1
|
Barreto MQ, Garbelotti CV, Lopes DCB, Soares JDM, Ward RJ. Xylose isomerase: From fundamental research to applied enzyme technology. J Biotechnol 2025; 404:39-54. [PMID: 40204218 DOI: 10.1016/j.jbiotec.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/22/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Xylose isomerases (XI, EC 5.3.1.5) are key enzymes for the metabolism of pentoses by microorganisms. The importance of XIs goes beyond academic biochemical research and the catalysis of aldo-ketose conversion by XIs is among the most successful examples of industrial enzyme technology in a market that generates multibillion dollar annual revenues. Here we present an in-depth review of how structural information has contributed to the current understanding of XI catalysis, and discuss topics related to the ongoing efforts to elucidate key aspects of the catalytic mechanism. An overview of XI immobilization is also provided that illustrates how the discoveries in basic enzyme technology research can generate opportunities for novel uses of XI, and we review not only historical aspects but also more recent applications in HFCS, biofuels and other applications. The systems biology revolution will impact all aspects of XI research and application, and we finalize by reviewing the contemporary efforts of metabolic and protein engineering using XI and the future roles of the enzyme in the expanding bioeconomy.
Collapse
Affiliation(s)
- Matheus Quintana Barreto
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Carolina Victal Garbelotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Douglas Christian Borges Lopes
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jéssica de Moura Soares
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023; 11:1499. [PMID: 37375001 DOI: 10.3390/microorganisms11061499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve sustainable development, alternative resources should replace conventional resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic pigments. Brown algae are considered to be a source of physiologically active substances such as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol production owing to their low lignin content and applicability to biorefinery processes. Herein, we provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using microbial biotechnology, including engineered yeast designed using molecular display technology.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku, Tokyo 112-8606, Japan
| | - Mitsuyoshi Ueda
- Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Nair LG, Agrawal K, Verma P. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnol Genet Eng Rev 2022; 38:288-338. [PMID: 35670485 DOI: 10.1080/02648725.2022.2082223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass (LCB) is an energy source that has a huge impact in today's world. The depletion of fossil fuels, increased pollution, climatic changes, etc. have led the public and private sectors to move towards sustainability i.e. using LCB for the production of biofuels and value-added compounds. A major bottleneck of the process is the recalcitrant nature of LCB. This can be overcome by using various pretreatment strategies like physical, chemical, biological, physicochemical, etc. Further, the pretreated biomass is made to undergo various steps like hydrolysis, saccharification, etc. for the conversion of value-added products and the remaining waste residues can be further utilized for the synthesis of secondary products thus favouring the zero-waste biorefinery concept. Currently, microorganisms are being explored for their use in biorefinery but the unavailability of commercial strains is a major limitation. Thus, the use of metagenomics can be used to overcome the limitation which is both cost-effective and environmentally friendly. The review deliberates the composition of LCBs, and their recalcitrance nature, followed by the structural changes caused by various pretreatment methods. The further steps in biorefineries, strategies for the development of zero-waste refineries, bottlenecks, and suggestions are also discussed. Special emphasis is given to the use of metagenomics for the discovery of microorganisms efficient for zero-waste biorefineries.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| |
Collapse
|
4
|
Bae JH, Kim MJ, Sung BH, Jin YS, Sohn JH. Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:223. [PMID: 34823570 PMCID: PMC8613937 DOI: 10.1186/s13068-021-02073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Xylose contained in lignocellulosic biomass is an attractive carbon substrate for economically viable conversion to bioethanol. Extensive research has been conducted on xylose fermentation using recombinant Saccharomyces cerevisiae expressing xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways along with the introduction of a xylose transporter and amplification of the downstream pathway. However, the low utilization of xylose in the presence of glucose, due to the varying preference for cellular uptake, is a lingering challenge. Studies so far have mainly focused on xylose utilization inside the cells, but there have been little trials on the conversion of xylose to xylulose by cell before uptake. We hypothesized that the extracellular conversion of xylose to xylulose before uptake would facilitate better utilization of xylose even in the presence of glucose. To verify this, XI from Piromyces sp. was engineered and hyper-secreted in S. cerevisiae for the extracellular conversion of xylose to xylulose. RESULTS The optimal pH of XI was lowered from 7.0 to 5.0 by directed evolution to ensure its high activity under the acidic conditions used for yeast fermentation, and hyper-secretion of an engineered XI-76 mutant (E56A and I252M) was accomplished by employing target protein-specific translational fusion partners. The purified XI-76 showed twofold higher activity than that of the wild type at pH 5. The secretory expression of XI-76 in the previously developed xylose utilizing yeast strain, SR8 increased xylose consumption and ethanol production by approximately 7-20% and 15-20% in xylose fermentation and glucose and xylose co-fermentation, respectively. CONCLUSIONS Isomerisation of xylose to xylulose before uptake using extracellular XI was found to be effective in xylose fermentation or glucose/xylose co-fermentation. This suggested that glucose competed less with xylulose than with xylose for uptake by the cell. Consequently, the engineered XI secretion system constructed in this study can pave the way for simultaneous utilization of C5/C6 sugars from the sustainable lignocellulosic biomass.
