1
|
So KK, Alvarado FAH, Han GH, Kim JW, Kim TG, Kim DH. Heterologous Expression of Laccase1 from Cryphonectria parasitica in Saccharomyces cerevisiae. MYCOBIOLOGY 2025; 53:36-46. [PMID: 39895930 PMCID: PMC11780702 DOI: 10.1080/12298093.2024.2439646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Laccases are enzymes capable of oxidizing phenolic compounds and are important tools in different industrial processes. Heterologous expression of laccases is of great interest in biotechnological applications but achieving high expression levels is challenging. Three different laccases have been identified in the chestnut blight fungus Cryphonectria parasitica, among which a tannic acid-inducible laccase (laccase3) was successfully expressed using Saccharomyces cerevisiae. To obtain high and stable expression of fungal laccases, we cloned the gene encoding an extracellular laccase (Laccase1) of C. parasitica into a yeast episomal vector, used the resulting vectors to transform S. cerevisiae, and optimized the culture conditions of the selected transformants for Laccase1 production. We also tested the significance of the signal peptide of Laccase1 in the secretion of expressed Laccase1 and compared it with the widely used rice amylase signal peptide. Among the four constructs tested using a yeast episomal vector, full-length Laccase1 containing an endogenous signal peptide, showed the highest laccase activity. Interestingly, the stability of the recombinant vector expressing laccase was lower than that of the mock transformant, suggesting a detrimental effect of the Laccase1-expressing vector on host cells. Thus, we optimized the culture conditions to produce Laccase1 and the resulting optimum culture conditions identified through one-factor-at-a -time (OFAT) were 2% sucrose; 3% yeast nitrogen base without amino acid; pH 5.0; and 30 °C. The laccase activity was found to be 2.2 U/mL in optimal culture conditions, resulting in a 6.5-fold increase compared to the conventional culture medium.
Collapse
Affiliation(s)
- Kum-Kang So
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
| | | | - Gui-Hwan Han
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Jeong-Won Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, Jeonbuk National University, Jeonju, Republic of Korea
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup, Republic of Korea
- Department of Bio-Convergence Science, Jeonbuk National University, Jeongeup, Republic of Korea
| |
Collapse
|
2
|
Ye Y, Liu H, Wang Z, Qi Q, Du J, Tian S. A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation. Biotechnol Lett 2024; 46:531-543. [PMID: 38607604 DOI: 10.1007/s10529-024-03485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.
Collapse
Affiliation(s)
- Yutong Ye
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Han Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Zhipeng Wang
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Qi Qi
- Beijing Chaoyang Foreign Language School, Beijing, 100012, China
| | - Jiliang Du
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Shen Tian
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
3
|
Strawn G, Wong RWK, Young BP, Davey M, Nislow C, Conibear E, Loewen CJR, Mayor T. Genome-wide screen identifies new set of genes for improved heterologous laccase expression in Saccharomyces cerevisiae. Microb Cell Fact 2024; 23:36. [PMID: 38287338 PMCID: PMC10823697 DOI: 10.1186/s12934-024-02298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The yeast Saccharomyces cerevisiae is widely used as a host cell for recombinant protein production due to its fast growth, cost-effective culturing, and ability to secrete large and complex proteins. However, one major drawback is the relatively low yield of produced proteins compared to other host systems. To address this issue, we developed an overlay assay to screen the yeast knockout collection and identify mutants that enhance recombinant protein production, specifically focusing on the secretion of the Trametes trogii fungal laccase enzyme. Gene ontology analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of these mutants also showed increased activity of the secreted laccase when grown in liquid culture. Notably, we found that the combination of deletions of OCA6, a tyrosine phosphatase gene, along with PMT1 or PMT2, two genes encoding ER membrane protein-O-mannosyltransferases involved in ER quality control, and SKI3, which encode for a component of the SKI complex responsible for mRNA degradation, further increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of the ER DNAJ co-chaperone gene SCJ1 led to almost no secreted laccase activity. When we expressed SCJ1 from a low-copy plasmid, laccase secretion was restored. However, overexpression of SCJ1 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for optimal recombinant protein expression. This study offers potential strategies for enhancing the overall yield of recombinant proteins and provides new avenues for further research in optimizing protein production systems.
Collapse
Affiliation(s)
- Garrett Strawn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ryan W K Wong
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Barry P Young
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Sutaoney P, Pandya S, Gajarlwar D, Joshi V, Ghosh P. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86499-86527. [PMID: 35771325 DOI: 10.1007/s11356-022-21565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.
