1
|
Xu T, Jiang Q, Xu C, Xiao Z, Zheng X, Gu L. Exploring the effects of feeding methods on the growth and meat flavor of Wenchang chicken. Poult Sci 2025; 104:105043. [PMID: 40209466 PMCID: PMC12005278 DOI: 10.1016/j.psj.2025.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/12/2025] Open
Abstract
Wenchang chicken, renowned for its high-quality meat, is the economic meat breed in Hainan Province, China. This study compared cage-rearing (CR) and free-range (FR) groups in terms of growth performance, slaughter performance, meat quality, IMP (inosine monophosphate) content, AAs, FAs, serum lipid metabolites, and transcriptomic and metabolomic analyses. The CR group showed increased body weight, live weight, and abdominal fat but lower leg muscle percentage and breast muscle redness, suggesting flavor differences. CR chickens had higher IMP, threonine (Thr), and pentadecanoic, oleic, and linoleic acids, while glutamate (Glu) and alpha-linolenic acid were lower compared to FR. Glycine was elevated, but histidine, myristic, and tricosanoic acids were lower in CR leg muscle. Serum analysis revealed higher total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), lipoprotein lipase (LPL), hormone-sensitive lipase (HSL), fatty acid synthase (FAS), thyroid-stimulating hormone (TSH), leptin (LEP), and adiponectin (ADP) in the CR group. Transcriptomic and metabolomic studies identified 252 differentially expressed genes and 34 metabolites linked to metabolic pathways. In summary, CR system can improve production performance, FR system is considered more flavorful. The results can act as a theoretical basis for selecting a suitable rearing method for this unique breed.
Collapse
Affiliation(s)
- Tieshan Xu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qicheng Jiang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China
| | - Chaohua Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zhepeng Xiao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571199, China.
| |
Collapse
|
2
|
Wan X, Zou Y, Zhou Q, Tang Q, Zhu G, Jia L, Yu X, Mo H, Yang X, Wang S. Tumor Prognostic Risk Model Related to Monocytes/Macrophages in Hepatocellular Carcinoma Based on Machine Learning and Multi-Omics. Biol Proced Online 2025; 27:9. [PMID: 40065214 PMCID: PMC11892220 DOI: 10.1186/s12575-025-00270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are crucial in hepatocellular carcinoma (HCC) development and invasion. This study explores monocyte/ macrophage-associated gene expression profiles in HCC, constructs a prognostic model based on these genes, and examines its relationship with drug resistance and immune therapy responses. Single-cell RNA sequencing(scRNA-seq) data from 10 HCC tissue biopsy samples, totaling 24,597 cells, were obtained from the GEO database to identify monocyte/macrophage-associated genes. A prognostic model was constructed and validated using external datasets and Western blot. Relationships between the model, clinical correlates, drug sensitivity, and immune therapy responses were investigated. From scRNA-seq data, 2,799 monocyte/macrophage marker genes were identified. Using the TCGA dataset, a prognostic model based on the single-gene UQCRH was constructed, stratifying patients into high-risk and low-risk groups based on overall survival rates. High-risk group patients showed reduced survival rates and higher UQCRH expression in tumor tissues. Western blot analysis further confirmed the elevated expression of UQCRH in HCC cell lines. Spatial transcriptomics analysis revealed that high UQCRH expression co-localized with malignant cells in the tumor tissue. Drug sensitivity analysis revealed that the high-risk group had lower sensitivity to sorafenib and axitinib. Immune therapy response analysis indicated poorer outcomes in the high-risk group, with more pronounced APC inhibition and a weaker IFN-II response. Clinical indicator analysis showed a positive correlation between high UQCRH expression and tumor invasion. Enrichment analysis of UQCRH and associated molecules indicated involvement in oxidative phosphorylation and mitochondrial electron transport. This study introduces a prognostic model for HCC patients based on monocyte/macrophage marker genes. The single-gene model predicts HCC patient survival and treatment outcomes, identifying high-risk individuals with varying drug sensitivities and immune suppression states.