Collapse
Affiliation(s)
- Jung-Hoon Bae
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jung-Hoon Sohn
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Cellapy Bio Inc., Bio-Venture Center 211, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Watanabe Y, Kuroda K, Tatemichi Y, Nakahara T, Aoki W, Ueda M. Construction of engineered yeast producing ammonia from glutamine and soybean residues (okara). AMB Express 2020; 10:70. [PMID: 32296960 PMCID: PMC7158961 DOI: 10.1186/s13568-020-01011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 11/10/2022] Open
Abstract
Ammonia is an essential substance for agriculture and the chemical industry. The intracellular production of ammonia in yeast (Saccharomyces cerevisiae) by metabolic engineering is difficult because yeast strongly assimilates ammonia, and the knockout of genes enabling this assimilation is lethal. Therefore, we attempted to produce ammonia outside the yeast cells by displaying a glutaminase (YbaS) from Escherichia coli on the yeast cell surface. YbaS-displaying yeast successfully produced 3.34 g/L ammonia from 32.6 g/L glutamine (83.2% conversion rate), providing it at a higher yield than in previous studies. Next, using YbaS-displaying yeast, we also succeeded in producing ammonia from glutamine in soybean residues (okara) produced as food waste from tofu production. Therefore, ammonia production outside cells by displaying ammonia-lyase on the cell surface is a promising strategy for producing ammonia from food waste as a novel energy resource, thereby preventing food loss.
Collapse
|
6
|
Abstract
Enzyme immobilization to solid matrices often presents a challenge due to protein conformation sensitivity, desired enzyme purity, and requirements for the particular carrier properties and immobilization technique. Surface display of enzymes at the cell walls of microorganisms presents an alternative that has been the focus of many research groups worldwide in different fields, such as biotechnology, energetics, pharmacology, medicine, and food technology. The range of systems by which a heterologous protein can be displayed at the cell surface allows the appropriate one to be found for almost every case. However, the efficiency of display systems is still quite low. The most frequently used yeast for the surface display of proteins is Saccharomyces cerevisiae. However, apart from its many advantages, Saccharomyces cerevisiae has some disadvantages, such as low robustness in industrial applications, hyperglycosylation of some heterologous proteins, and relatively low efficiency of surface display. Thus, in the recent years the display systems for alternative yeast hosts with better performances including Pichia pastoris, Hansenula polymorpha, Blastobotrys adeninivorans, Yarrowia lipolytica, Kluyveromyces marxianus, and others have been developed. Different strategies of surface display aimed to increase the amount of displayed protein, including new anchoring systems and new yeast hosts are reviewed in this paper.