Collapse
Affiliation(s)
- Priya Sutaoney
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Srishti Pandya
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Devashri Gajarlwar
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Veenu Joshi
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
5
|
Asemoloye MD, Marchisio MA. Synthetic Saccharomyces cerevisiae tolerate and degrade highly pollutant complex hydrocarbon mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113768. [PMID: 35724516 DOI: 10.1016/j.ecoenv.2022.113768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Fungal laccase (Lac) has become a very useful biocatalyst in different industries, bio-refineries and, most importantly, bioremediation. Many reports have also linked hydrocarbon tolerance and degradation by various microorganisms with Lac secretion. In this study, Trametes trogii Lac (Ttlcc1) was engineered into Saccharomyces cerevisiae strain CEN.PK2-1 C under the constitutive GPD promoter (pGPD) for multi-fold synthesis with efficient hydrocarbon tolerance and degradation. Protein expression in heterologous hosts is strictly strain-specific, it can also be influenced by the synthetic design and culture conditions. We compared synthetic designs with different shuttle vectors for the yeast strains and investigated the best culture conditions by varying the pH, temperature, carbon, nitrogen sources, and CuSO4 amount. Two S. cerevisiae strains were built in this study: byMM935 and byMM938. They carry the transcription unit pGPD-Ttlcc1-CYC1t either inside the pRSII406 integrative plasmid (byMM935) or the pRSII426 multicopy plasmid (byMM938). The performance of these two synthetic strains were studied by comparing them to the wild-type strain (byMM584). Both byMM935 and byMM938 showed significant response to different carbon sources (glucose, galactose, lactose, maltose, and sucrose), nitrogen sources (NH4Cl, NH4NO3, KNO3, malt extract, peptone, and yeast extract), and solid state fermentation of different plant biomasses (bagasse, banana peels, corn cob, mandarin peels, and peanut shells). They performed best in optimized growth conditions with specific carbon and nitrogen sources, and a preferred pH in the range 3.5-4.5, temperature between 30 and 40 0C, and 1 mM CuSO4. In optimized yeast-growth medium, strain byMM935 showed the highest laccase activities of 1.621 ± 0.063 U/mL at 64 h, whereas byMM938 gave its highest activity (1.417 ± 0.055 U/mL) at 48 h. In this work, we established, by using Bushnell Hass synthetic medium, that the new Ttlcc1-yeast strains tolerated extreme pH and complex hydrocarbon mixture (CHM) toxicity. They degraded 60-90% of the key components in CHM within 48 h, including poly-cyclic aromatic hydrocarbons, alkyl indenes, alkyl tetralines, alkyl benzenes, alkyl biphenyls, and BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes). This is the first report on the hydrocarbon degradation potential of a Ttlcc1-yeast. Compared to the native organism, such synthetic strains are better suited for meeting growing demands and have potentials for application in large-scale in situ bioremediation of hydrocarbon-polluted sites.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
6
|
Saeed MU, Hussain N, Sumrin A, Shahbaz A, Noor S, Bilal M, Aleya L, Iqbal HMN. Microbial bioremediation strategies with wastewater treatment potentialities - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151754. [PMID: 34800451 DOI: 10.1016/j.scitotenv.2021.151754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
The demand for innovative waste treatment techniques has arisen because of the establishment and operation of rigorous waste discharge guidelines into the environment. Due to the rapid increase in the human population, wastewater treatment is a procedure of increasing significance. As a result, wastewater treatment systems are intended to sustain high activities and densities of such microorganisms which meet the different purification requirements. The waste produced by the pharmaceutical industry, if not adequately treated, has harmful repercussions for the environment as well as public health. Bioremediation is an innovative and optimistic technology that can be used to remove and reduce heavy metals from polluted water and contaminated soil. Because of cost-effectiveness and environmental compatibility, bioremediation using microorganisms has an excellent potential for future development. A diverse range of microorganisms, including algae, fungi, yeasts, and bacteria, can function as biologically active methylators, capable of modifying toxic species. Microorganisms play a crucial role in heavy metal bioremediation. Nanotechnology may minimize industry expenses by producing environmentally friendly nanomaterials to alleviate these contaminants. The use of microorganisms in nanoparticle synthesis gives green biotechnology a positive impetus to cost reduction and sustainable production as a developing nanotechnology sector.