Collapse
Affiliation(s)
- Xinliang Wan
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Yongchun Zou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Qichun Zhou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Qing Tang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Gangxing Zhu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Luyu Jia
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xiaoyan Yu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Handan Mo
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xiaobing Yang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, 111 Dade Rd, Guangzhou, Guangdong Province, 510120, China.
| | - Sumei Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, 111 Dade Rd, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
3
|
Kul Köprülü T, Balkan J, Gezer B, Erkal Çam B. Glycolytic pathway analysis and gene expression profiles of combination of aloe vera and paclitaxel on non-small cell lung cancer and breast cancer. Med Oncol 2024; 41:277. [PMID: 39400682 DOI: 10.1007/s12032-024-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
The purpose of this study is to enhance the effectiveness of known anticancer medications using natural compounds. The study investigated the impact of combining AVE with PAX on non-small cell lung cancer (A549) and breast cancer (MCF7). In this study, A549 and MCF7 cells were treated with PAX (5 μM), AVE (24 μg/mL), and a combination of PAX and AVE (5 μM + 24 μg/mL). The glucose consumption rates of the cells were determined by extracellular acidification rate (ECAR) thanks to the SeaHorse XFe24 instrument. In addition, gene expression profiles were determined by performing Total RNA sequencing with the Novaseq 6000 instrument. Finally, the expressions of GAPDH, BAX, and BCL-2 genes involved in the apoptotic pathway were detected by RT-qPCR. The combined application of PAX and AVE reduced the ECAR value in both cell lines. According to the RT-qPCR results, the expression level of the apoptotic gene BAX increased in both cell lines (p < 0.05). Total RNA sequencing revealed that the combination effects of PAX and AVE play a role in the ribosome mechanism, thereby affecting the protein translation system in MCF7 while apoptosis and cell cycle have come to the forefront in A549.
Collapse
Affiliation(s)
- Tuğba Kul Köprülü
- Experimental Medicine Application and Research Center, Validebağ Research Park, University of Health Sciences, Altunizade, Kalfaçeşme Street, Üsküdar, 34622, Istanbul, Turkey.
- Division of Medical Laboratory Techniques, Department of Medical Services and Techniques, University of Health Sciences, Istanbul, Turkey.
| | - Jülide Balkan
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Bahar Gezer
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Burçin Erkal Çam
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
4
|
Chu Y, Li M, Sun M, Wang J, Xin W, Xu L. Gene crosstalk between COVID-19 and preeclampsia revealed by blood transcriptome analysis. Front Immunol 2024; 14:1243450. [PMID: 38259479 PMCID: PMC10800816 DOI: 10.3389/fimmu.2023.1243450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background The extensive spread of coronavirus disease 2019 (COVID-19) has led to a rapid increase in global mortality. Preeclampsia is a commonly observed pregnancy ailment characterized by high maternal morbidity and mortality rates, in addition to the restriction of fetal growth within the uterine environment. Pregnant individuals afflicted with vascular disorders, including preeclampsia, exhibit an increased susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection via mechanisms that have not been fully delineated. Additionally, the intricate molecular mechanisms underlying preeclampsia and COVID-19 have not been fully elucidated. This study aimed to discern commonalities in gene expression, regulators, and pathways shared between COVID-19 and preeclampsia. The objective was to uncover potential insights that could contribute to novel treatment strategies for both COVID-19 and preeclampsia. Method Transcriptomic datasets for COVID-19 peripheral blood (GSE152418) and preeclampsia blood (GSE48424) were initially sourced from the Gene Expression Omnibus (GEO) database. Subsequent to that, we conducted a subanalysis by selecting females from the GSE152418 dataset and employed the "Deseq2" package to identify genes that exhibited differential expression. Simultaneously, the "limma" package was applied to identify differentially expressed genes (DEGs) in the preeclampsia dataset (GSE48424). Following that, an intersection analysis was conducted to identify the common DEGs obtained from both the COVID-19 