Collapse
|
7
|
Yang X, Tang H, Song M, Shen Y, Hou J, Bao X. Development of novel surface display platforms for anchoring heterologous proteins in Saccharomyces cerevisiae. Microb Cell Fact 2019; 18:85. [PMID: 31103030 PMCID: PMC6525377 DOI: 10.1186/s12934-019-1133-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/07/2019] [Indexed: 01/29/2023] Open
Abstract
Background Cell surface display of recombinant proteins has become a powerful tool for biotechnology and biomedical applications. As a model eukaryotic microorganism, Saccharomyces cerevisiae is an ideal candidate for surface display of heterologous proteins. However, the frequently used commercial yeast surface display system, the a-agglutinin anchor system, often results in low display efficiency. Results We initially reconstructed the a-agglutinin system by replacing two anchor proteins with one anchor protein. By directly fusing the target protein to the N-terminus of Aga1p and inserting a flexible linker, the display efficiency almost doubled, and the activity of reporter protein α-galactosidase increased by 39%. We also developed new surface display systems. Six glycosylphosphatidylinositol (GPI) anchored cell wall proteins were selected to construct the display systems. Among them, Dan4p and Sed1p showed higher display efficiency than the a-agglutinin anchor system. Linkers were also inserted to eliminate the effects of GPI fusion on the activity of the target protein. We further used the newly developed Aga1p, Dan4p systems and Sed1p system to display exoglucanase and a relatively large protein β-glucosidase, and found that Aga1p and Dan4p were more suitable for immobilizing large proteins. Conclusion Our study developed novel efficient yeast surface display systems, that will be attractive tools for biotechnological and biomedical applications Electronic supplementary material The online version of this article (10.1186/s12934-019-1133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Hongting Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.,Center for Synthetic Biochemistry, Chinese Academy of Sciences, Shenzhen Institutes for Advanced Technologies, Shenzhen, 518055, People's Republic of China
| | - Meihui Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, People's Republic of China.
| |
Collapse
|
8
|
Padkina MV, Sambuk EV. Prospects for the Application of Yeast Display in Biotechnology and Cell Biology (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 2017; 17:3868933. [PMID: 28899031 PMCID: PMC5812533 DOI: 10.1093/femsyr/fox044] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.
Collapse
Affiliation(s)
- Mickel L. A. Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jasmine M. Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Ioannis Papapetridis
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Maarten D. Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Hans de Bruijn
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Paul P. de Waal
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The
Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg
9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Sasaki Y, Takagi T, Motone K, Kuroda K, Ueda M. Enhanced direct ethanol production by cofactor optimization of cell surface-displayed xylose isomerase in yeast. Biotechnol Prog 2017; 33:1068-1076. [PMID: 28393500 DOI: 10.1002/btpr.2478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/09/2017] [Indexed: 02/03/2023]
Abstract
Xylose isomerase (XylC) from Clostridium cellulovorans can simultaneously perform isomerization and fermentation of d-xylose, the main component of lignocellulosic biomass, and is an attractive candidate enzyme. In this study, we optimized a specified metal cation in a previously established Saccharomyces cerevisiae strain displaying XylC. We investigated the effect of each metal cation on the catalytic function of the XylC-displaying S. cerevisiae. Results showed that the divalent cobalt cations (Co2+ ) especially enhanced the activity by 46-fold. Co2+ also contributed to d-xylose fermentation, which resulted in improving ethanol yields and xylose consumption rates by 6.0- and 2.7-fold, respectively. Utility of the extracellular xylose isomerization system was exhibited in the presence of mixed sugar. XylC-displaying yeast showed the faster d-xylose uptake than the yeast producing XI intracellularly. Furthermore, direct xylan saccharification and fermentation was performed by unique yeast co-culture system. A xylan-degrading yeast strain was established by displaying two kinds of xylanases; endo-1,4-β-xylanase (Xyn11B) from Saccharophagus degradans, and β-xylosidase (XlnD) from Aspergillus niger. The yeast co-culture system enabled fine-tuning of the initial ratios of the displayed enzymes (Xyn11B:XlnD:XylC) by adjusting the inoculation ratios of Xylanases (Xyn11B and XlnD)-displaying yeast and XylC-displaying yeast. When the enzymes were inoculated at the ratio of 1:1:2 (1.39 × 1013 : 1.39 × 1013 : 2.78 × 1013 molecules), 6.0 g/L ethanol was produced from xylan. Thus, the cofactor optimization and the yeast co-culture system developed in this study could expand the prospect of biofuels production from lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1068-1076, 2017.
