1
|
Buyel JF. Towards a seamless product and process development workflow for recombinant proteins produced by plant molecular farming. Biotechnol Adv 2024; 75:108403. [PMID: 38986726 DOI: 10.1016/j.biotechadv.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Plant molecular farming (PMF) has been promoted as a fast, efficient and cost-effective alternative to bacteria and animal cells for the production of biopharmaceutical proteins. Numerous plant species have been tested to produce a wide range of drug candidates. However, PMF generally lacks a systematic, streamlined and seamless workflow to continuously fill the product pipeline. Therefore, it is currently unable to compete with established platforms in terms of routine, throughput and horizontal integration (the rapid translation of product candidates to preclinical and clinical development). Individual management decisions, limited funding and a lack of qualified production capacity can hinder the execution of such projects, but we also lack suitable technologies for sample handling and data management. This perspectives article will highlight current bottlenecks in PMF and offer potential solutions that combine PMF with existing technologies to build an integrated facility of the future for product development, testing, manufacturing and clinical translation. Ten major bottlenecks have been identified and are discussed in turn: automated cloning and simplified transformation options, reproducibility of bacterial cultivation, bioreactor integration with automated cell handling, options for rapid mid-scale candidate and product manufacturing, interconnection with (group-specific or personalized) clinical trials, diversity of (post-)infiltration conditions, development of downstream processing platforms, continuous process operation, compliance of manufacturing conditions with biosafety regulations, scaling requirements for cascading biomass.
Collapse
Affiliation(s)
- J F Buyel
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
2
|
Buyel JF. Product safety aspects of plant molecular farming. Front Bioeng Biotechnol 2023; 11:1238917. [PMID: 37614627 PMCID: PMC10442644 DOI: 10.3389/fbioe.2023.1238917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Plant molecular farming (PMF) has been promoted since the 1990s as a rapid, cost-effective and (most of all) safe alternative to the cultivation of bacteria or animal cells for the production of biopharmaceutical proteins. Numerous plant species have been investigated for the production of a broad range of protein-based drug candidates. The inherent safety of these products is frequently highlighted as an advantage of PMF because plant viruses do not replicate in humans and vice versa. However, a more nuanced analysis of this principle is required when considering other pathogens because toxic compounds pose a risk even in the absence of replication. Similarly, it is necessary to assess the risks associated with the host system (e.g., the presence of toxic secondary metabolites) and the production approach (e.g., transient expression based on bacterial infiltration substantially increases the endotoxin load). This review considers the most relevant host systems in terms of their toxicity profile, including the presence of secondary metabolites, and the risks arising from the persistence of these substances after downstream processing and product purification. Similarly, we discuss a range of plant pathogens and disease vectors that can influence product safety, for example, due to the release of toxins. The ability of downstream unit operations to remove contaminants and process-related toxic impurities such as endotoxins is also addressed. This overview of plant-based production, focusing on product safety aspects, provides recommendations that will allow stakeholders to choose the most appropriate strategies for process development.
Collapse
Affiliation(s)
- J. F. Buyel
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
3
|
Canatar M, Tufan HNG, Ünsal SBE, Koc CY, Ozcan A, Kucuk G, Basmak S, Yatmaz E, Germec M, Yavuz I, Turhan I. Inulinase and fructooligosaccharide production from carob using Aspergillus niger A42 (ATCC 204447) under solid-state fermentation conditions. Int J Biol Macromol 2023:125520. [PMID: 37353118 DOI: 10.1016/j.ijbiomac.2023.125520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
This study aimed to the production of inulinase and fructooligosaccharides (FOSs) from carob under the solid-state fermentation (SSF) conditions by using Plackett-Burman Design (PBD). Based on the results the maximum inulinase and specific inulinase activities were 249.98 U/mL and 318.29 U/mg protein, respectively. When the fructooligosaccharide (FOS) results were evaluated, the maximum values of 1,1,1-Kestopentaose, 1,1-Kestotetraose, and 1-Kestose were 182.01, 506.16, 132.16 ppm while the lowest and highest total FOS values were 179.35 and 516.66 ppm, respectively. On the other hand, it was observed that the maximum inulinase activity was found at the center points of the design. Therefore, validation fermentations were carried out at center point conditions. Subsequently, the yielded bulk enzyme extracts were partially purified using Spin-X UF membranes with 10, 30, and 50 kDa cut-off values. After purification, the maximum inulinase activity was 247.30 U/mg using a 50 kDa cut-off value. Followed by this process, the purified enzyme was used to produce FOSs and the results indicated that the maximum total FOS amount was 28,712.70 ppm. Consequently, this study successfully demonstrates that Aspergillus niger A42 inulinase produced from carob under the SSF conditions can be used in FOSs production.