and preeclampsia datasets. The identified shared DEGs were subsequently utilized for functional enrichment analysis, transcription factor (TF) and microRNAs (miRNA) prediction, pathway analysis, and identification of potential candidate drugs. Finally, to validate the bioinformatics findings, we collected peripheral blood mononuclear cell (PBMC) samples from healthy individuals, COVID-19 patients, and Preeclampsia patients. The abundance of the top 10 Hub genes in both diseases was assessed using real-time quantitative polymerase chain reaction (RT-qPCR). Result A total of 355 overlapping DEGs were identified in both preeclampsia and COVID-19 datasets. Subsequent ontological analysis, encompassing Gene Ontology (GO) functional assessment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, revealed a significant association between the two conditions. Protein-protein interactions (PPIs) were constructed using the STRING database. Additionally, the top 10 hub genes (MRPL11, MRPS12, UQCRH, ATP5I, UQCRQ, ATP5D, COX6B1, ATP5O, ATP5H, NDUFA6) were selected based on their ranking scores using the degree algorithm, which considered the shared DEGs. Moreover, transcription factor-gene interactions, protein-drug interactions, co-regulatory networks of DEGs and miRNAs, and protein-drug interactions involving the shared DEGs were also identified in the datasets. Finally, RT-PCR results confirmed that 10 hub genes do exhibit distinct expression profiles in the two diseases. Conclusion This study successfully identified overlapping DEGs, functional pathways, and regulatory elements between COVID-19 and preeclampsia. The findings provide valuable insights into the shared molecular mechanisms and potential therapeutic targets for both diseases. The validation through RT-qPCR further supports the distinct expression profiles of the identified hub genes in COVID-19 and preeclampsia, emphasizing their potential roles as biomarkers or therapeutic targets in these conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Tan Y, Ma Y, Guo S, Lin Y. Association of abnormal NDUFB2 and UQCRH expression with venous thromboembolism in patients with liver cirrhosis. Medicine (Baltimore) 2024; 103:e36868. [PMID: 38181234 PMCID: PMC10766317 DOI: 10.1097/md.0000000000036868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Venous thromboembolism (VTE) refers to abnormal coagulation of blood in veins, resulting in complete or incomplete occlusion of the blood vessels. Patients with liver cirrhosis are prone to blood clots. However, relationship between NDUFB2 and UQCRH and VTE is not clear. GSE19151 and GSE48000 profiles for venous thromboembolism were downloaded from gene expression omnibus (GEO) generated using GPL571 and GPL10558. Multiple datasets were merged and batched. The differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, Gene Set Enrichment Analysis (GSEA) were conducted. Gene expression heat map was drawn. Comparative toxicogenomics database (CTD) analysis were performed to find disease most related to the core genes. Western blotting (WB) experiments were further verified. TargetScan screened miRNAs that regulated central DEGs. 129 DEGs were identified. According to gene ontology (GO), DEGs were mainly enriched in mRNA metabolism, oxidative phosphorylation, nucleic acid binding and enzyme binding. The Kyoto Encyclopedia of Gene and Genome (KEGG) analysis showed that target cells were mainly enriched in ribosomes and oxidative phosphorylation. The intersection of enrichment items and GOKEGG enrichment items of DEGs is mainly enriched in oxidative phosphorylation, myocardial contraction and ribosome. In the metascape enrichment project, dna template transcription, cell stress response regulation and proton transport across the membrane can be seen in the GO enrichment project. The PPI network obtained 10 core genes (COX7C, NDUFB2, ATP5O, NDUFA4, NDUFAB1, ATP5C1, ATP5L, NDUFA7, NDUFA6, UQCRH). Gene expression heat map showed that 5 core genes (NDUFAB1, NDUFB2, UQCRH, COX7C, NDUFA4) were highly expressed in venous thromboembolism samples, and lowly expression in normal tissue samples, and 2 core genes (NDUFA7, NDUFA6) were lowly expressed in venous thromboembolism samples. CTD analysis showed that 5 genes (NDUFAB1, NDUFB2, UQCRH, COX7C, NDUFA4) were found to be associated with obesity, necrosis, inflammation and hepatomegaly. The result of WB showed that expression level of NDUFB2 and UQCR in venous thromboembolism was higher than that in control group. NDUFB2 and UQCRH are highly expressed in venous thromboembolism with liver cirrhosis, making them potential molecular targets for early diagnosis and precise treatment.
