved Spectroscopic Sequence (PRESS) with echo time of 40 ms from 10 healthy volunteers (5 female; age range: 18–30 years) on two separate visits (a baseline, and 1-month time point). The Java-based Magnetic Resonance User Interface (jMRUI) software package was used to quantitatively measure the absolute metabolite concentrations. The test-retest reliability and reproducibility were assessed using intraclass correlations coefficients (ICC), and coefficients of variation (CV). Glutamate concentrations were similar across visits (P = 0.832). Reproducibility measures for all metabolites were good with CV ranging from 7.8 to 14.0%. The ICC values of all metabolites for the intra-class measures were excellent (ICC > 0.8), except that the reliability for Glx (glutamate + glutamine) was good (ICC = 0.768). Pearson correlations for all metabolites were all highly significant (r = 0.636–0.788, P < 0.05). In conclusion, the short-echo-time PRESS can reliably obtain high quality glutamate spectrum from a ~3.4 cm3 voxel of the nucleus accumbens using a 70-cm wide-bore clinical 3T MRI.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jian-Neng Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Jia-Hui Rong
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Bo Liu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xuan Hu
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Liu XL, Li L, Li JN, Tang JH, Rong JH, Liu B, Hu ZX. Quantifying absolute glutamate concentrations in nucleus accumbens of prescription opioid addicts by using 1H MRS. Brain Behav 2017; 7:e00769. [PMID: 28828225 PMCID: PMC5561325 DOI: 10.1002/brb3.769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The diagnosis of psychoactive substance use disorders has been based primarily on descriptive, symptomatic checklist criteria. In opioid addiction, there are no objective biological indicators specific enough to guide diagnosis, monitor disease status, and evaluate efficacy of therapeutic interventions. Proton magnetic resonance spectroscopy (1H MRS) of the brain has potential to identify and quantify biomarkers for the diagnosis of opioid dependence. The purpose of this study was to detect the absolute glutamate concentration in the nucleus accumbens (NAc) of patients with prescription opioid dependence using 1H MRS, and to analyze its clinical associations. METHODS Twenty patients with clinically diagnosed definitive prescription opioid dependent (mean age = 26.5 ± 4.3 years) and 20 matched healthy controls (mean age = 26.1 ± 3.8 years) participated in this study. Patients were evaluated with the Barratt Impulsiveness Scale (BIS-11), the Self-Rating Anxiety Scale (SAS), and the opiate Addiction Severity Inventory (ASI). We used point-resolved spectroscopy to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, creatine) within the NAc. The difference between metabolite levels of groups and Pearson's correlation between glutamate levels and psychometric scores in patients were analyzed statistically. RESULTS Glutamate concentrations in the NAc were significantly higher in prescription opiate addicts than in controls (t = 3.84, p = .001). None of the other metabolites differed significantly between the two groups (all ps > .05). The glutamate concentrations correlated positively with BIS-11 scores in prescription opiate addicts (r = .671, p = .001), but not with SAS score and ASI index. CONCLUSIONS Glutamate levels in the NAc measured quantitatively with in vivo 1H MRS could be used as a biomarker to evaluate disease condition in opioid-dependent patients.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Long Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jian-Neng Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ji-Hua Tang
- Department of Psychology and Addiction Medicine Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jia-Hui Rong
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Bo Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ze-Xuan Hu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| |
Collapse
|