Collapse
Affiliation(s)
- Muhammad Usama Saeed
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Saman Noor
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
7
|
De Paula NM, da Silva K, Brugnari T, Haminiuk CWI, Maciel GM. Biotechnological potential of fungi from a mangrove ecosystem: Enzymes, salt tolerance and decolorization of a real textile effluent. Microbiol Res 2021; 254:126899. [PMID: 34715448 DOI: 10.1016/j.micres.2021.126899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
The mangrove is an ecosystem bounded by the line of the largest tide in size that occurs in climatic and subtropical regions. In this environment, microorganisms and their enzymes are involved in a series of transformations and nutrient cycling. To evaluate the biotechnological potential of fungi from a mangrove ecosystem, samples from mangrove trees were collected at the Paranaguá Estuarine Complex in Brazil and 40 fungal isolates were obtained, cultivated, and screened for hydrolytic and ligninolytic enzymes production, adaptation to salinity and genetic diversity. The results showed a predominance of hydrolytic enzymes and fungal tolerance to ≤ 50 g L-1 sodium chloride (NaCl) concentration, a sign of adaptive halophilia. Through morphological and molecular analyses, the isolates were identified as: Trichoderma atroveride, Microsphaeropsis arundinis, Epicoccum sp., Trichoderma sp., Gliocladium sp., Geotrichum sp. and Cryphonectria sp. The ligninolytic enzymatic potential of the fungi was evaluated in liquid cultures in the presence and absence of seawater and the highest activity of laccase among isolates was observed in the presence of seawater with M. arundinis (LB07), which produced 1,037 U L-1. Enzymatic extracts of M. arundinis fixed at 100 U L-1 of laccase partially decolorized a real textile effluent in a reaction without pH adjustment and chemical mediators. Considering that mangrove fungi are still few explored, the results bring an important contribution to the knowledge about these microorganisms, as their ability to adapt to saline conditions, biodegradation of pollutants, and enzymatic potential, which make them promising candidates in biotechnological processes.
Collapse
Affiliation(s)
- Nigella Mendes De Paula
- Biotechnology Laboratory, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | - Krisle da Silva
- Brazilian Agricultural Research Corporation, Embrapa Florestas, Colombo, PR, Brazil
| | - Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | | | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Gilbert C, Tang TC, Ott W, Dorr BA, Shaw WM, Sun GL, Lu TK, Ellis T. Living materials with programmable functionalities grown from engineered microbial co-cultures. NATURE MATERIALS 2021; 20:691-700. [PMID: 33432140 DOI: 10.1038/s41563-020-00857-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/14/2020] [Indexed: 05/14/2023]
Abstract
Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.
Collapse
Affiliation(s)
- Charlie Gilbert
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Tzu-Chieh Tang
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Mediated Matter Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wolfgang Ott
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Brandon A Dorr
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Shaw
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - George L Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
9
|
Ren D, Wang Z, Jiang S, Yu H, Zhang S, Zhang X. Recent environmental applications of and development prospects for immobilized laccase: a review. Biotechnol Genet Eng Rev 2021; 36:81-131. [PMID: 33435852 DOI: 10.1080/02648725.2020.1864187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Laccases have enormous potential as promising 'green' biocatalysts in environmental applications including wastewater treatment and polluted soil bioremediation. The catalytic oxidation reaction they perform uses only molecular oxygen without other cofactors, and the only product after the reaction is water. The immobilization of laccase offers several improvements such as protected activity and enhanced stability over free laccase. In addition, the reusability of immobilized laccase is adistinct advantage for future applications. This review covers the sources of and progress in laccase research, and discusses the different methodologies of laccase immobilization that have emerged in the recent 5-10 years, as well as its applications to environmental fields, and evaluates these emerging technologies. Abbreviations: (2,4,6-TCP): 2,4,6-trichlorophenol; (2,4-DCP): 2,4-dichlorophenol; (ABTS), 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid); (ACE), acetaminophen; (BC-AS), almond shell; (BC-PM), pig manure; (BC-PW), pine wood; (BPA), bisphenol A; (BPA), bisphenol A; (BPF), bisphenol F; (BPS), bisphenol S; (C60), fullerene; (Ca-AIL), calcium-alginate immobilized laccase; (CBZ), carbamazepine; (CETY), cetirizine; (CHT-PGMA-PEI-Cu (II) NPs), Cu (II)-chelated chitosan nanoparticles; (CLEAs), cross-linked enzyme aggregates; (CMMC), carbon-based mesoporous magnetic composites; (COD), chemical oxygen demand; (CPH), ciprofloxacin hydrochloride; (CS), chitosan; (CTC), chlortetracycline; (Cu-AIL), copper-alginate immobilized laccase; (DBR K-4BL), Drimarene