Collapse
Affiliation(s)
- Yusuke Sasaki
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, 606-8306, Japan.,Div. of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,CREST, JST, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiyuki Takagi
- Div. of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,CREST, JST, Sakyo-ku, Kyoto, 606-8502, Japan.,Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Keisuke Motone
- Div. of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,CREST, JST, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kouichi Kuroda
- Div. of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,CREST, JST, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mitsuyoshi Ueda
- Div. of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,CREST, JST, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
11
|
Wang S, He Z, Yuan Q. Xylose enhances furfural tolerance in Candida tropicalis by improving NADH recycle. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Takagi T, Yokoi T, Shibata T, Morisaka H, Kuroda K, Ueda M. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl Microbiol Biotechnol 2016; 100:1723-1732. [PMID: 26490549 DOI: 10.1007/s00253-015-7035-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/31/2015] [Accepted: 09/12/2015] [Indexed: 10/22/2022]
Abstract
Alginate is a major component of brown macroalgae. In macroalgae, an endolytic alginate lyase first degrades alginate into oligosaccharides. These oligosaccharides are further broken down into monosaccharides by an exolytic alginate lyase. In this study, genes encoding various alginate lyases derived from alginate-assimilating marine bacterium Saccharophagus degradans were isolated, and their enzymes were displayed using the yeast cell surface display system. Alg7A-, Alg7D-, and Alg18J-displaying yeasts showed endolytic alginate lyase activity. On the other hand, Alg7K-displaying yeast showed exolytic alginate lyase activity. Alg7A, Alg7D, Alg7K, and Alg18J, when displayed on yeast cell surface, demonstrated both polyguluronate lyase and polymannuronate lyase activities. Additionally, polyguluronic acid could be much easily degraded by Alg7A, Alg7K, and Alg7D than polymannuronic acid. In contrast, polymannuronic acid could be much easily degraded by Alg18J than polyguluronic acid. We further constructed yeasts co-displaying endolytic and exolytic alginate lyases. Degradation efficiency by the co-displaying yeasts were significantly higher than single alginate lyase-displaying yeasts. Alg7A/Alg7K co-displaying yeast had maximum alginate degrading activity, with production of 1.98 g/L of reducing sugars in a 60-min reaction. This system developed, along with our findings, will contribute to the efficient utilization and production of useful and non-commercialized monosaccharides from alginate by Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Toshiyuki Takagi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,JST, CREST, Kawaguchi, Saitama, Japan.,Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Takahiro Yokoi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,JST, CREST, Kawaguchi, Saitama, Japan
| | - Toshiyuki Shibata
- JST, CREST, Kawaguchi, Saitama, Japan.,Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Hironobu Morisaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,JST, CREST, Kawaguchi, Saitama, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,JST, CREST, Kawaguchi, Saitama, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan. .,JST, CREST, Kawaguchi, Saitama, Japan.
| |
Collapse
|
13
|
Sasaki Y, Takagi T, Motone K, Kuroda K, Ueda M. Ethanol production from hemicellulose using xylose isomerase-displaying yeast. N Biotechnol 2016. [DOI: 10.1016/j.nbt.2016.06.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Abstract
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.
Collapse
Affiliation(s)
- Mitsuyoshi Ueda
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku , Japan
| |
Collapse
|
15
|
Moysés DN, Reis VCB, de Almeida JRM, de Moraes LMP, Torres FAG. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 2016; 17:207. [PMID: 26927067 PMCID: PMC4813126 DOI: 10.3390/ijms17030207] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.
Collapse
Affiliation(s)
- Danuza Nogueira Moysés
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
- Petrobras Research and Development Center, Biotechnology Management, Rio de Janeiro, RJ 21941-915, Brazil.
| | | | - João Ricardo Moreira de Almeida
- Embrapa Agroenergia, Laboratório de Genética e Biotecnologia, Parque Estação Biológica s/n, Av. W3 Norte, Brasília, DF 70770-901, Brazil.
| | | | | |
Collapse
|
16
|
Esaka K, Aburaya S, Morisaka H, Kuroda K, Ueda M. Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation. AMB Express 2015; 5:2. [PMID: 25642399 PMCID: PMC4305082 DOI: 10.1186/s13568-014-0089-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 02/03/2023] Open
Abstract
Clostridium cellulovorans is an anaerobic, cellulolytic bacterium, capable of effectively degrading various types of soft biomass. Its excellent capacity for degradation results from optimization of the composition of the protein complex (cellulosome) and production of non-cellulosomal proteins according to the type of substrates. In this study, we performed a quantitative proteome analysis to determine changes in the extracellular proteins produced by C. cellulovorans for degradation of several types of natural soft biomass. C. cellulovorans was cultured in media containing bagasse, corn germ, rice straw (natural soft biomass), or cellobiose (control). Using an isobaric tag method and a liquid chromatograph equipped with a long monolithic silica capillary column/mass spectrometer, we identified 372 proteins in the culture supernatant. Of these, we focused on 77 saccharification-related proteins of both cellulosomal and non-cellulosomal origins. Statistical analysis showed that 18 of the proteins were specifically produced during degradation of types of natural soft biomass. Interestingly, the protein Clocel_3197 was found and commonly involved in the degradation of every natural soft biomass studied. This protein may perform functions, in addition to its known metabolic functions, that contribute to effective degradation of natural soft biomass.
