1
|
Dai ZS, Zhang M, Deng YY, Zhou N, Tian Y. Efficacy of a novel artificial liver versatile plasma purification system in patients with acute-on-chronic liver failure. World J Gastroenterol 2025; 31:103892. [PMID: 40248372 PMCID: PMC12001202 DOI: 10.3748/wjg.v31.i14.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND We have innovatively amalgamated membrane blood purification and centrifugal blood cell separation technologies to address the limitations of current artificial liver support (ALS) models, and develop a versatile plasma purification system (VPPS) through centrifugal plasma separation. AIM To investigate the influence of VPPS on long-term rehospitalization and mortality rates among patients with acute-on-chronic liver failure (ACLF). METHODS This real-world, prospective study recruited inpatients diagnosed with ACLF from the Second Xiangya Hospital of Central South University between October 2021 and March 2024. Patients were categorized into the VPPS and non-VPPS groups based on the distinct ALS models administered to them. Self-administered questionnaires, clinical records, and self-reported data served as the primary methods for data collection. The laboratory results were evaluated at six distinct time points. All patients were subjected to follow-up assessments for > 12 months. Kaplan-Meier survival analyses and Cox proportional hazards models were used to evaluate the risks of hospitalization and mortality during the follow-up period. RESULTS A cohort of 502 patients diagnosed with ACLF was recruited, with 260 assigned to the VPPS group. On comparing baseline characteristics, the VPPS group exhibited a significantly shorter length of stay, higher incidence of spontaneous peritonitis and pulmonary aspergillosis compared to the non-VPPS group (P < 0.05). Age [hazard ratio (HR) = 1.142, 95%CI: 1.01-1.23, P = 0.018), peritonitis (HR = 2.825, 95%CI: 1.07-6.382, P = 0.026), albumin (HR = 0.67, 95%CI: 0.46-0.942, P = 0.023), total bilirubin (HR = 1.26, 95%CI: 1.01-3.25, P = 0.021), international normalized ratio (HR = 1.97, 95%CI: 1.21-2.908, P = 0.014), and VPPS/non-VPPS (HR = 3.24, 95%CI: 2.152-4.76, P < 0.001) were identified as significant independent predictors of mortality in both univariate and multivariate analyses throughout the follow-up period. Kaplan-Meier survival analyses demonstrated significantly higher rehospitalization and mortality rates in the non-VPPS group compared to the VPPS group during follow-up of ≥ 2 years (log-rank test, P < 0.001). CONCLUSION These findings suggest that VPPS is safe and has a positive influence on prognostic outcomes in patients with ACLF.
Collapse
Affiliation(s)
- Zhong-Shang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Min Zhang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yuan-Ye Deng
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ning Zhou
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yi Tian
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
2
|
Qin S, Bo X, Liu H, Zhang Z, Zhao Z, Xia Q. Cell therapies and liver organogenesis technologies: Promising strategies for end-stage liver disease. Hepatology 2025:01515467-990000000-01231. [PMID: 40178487 DOI: 10.1097/hep.0000000000001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
End-stage liver disease represents a critical hepatic condition with high mortality, for which liver transplantation remains the only effective treatment. However, the scarcity of suitable donors results in numerous patients dying while awaiting transplantation. Novel strategies, including cell therapies and technologies mimicking liver organogenesis, offer promising alternatives for treating end-stage liver disease by potentially providing new sources of liver grafts. Recently, significant progress has been made in this field, including stem cell transplantation, hepatocyte transplantation, in vitro liver tissue generation, and liver replacement technologies. Several clinical studies have demonstrated that stem cell transplantation and hepatocyte transplantation can prolong patient survival and serve as a bridge to liver transplantation. Furthermore, in vitro liver tissue generation technologies, such as liver organoids and three-dimensional bioprinting, can generate hepatic tissues with sophisticated structures and functions, making them promising transplantation materials. Notably, liver replacement technologies hold considerable potential for producing biologically functional and transplantable liver grafts. In this review, we discuss the fundamental principles and recent advancements in cell therapies and liver organogenesis technologies while also addressing the challenges and future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Shaoyang Qin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Bo
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyuan Liu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhishuo Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
3
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
4
|
Liu HC, Zeng Y, Gong C, Chen X, Kijanka P, Zhang J, Genyk Y, Tchelepi H, Wang C, Zhou Q, Zhao X. Wearable bioadhesive ultrasound shear wave elastography. SCIENCE ADVANCES 2024; 10:eadk8426. [PMID: 38335289 PMCID: PMC10857377 DOI: 10.1126/sciadv.adk8426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Acute liver failure (ALF) is a critical medical condition defined as the rapid development of hepatic dysfunction. Conventional ultrasound elastography cannot continuously monitor liver stiffness over the course of rapidly changing diseases for early detection due to the requirement of a handheld probe. In this study, we introduce wearable bioadhesive ultrasound elastography (BAUS-E), which can generate acoustic radiation force impulse (ARFI) to induce shear waves for the continuous monitoring of modulus changes. BAUS-E contains 128 channels with a compact design with only 24 mm in the azimuth direction for comfortable wearability. We further used BAUS-E to continuously monitor the stiffness of in vivo rat livers with ALF induced by d-galactosamine over 48 hours, and the stiffness change was observed within the first 6 hours. BAUS-E holds promise for clinical applications, particularly in patients after organ transplantation or postoperative care in the intensive care unit (ICU).
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Chen Gong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Krakow, Krakow 30059, Poland
| | - Junhang Zhang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuri Genyk
- Division of Hepatobiliary, Pancreatic and Abdominal Organ Transplant Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hisham Tchelepi
- Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chonghe Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Qifa Zhou
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston, MA 02139, USA
| |
Collapse
|