brilliant red K-4BL; (DCF), diclofenac; (E1),estrone; (E2), 17 β-estradiol; (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride; (EDCs), endocrine disrupting chemicals; (EE2), 17α-ethinylestradiol; (EFMs), electrospun fibrous membranes; (FL), free laccase; (fsMP), fumed silica microparticles; (GA-CBs), GLU-crosslinked chitosan beads; (GA-CBs), glutaraldehyde-crosslinked chitosan beads; (GA-Zr-MOF), graphene aerogel-zirconium-metal organic framework; (GLU), glutaraldehyde; (GO), graphene oxide; (HMCs), hollow mesoporous carbon spheres; (HPEI/PES), hyperbranched polyethyleneimine/polyether sulfone; (IC), indigo carmine; (IL), immobilized laccase; (kcat), catalytic constant; (Km), Michealis constant; (M-CLEAs), Magnetic cross-linked enzyme aggregates; (MMSNPs-CPTS-IDA-Cu2+), Cu2+-chelated magnetic mesoporous silica nanoparticles; (MSS), magnetic mesoporous silica spheres; (MWNTs), multi-walled carbon nanotubes; (MWNTs), multi-walled carbon nanotubes; (NHS), N-hydroxy succinimide; (O-MWNTs), oxidized-MWNTs; (P(AAm-NIPA)), poly(acrylamide-N-isopropylacrylamide); (p(GMA)), poly(glycidyl methacrylate); (p(HEMA)), poly(hydroxyethyl methacrylate); (p(HEMA-g-GMA)-NH2, poly(glycidyl methacrylate) brush grafted poly(hydroxyethyl methacrylate); (PA6/CHIT), polyamide 6/chitosan; (PAC), powdered active carbon; (PAHs), polycyclic aromatic hydrocarbons; (PAM-CTS), chitosan grafted polyacrylamide hydrogel; (PAN/MMT/GO), polyacrylonitrile/montmorillonite/graphene oxide; (PAN/PVdF), polyacrylonitrile/polyvinylidene fluoride; (PEG), poly ethylene glycol; (PEI), Poly(ethyleneimine); (poly(4-VP)), poly(4-vinyl pyridine); (poly(GMA-MAA)), poly(glycidyl methacrylate-methacrylic acid); (PVA), polyvinyl alcohol; (RBBR), Remazol Brilliant Blue R; (SDE), simulated dye effluent; (semi-IPNs), semi-interpenetrating polymer networks; (TC), tetracycline; (TCH), tetracycline hydrochloride; (TCS), triclosan; (Vmax), maximum activity; (Zr-MOF, MMU), micro-mesoporous Zr-metal organic framework.
Collapse
Affiliation(s)
- Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shan Jiang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Hongyan Yu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology , Wuhan, China.,Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology , Wuhan, Hubei, China
| |
Collapse
|
10
|
Šekuljica NŽ, Jovanović JR, Jakovetić Tanasković SM, Ognjanović ND, Gazikalović IV, Knežević‐Jugović ZD, Mijin DŽ. Immobilization of horseradish peroxidase onto Purolite®
A109
and its anthraquinone dye biodegradation and detoxification potential. Biotechnol Prog 2020; 36:e2991. [DOI: 10.1002/btpr.2991] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/16/2020] [Accepted: 03/04/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Nataša Ž. Šekuljica
- Innovation Center, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | | | | | | - Ivana V. Gazikalović
- Innovation Center, Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | | - Dušan Ž. Mijin
- Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
11
|
Rodríguez-Couto S. Fungal Laccase: A Versatile Enzyme for Biotechnological Applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-10480-1_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Herkommerová K, Dostál J, Pichová I. Decolorization and detoxification of textile wastewaters by recombinant Myceliophthora thermophila and Trametes trogii laccases. 3 Biotech 2018; 8:505. [PMID: 30555766 DOI: 10.1007/s13205-018-1525-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022] Open
Abstract
Laccases are multi-copper oxidoreductases with broad biotechnological applications. Here, we report detailed biochemical characterization of purified recombinant laccases originating from Myceliophthora thermophila (MtL) and Trametes trogii (TtL). We identified optimal conditions for decolorization of commercial dyes and textile wastewater samples. We also tested the toxicity of decolorized wastewater samples using human peripheral blood mononuclear cells. MtL and TtL were expressed in Saccharomyces cerevisiae, and secreted enzymes were purified by consecutive hydrophobic and gel chromatography. The molecular masses of TtL (~ 65 kDa) and MtL (> 100 kDa) suggested glycosylation of the recombinant enzymes. Deglycosylation of MtL and TtL led to 25% and 10% decreases in activity, respectively. In a thermal stability assay, TtL retained 61% and MtL 86% of the initial activity at 40 °C. While TtL retained roughly 50% activity at 60 °C, MtL lost stability at temperatures higher than 40 °C. MtL and TtL preferred syringaldazine as a substrate, and the catalytic efficiencies for ABTS oxidation were 7.5 times lower than for syringaldazine oxidation. In the presence of the mediator HBT, purified TtL almost completely decolorized dyes within 30 min and substantially decolorized wastewater samples from a textile factory (up to 74%) within 20 h. However, products of TtL-catalyzed decolorization were more toxic than MtL-decolorized products, which were almost completely detoxified.
Collapse
|
13
|
Immobilization in polyvinyl alcohol hydrogel enhances yeast storage stability and reusability of recombinant laccase-producing S. cerevisiae. Biotechnol Lett 2017; 40:405-411. [DOI: 10.1007/s10529-017-2485-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
|