Collapse
Affiliation(s)
- Yixuan Tan
- Hepatobiliary Surgery, Danzhou People’s Hospital, Nada Town, Danzhou City, Hainan Province, China
| | - Yanhong Ma
- Department of ICU, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suzhi Guo
- Department of ICU, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaoting Lin
- Gastrointestinal surgery, Danzhou People’s Hospital, Nada Town, Danzhou City, Hainan Province, China
| |
Collapse
|
6
|
Decruyenaere P, Giuili E, Verniers K, Anckaert J, De Grove K, Van der Linden M, Deeren D, Van Dorpe J, Offner F, Vandesompele J. Exploring the cell-free total RNA transcriptome in diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma patients as biomarker source in blood plasma liquid biopsies. Front Oncol 2023; 13:1221471. [PMID: 37954086 PMCID: PMC10634215 DOI: 10.3389/fonc.2023.1221471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Diffuse large B-cell lymphoma (DLBCL) and primary mediastinal B-cell lymphoma (PMBCL) are aggressive histological subtypes of non-Hodgkin's lymphoma. Improved understanding of the underlying molecular pathogenesis has led to new classification and risk stratification tools, including the development of cell-free biomarkers through liquid biopsies. The goal of this study was to investigate cell-free RNA (cfRNA) biomarkers in DLBCL and PMBCL patients. Materials and methods Blood plasma samples (n=168) and matched diagnostic formalin-fixed paraffin-embedded (FFPE) tissue samples (n=69) of DLBCL patients, PMBCL patients and healthy controls were collected between 2016-2021. Plasma samples were collected at diagnosis, at interim evaluation, after treatment, and in case of refractory or relapsed disease. RNA was extracted from 200 µl plasma using the miRNeasy serum/plasma kit and from FFPE tissue using the miRNeasy FFPE kit. RNA was subsequently sequenced on a NovaSeq 6000 instrument using the SMARTer Stranded Total RNA-seq pico v3 library preparation kit. Results Higher cfRNA concentrations were demonstrated in lymphoma patients compared to healthy controls. A large number of differentially abundant genes were identified between the cell-free transcriptomes of DLBCL patients, PMBCL patients, and healthy controls. Overlap analyses with matched FFPE samples showed that blood plasma has a unique transcriptomic profile that significantly differs from that of the tumor tissue. As a good concordance between tissue-derived gene expression and the immunohistochemistry Hans algorithm for cell-of-origin (COO) classification was demonstrated in the FFPE samples, but not in the plasma samples, a 64-gene cfRNA classifier was developed that can accurately determine COO in plasma. High plasma levels of a 9-gene signature (BECN1, PRKCB, COPA, TSC22D3, MAP2K3, UQCRHL, PTMAP4, EHD1, NAP1L1 pseudogene) and a 5-gene signature (FTH1P7, PTMAP4, ATF4, FTH1P8, ARMC7) were significantly associated with inferior progression-free and overall survival in DLBCL patients, respectively, independent of the NCCN-IPI score. Conclusion Total RNA sequencing of blood plasma samples allows the analysis of the cell-free transcriptome in DLBCL and PMBCL patients and demonstrates its unexplored potential in identifying diagnostic, cell-of-origin, and prognostic cfRNA biomarkers.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Edoardo Giuili
- Interuniversity Institute of Bioinformatics in Brussels (IB), Free University of Brussels, Brussels, Belgium
- Department of Biotechnology and Pharmacy, University of Bologna, Bologna, Italy
| | - Kimberly Verniers
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien De Grove
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | | | - Dries Deeren
- Department of Hematology, Algemeen Ziekenhuis (AZ) Delta Roeselare-Menen, Roeselare, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Hershberger CE, Raj R, Mariam A, Aykun N, Allende DS, Brown M, Aucejo F, Rotroff DM. Characterization of Salivary and Plasma Metabolites as Biomarkers for HCC: A Pilot Study. Cancers (Basel) 2023; 15:4527. [PMID: 37760495 PMCID: PMC10527521 DOI: 10.3390/cancers15184527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: The incidence of hepatocellular carcinoma (HCC) is rising, and current screening methods lack sensitivity. This study aimed to identify distinct and overlapping metabolites in saliva and plasma that are