1
|
Karadurmus L, Erturk AS. Recent emerging trends in dendrimer research: Electrochemical sensors and their multifaceted applications in biomedical fields or healthcare. Biosens Bioelectron 2025; 273:117172. [PMID: 39823858 DOI: 10.1016/j.bios.2025.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Dendrimers enhance the selectivity and sensitivity of sensors through their synthetic, highly branched, three-dimensional structures and large surface area. This unique architecture enables precise functionalization with various recognition elements, significantly improving the specificity and sensitivity of electrochemical sensors for detecting disease markers, biomolecules, and environmental pollutants. Dendrimer-based electrochemical sensors offer promising advancements in healthcare, such as detecting biomarkers for heart disease, monitoring blood glucose levels, and sensitively determining cancer-related proteins. Additionally, incorporating metals and conductive polymers into dendrimer nanocomposites can further enhance sensor performance. This review article provides a detailed overview of dendrimer's history, structure, properties, electrochemical properties, and synthesis methods. Particular attention has been paid to recent developments in the applications of dendrimers including electrochemical sensors, drug delivery, gene therapy and bioimaging. Recent progress in various applications of dendrimer-based electrochemical sensors developed over the last seven years, focusing on their healthcare applications and discussing the primary goals and challenges that will shape future research in this field, is also critically analyzed. These advances in dendrimer technology hold great potential for the development of novel therapeutics and expanded applications in sensor design.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye
| | - Ali Serol Erturk
- Department of Analytical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, 02040, Türkiye.
| |
Collapse
|
2
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
4
|
Tupally KR, Seal P, Pandey P, Lohman R, Smith S, Ouyang D, Parekh H. Integration of Dendrimer‐Based Delivery Technologies with Computational Pharmaceutics and Their Potential in the Era of Nanomedicine. EXPLORING COMPUTATIONAL PHARMACEUTICS ‐ AI AND MODELING IN PHARMA 4.0 2024:328-378. [DOI: 10.1002/9781119987260.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Maani Z, Rahbarnia L, Bahadori A, Chollou KM, Farajnia S. Spotlight on HIV-derived TAT peptide as a molecular shuttle in drug delivery. Drug Discov Today 2024; 29:104191. [PMID: 39322176 DOI: 10.1016/j.drudis.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
HIV-derived TAT peptide, with a high penetration rate into cells and its nonimmunogenic and minimally toxic nature, is an attractive tool for enhancing the biodistribution of drugs and their systemic administration. Despite the presence of numerous promising preclinical investigations illustrating its capability to specifically target distinct tissues and deliver a diverse range of pharmacological agents, the efficacy of various clinical trials incorporating TAT has been impeded by several considerable obstacles. Hence, there is much need for an in-depth investigation concerning the application of TAT in drug delivery mechanisms. In this review, we have elucidated the structure of TAT and its utility in the proficient delivery of various types of bioactive molecules.
Collapse
Affiliation(s)
- Zahra Maani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | | | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Sueyoshi S, Vitor Silva J, Guizze F, Giarolla J. Dendrimers as drug delivery systems for oncotherapy: Current status of promising applications. Int J Pharm 2024; 663:124573. [PMID: 39134292 DOI: 10.1016/j.ijpharm.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Cancer affects millions of people worldwide, causing death and serious health problems. Despite significant investment in the development of new anticancer compounds, there are still several limitations that can still be found. Many compounds exhibit high levels of toxicity and low bioavailability. Therefore, it is urgent to design safer, more effective, and particularly more selective compounds for oncological treatment. Dendrimers are polymeric structures that have been shown to be potential drug nanocarriers to overcome physicochemical, pharmacokinetic, and indirect pharmacodynamic issues. Due to their versatility, they can be used in the design of nanovaccines, lipophilic complexes, amphiphilic complexes, smart nanocomplexes, and others. This work targets the use of dendrimers in oncological treatment and their importance and effectiveness as drug delivery systems for the development of new therapies. For this review, only publications from the last two years are considered in this review.
Collapse
Affiliation(s)
- Sophia Sueyoshi
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - João Vitor Silva
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Felipe Guizze
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, Av Prof Lineu Prestes, 580, Bl. 13, CEP 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Ko T, Fumoto S, Kurosaki T, Nakashima M, Miyamoto H, Sasaki H, Nishida K. Interaction of γ-Polyglutamic Acid/Polyethyleneimine/Plasmid DNA Ternary Complexes with Serum Components Plays a Crucial Role in Transfection in Mice. Pharmaceutics 2024; 16:522. [PMID: 38675183 PMCID: PMC11053868 DOI: 10.3390/pharmaceutics16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Typical examples of non-viral vectors are binary complexes of plasmid DNA with cationic polymers such as polyethyleneimine (PEI). However, problems such as cytotoxicity and hemagglutination, owing to their positively charged surfaces, hinder their in vivo use. Coating binary complexes with anionic polymers, such as γ-polyglutamic acid (γ-PGA), can prevent cytotoxicity and hemagglutination. However, the role of interactions between these complexes and serum components in in vivo gene transfer remains unclear. In this study, we analyzed the contribution of serum components to in vivo gene transfer using PEI/plasmid DNA binary complexes and γ-PGA/PEI/plasmid DNA ternary complexes. In binary complexes, heat-labile components in the serum greatly contribute to the hepatic and splenic gene expression of the luciferase gene. In contrast, serum albumin and salts affected the hepatic and splenic gene expression in the ternary complexes. Changes in physicochemical characteristics, such as increased particle size and decreased absolute values of ζ-potential, might be involved in the enhanced gene expression. These findings would contribute to a better understanding of in vivo non-viral gene transfer using polymers, such as PEI and γ-PGA.