Collapse
Affiliation(s)
- Muge Canatar
- Manavgat Vocational School, Akdeniz University, Manavgat, Antalya 07600, Turkey
| | | | | | - Cansu Yılmazer Koc
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ali Ozcan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Gokce Kucuk
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Selin Basmak
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ercan Yatmaz
- Göynük Culinary Arts Vocational School, Akdeniz University, Kemer, Antalya 07994, Turkey
| | - Mustafa Germec
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey
| | - Ibrahim Yavuz
- Technical Sciences Vocational School, Department Of Plant And Animal Production, Organic Agriculture Pr, Akdeniz University, Antalya 07058, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, Antalya 07058, Turkey.
| |
Collapse
|
4
|
Development of a Molasses-Based Medium for Agrobacterium tumefaciens Fermentation for Application in Plant-Based Recombinant Protein Production. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Agrobacterium-mediated transient gene expression system is a rapid and efficient method for heterologous recombinant protein expression in plants. The fermentation of genetically modified Agrobacterium tumefaciens is an important step in increasing the efficiency of recombinant protein production in plants. However, the limitation of this system that makes it economically non-competitive for industrial-scale applications is the Agrobacterium suspension production cost. In this study, the utilization of sugarcane molasses as an alternative low-cost source of carbon at a concentration of 8.7 g/L and nitrogen at a concentration of 2.4 g/L for Agrobacterium cultivation was investigated. Molasses pretreatment using sulfuric acid (SA) was applied before fermentation, and it resulted in a maximum specific growth rate of 0.232 ± 0.0063 h−1 in the A. tumefaciens EHA105 culture. The supplementation of antibiotics in the molasses-based medium was shown to be unnecessary for plasmid maintenance during fermentation in both Agrobacterium strains, which helped to reduce the production cost. We evaluated recombinant protein production using an Agrobacterium culture without antibiotic supplementation in the growth media by demonstrating green fluorescent protein expression in wild-type Nicotiana benthamiana leaves. In the evaluation of the culture medium cost, the molasses-based medium cost was 6.1 times lower than that of LB. Finally, this study demonstrated that the newly developed molasses-based medium for Agrobacterium fermentation is a feasible and effective medium for transient recombinant protein production in plant tissues.
Collapse
|
5
|
TRANSFORMATION MEDIATED BY Agrobacterium rhizogenes AS APPROACH OF STIMULATING THE SYNTHESIS OF ANTIOXIDANT COMPOUNDS IN Artemisia absinthium L. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Artemisia absinthium L. plants are known as producers of substances with antioxidant properties. Among others, phenols and flavonoids are found in these plants. The synthesis of these bioactive compounds can be activated by genetic transformation. This process can be carried out even without the transfer of specific genes involved in the synthesis of flavonoids. Thus, “hairy” roots, obtained after Agrobacterium rhizogenes – mediated transformation, can produce a variety of valuable substances. The aim of the study was to obtaine A. absinthium “hairy” roots with high phenolic content. Methods. “Hairy” roots of plants were obtained by co-cultivation leaves with suspension of A. rhizogenes with pCB124 vector. The presence of transferred genes was confirmed by PCR. The reactions with AlCl3 and Folin-Ciocalteu reagent were used to determine the total flavonoids and phenols content. The antioxidant activity of extracts was evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Results. PCR analysis detected the presence of bacterial rol genes and the absence of рСВ124 plasmid genes. Root lines differed in growth rate. “Hairy” roots were characterized by a higher phenolic content, particularly flavonoids (up to 4.784 ± 0.10 mg/g FW) compared to control (3.861±0.13 mg/g FW). Also, extracts from transgenic roots demonstrated higher antioxidant activity in the reaction with DPPH reagent (EC50 = 3.657 mg) when compared with extracts from control plants (EC50 = 6,716 mg). Conclusions. Transformation of A. absinthium mediated by A. rhizogenes can be applied for obtaining transgenic root lines with increased phenolic content and higher antioxidant activity.
Collapse
|
6
|
Ilgın M, Germec M, Turhan I. Inulinase production and mathematical modeling from carob extract by using
Aspergillus niger. Biotechnol Prog 2019; 36:e2919. [DOI: 10.1002/btpr.2919] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Merve Ilgın
- Akdeniz UniversityDepartment of Food Engineering Antalya Turkey
| | - Mustafa Germec
- Akdeniz UniversityDepartment of Food Engineering Antalya Turkey
| | - Irfan Turhan
- Akdeniz UniversityDepartment of Food Engineering Antalya Turkey
| |
Collapse
|