significantly associated with HCC. (2) Methods: Saliva samples were collected from 42 individuals (HCC = 16, cirrhosis = 12, healthy = 14), with plasma samples from 22 (HCC = 14, cirrhosis = 2, healthy = 6). We performed untargeted mass spectrometry on blood and plasma, tested metabolites for associations with HCC or cirrhosis using a logistic regression, and identified enriched pathways with Metaboanalyst. Pearson's correlation was employed to test for correlations between salivary and plasma metabolites. (3) Results: Six salivary metabolites (1-hexadecanol, isooctanol, malonic acid, N-acetyl-valine, octadecanol, and succinic acid) and ten plasma metabolites (glycine, 3-(4-hydroxyphenyl)propionic acid, aconitic acid, isocitric acid, tagatose, cellobiose, fucose, glyceric acid, isocitric acid, isothreonic acid, and phenylacetic acid) were associated with HCC. Malonic acid was correlated between the paired saliva and plasma samples. Pathway analysis highlighted deregulation of the 'The Citric Acid Cycle' in both biospecimens. (4) Conclusions: Our study suggests that salivary and plasma metabolites may serve as independent sources for HCC detection. Despite the lack of correlation between individual metabolites, they converge on 'The Citric Acid Cycle' pathway, implicated in HCC pathogenesis.
Collapse
Affiliation(s)
- Courtney E Hershberger
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Roma Raj
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nihal Aykun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniela S Allende
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Brown
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Federico Aucejo
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Cui X, Li C, Ding J, Yao Z, Zhao T, Guo J, Wang Y, Li J. Establishing a Proteomics-Based Signature of AKR1C3-Related Genes for Predicting the Prognosis of Prostate Cancer. Int J Mol Sci 2023; 24:ijms24054513. [PMID: 36901944 PMCID: PMC10003753 DOI: 10.3390/ijms24054513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Aldo-keto reductase family 1 member C3 (AKR1C3) plays an important role in prostate cancer (PCa) progression, particularly in castration-resistant prostate cancer (CRPC). It is necessary to establish a genetic signature associated with AKR1C3 that can be used to predict the prognosis of PCa patients and provide important information for clinical treatment decisions. AKR1C3-related genes were identified via label-free quantitative proteomics of the AKR1C3-overexpressing LNCaP cell line. A risk model was constructed through the analysis of clinical data, PPI, and Cox-selected risk genes. Cox regression analysis, Kaplan-Meier (K-M) curves, and receiver operating characteristic (ROC) curves were used to verify the accuracy of the model, and two external datasets were used to verify the reliability of the results. Subsequently, the tumor microenvironment and drug sensitivity were explored. Moreover, the roles of AKR1C3 in the progression of PCa were verified in LNCaP cells. MTT, colony formation, and EdU assays were conducted to explore cell proliferation and drug sensitivity to enzalutamide. Migration and invasion abilities were measured using wound-healing and transwell assays, and qPCR was used to assess the expression levels of AR target genes and EMT genes. CDC20, SRSF3, UQCRH, INCENP, TIMM10, TIMM13, POLR2L, and NDUFAB1 were identified as AKR1C3-associated risk genes. These risk genes, established using the prognostic model, can effectively predict the recurrence status, immune microenvironment, and drug sensitivity of PCa. Tumor-infiltrating lymphocytes and several immune checkpoints that promote cancer progression were higher in high-risk groups. Furthermore, there was a close correlation between the sensitivity of PCa patients to bicalutamide and docetaxel and the expression levels of the eight risk genes. Moreover, through in vitro experiments, Western blotting confirmed that AKR1C3 enhanced SRSF3, CDC20, and INCENP expression. We found that PCa cells with a high expression of AKR1C3 have high proliferation ability and high migration ability and were insensitive to enzalutamide. AKR1C3-associated genes had a significant role in the process of PCa, immune responses, and drug sensitivity and offer the potential for a novel model for prognostic prediction in PCa.