Collapse
|
17
|
Tanaka T, Kondo A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv 2015; 33:1403-11. [PMID: 26070720 DOI: 10.1016/j.biotechadv.2015.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 11/19/2022]
Abstract
In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan
| | - Akihiko Kondo
- Department of Chemical Science and Technology, Graduate School of Engineering, Kobe University, 1-1, Rokkodaicho, Nada, Kobe 657-8501 Japan.
| |
Collapse
|
18
|
Maitan-Alfenas GP, Visser EM, Guimarães VM. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2014.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Tanaka T, Kondo A. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology. FEMS Yeast Res 2015; 15:1-9. [PMID: 25243459 DOI: 10.1111/1567-1364.12212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/09/2014] [Accepted: 09/15/2014] [Indexed: 01/26/2023] Open
Abstract
In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency.
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe, Japan
| |
Collapse
|
20
|
Perpiñá C, Vinaixa J, Andreu C, del Olmo M. Development of new tolerant strains to hydrophilic and hydrophobic organic solvents by the yeast surface display methodology. Appl Microbiol Biotechnol 2014; 99:775-89. [PMID: 25267156 DOI: 10.1007/s00253-014-6048-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
Abstract
Yeast surface display is a research methodology based on anchoring functional proteins and peptides onto the surface of the cells of this eukaryotic organism. Its development has resulted in the construction of a good number of new whole-cell biocatalysts with diverse applications in biotechnology, pharmacy, and medicine. In this work, we describe the design of new yeast strains in which several proteins and peptides have been introduced at the N-terminal position of protein agglutinin Aga2p. In all cases, proteins were correctly expressed and displayed on the cell surface according to the western blot, fluorescence microscopy, and fluorescence-activated cell sorting (FACS) analyses. The introduction of a glycosylable, Ser/Thr-rich protein (S1) resulted in improved resistance to ethanol, nonane, and dimethyl sulfoxide (DMSO) stress. The protein with a very high hydrophobic content (S2d) proved to confer tolerance to acetonitrile, ethanol, nonane, salt, and sodium dodecyl sulfate (SDS). The introduction of five leucine residues at the N-terminal position of S1 and S2 resulted in similar or increased resistance to the above-mentioned stress conditions. The adverse effects described in a previous work, when these residues were introduced into the N-terminus of Aga2p, with no other protein acting as a spacer, were not observed. Indeed, these strains grew better in the presence of hydrophilic solvents such as acetonitrile and ethanol. The new strains reported in this work have biotechnological potentiality given their behavior under adverse conditions of interest for biocatalytic and industrial processes.
Collapse
Affiliation(s)
- C Perpiñá
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50, E-46100, Burjassot (València), Spain
| | | | | | | |
Collapse
|
21
|
Gowtham YK, Miller KP, Hodge DB, Henson JM, Harcum SW. Novel two-stage fermentation process for bioethanol production usingSaccharomyces pastorianus. Biotechnol Prog 2014; 30:300-10. [DOI: 10.1002/btpr.1850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Yogender Kumar Gowtham
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| | | | - David B. Hodge
- Dept. of Chemical Engineering and Materials Science; Michigan State University; East Lansing MI 48824
- Dept. of Biosystems & Agricultural Engineering; Michigan State University; East Lansing MI 48824
- DOE Great Lakes Bioenergy Research Center; Michigan State University; East Lansing MI 48824
- Dept. of Civil; Environmental and Natural Resource Engineering, Luleå University of Technology; Luleå 97752 Sweden
| | | | - Sarah W. Harcum
- Dept. of Bioengineering; Clemson University; 301 Rhodes Research Center; Clemson SC 29634
| |
Collapse
|
22
|
Kuroda K, Ueda M. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering. Biomolecules 2013; 3:632-50. [PMID: 24970185 PMCID: PMC4030959 DOI: 10.3390/biom3030632] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022] Open
Abstract
Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|