Collapse
Affiliation(s)
- Tomotaka Ko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tomoaki Kurosaki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Moe Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hitoshi Sasaki
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
9
|
Shcharbin D, Zhogla V, Abashkin V, Gao Y, Majoral JP, Mignani S, Shen M, Bryszewska M, Shi X. Recent advances in multifunctional dendrimer-based complexes for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1951. [PMID: 38456205 DOI: 10.1002/wnan.1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The application of nanotechnology in biological and medical fields have resulted in the creation of new devices, supramolecular systems, structures, complexes, and composites. Dendrimers are relatively new nanotechnological polymers with unique features; they are globular in shape, with a topological structure formed by monomeric subunit branches diverging to the sides from the central nucleus. This review analyzes the main features of dendrimers and their applications in biology and medicine regarding cancer treatment. Dendrimers have applications that include drug and gene carriers, antioxidant agents, imaging agents, and adjuvants, but importantly, dendrimers can create complex nanosized constructions that combine features such as drug/gene carriers and imaging agents. Dendrimer-based nanosystems include different metals that enhance oxidative stress, polyethylene glycol to provide biosafety, an imaging agent (a fluorescent, radioactive, magnetic resonance imaging probe), a drug or/and nucleic acid that provides a single or dual action on cells or tissues. One of major benefit of dendrimers is their easy release from the body (in contrast to metal nanoparticles, fullerenes, and carbon nanotubes), allowing the creation of biosafe constructions. Some dendrimers are already clinically approved and are being used as drugs, but many nanocomplexes are currently being studied for clinical practice. In summary, dendrimers are very useful tool in the creation of complex nanoconstructions for personalized nanomedicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Viktoria Zhogla
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, Toulouse, France
- Université Toulouse, Toulouse, France
| | - Serge Mignani
- Centro de Química da Madeira (CQM), MMRG, Universidade da Madeira, Campus Universitário da Penteada, Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
- Centro de Química da Madeira (CQM), MMRG, Universidade da Madeira, Campus Universitário da Penteada, Funchal, Portugal
| |
Collapse
|
10
|
Dannert C, Mardal I, Lale R, Stokke BT, Dias RS. DNA Condensation by Peptide-Conjugated PAMAM Dendrimers. Influence of Peptide Charge. ACS OMEGA 2023; 8:44624-44636. [PMID: 38046290 PMCID: PMC10688094 DOI: 10.1021/acsomega.3c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Nucleic acid delivery to cells is an important therapeutic strategy that requires the transport of nucleic acids to intracellular compartments and their protection from enzymatic degradation. This can be achieved through the complexation of the nucleic acids with polycations. Poly(amidoamine) (PAMAM) dendrimers and peptide-conjugated dendrimers have been investigated as delivery vectors. Inspired by these studies and the role of flexible peptide domains in protein-DNA interactions, we studied the impact of conjugating two peptides (tails) to generation 2 (G2) PAMAM dendrimers on DNA condensation and polyplex formation. Using gel electrophoresis, dye exclusion assays, atomic force microscopy, and Monte Carlo simulations, it is shown that the steric impact of neutral peptide tails is to hinder the formation of DNA-G2 polyplexes composed of multiple DNA chains. If the tails are negatively charged, which results in overall neutral G2 conjugates, then the interaction of G2 with DNA is hindered. Increasing the net positive charge of the tails resulted in the complexation capacity of G2 with the DNA being restored. While DNA complexation is obtained for a similar net charge balance for G2 and G2 conjugates with positive tails, fewer of the latter are required to achieve a comparable condensation degree. Furthermore, it is shown that about 40% of the DNA remains accessible to binding by small molecules. Overall, this shows that tuning the net charge of peptide tails conjugated to PAMAM dendrimers offers a handle to control the complexation capacity of DNA, which can be explored as a novel route for optimization as gene delivery vehicles.
Collapse
Affiliation(s)
- Corinna Dannert
- Biophysics
and Medical Technology, Department of Physics, NTNU—Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ingrid Mardal
- Biophysics
and Medical Technology, Department of Physics, NTNU—Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Rahmi Lale
- Department
of Biotechnology and Food Science, NTNU—Norwegian
University of Science and Technology, Trondheim N-7491, Norway
| | - Bjørn Torger Stokke
- Biophysics
and Medical Technology, Department of Physics, NTNU—Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Rita S. Dias
- Biophysics
and Medical Technology, Department of Physics, NTNU—Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
11
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [DOI: https:/doi.org/10.3390/pharmaceutics15061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
12
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [PMID: 37376062 PMCID: PMC10301094 DOI: 10.3390/pharmaceutics15061614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore;
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal;
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|