Collapse
|
9
|
Knockout of the Complex III subunit Uqcrh causes bioenergetic impairment and cardiac contractile dysfunction. Mamm Genome 2022:10.1007/s00335-022-09973-w. [PMID: 36565314 DOI: 10.1007/s00335-022-09973-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022]
Abstract
Ubiquinol cytochrome c reductase hinge protein (UQCRH) is required for the electron transfer between cytochrome c1 and c of the mitochondrial cytochrome bc1 Complex (CIII). A two-exon deletion in the human UQCRH gene has recently been identified as the cause for a rare familial mitochondrial disorder. Deletion of the corresponding gene in the mouse (Uqcrh-KO) resulted in striking biochemical and clinical similarities including impairment of CIII, failure to thrive, elevated blood glucose levels, and early death. Here, we set out to test how global ablation of the murine Uqcrh affects cardiac morphology and contractility, and bioenergetics. Hearts from Uqcrh-KO mutant mice appeared macroscopically considerably smaller compared to wildtype littermate controls despite similar geometries as confirmed by transthoracic echocardiography (TTE). Relating TTE-assessed heart to body mass revealed the development of subtle cardiac enlargement, but histopathological analysis showed no excess collagen deposition. Nonetheless, Uqcrh-KO hearts developed pronounced contractile dysfunction. To assess mitochondrial functions, we used the high-resolution respirometer NextGen-O2k allowing measurement of mitochondrial respiratory capacity through the electron transfer system (ETS) simultaneously with the redox state of ETS-reactive coenzyme Q (Q), or production of reactive oxygen species (ROS). Compared to wildtype littermate controls, we found decreased mitochondrial respiratory capacity and more reduced Q in Uqcrh-KO, indicative for an impaired ETS. Yet, mitochondrial ROS production was not generally increased. Taken together, our data suggest that Uqcrh-KO leads to cardiac contractile dysfunction at 9 weeks of age, which is associated with impaired bioenergetics but not with mitochondrial ROS production. Global ablation of the Uqcrh gene results in functional impairment of CIII associated with metabolic dysfunction and postnatal developmental arrest immediately after weaning from the mother. Uqcrh-KO mice show dramatically elevated blood glucose levels and decreased ability of isolated cardiac mitochondria to consume oxygen (O2). Impaired development (failure to thrive) after weaning manifests as a deficiency in the gain of body mass and growth of internal organ including the heart. The relative heart mass seemingly increases when organ mass calculated from transthoracic echocardiography (TTE) is normalized to body mass. Notably, the heart shows no signs of collagen deposition, yet does develop a contractile dysfunction reflected by a decrease in ejection fraction and fractional shortening.
Collapse
|
10
|
Shin Y, Jung W, Kim MY, Shin D, Kim GH, Kim CH, Park SH, Cho EH, Choi DW, Han CJ, Lee KH, Kim SB, Shin HJ. NPFFR2 Contributes to the Malignancy of Hepatocellular Carcinoma Development by Activating RhoA/YAP Signaling. Cancers (Basel) 2022; 14:cancers14235850. [PMID: 36497331 PMCID: PMC9737590 DOI: 10.3390/cancers14235850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a diverse family of cell surface receptors implicated in various physiological functions, making them common targets for approved drugs. Many GPCRs are abnormally activated in cancers and have emerged as therapeutic targets for cancer. Neuropeptide FF receptor 2 (NPFFR2) is a GPCR that helps regulate pain and modulates the opioid system; however, its function remains unknown in cancers. Here, we found that NPFFR2 is significantly up-regulated in liver cancer and its expression is related to poor prognosis. Silencing of NPFFR2 reduced the malignancy of liver cancer cells by decreasing cell survival, invasion, and migration, while its overexpression increased invasion, migration, and anchorage-independent cell growth. Moreover, we found that the malignant function of NPFFR2 depends on RhoA and YAP signaling. Inhibition of Rho kinase activity completely restored the phenotypes induced by NPFFR2, and RhoA/F-Actin/YAP signaling was controlled by NPFFR2. These findings demonstrate that NPFFR2 may be a potential target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yuna Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Wonhee Jung
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Mi-Yeon Kim
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Dongjo Shin
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Division of Radiation Biomedical, Research Korea Institute of Radiological and Medical Sciences, Seoul 1812, Republic of Korea
| | - Geun Hee Kim
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chun Ho Kim
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sun-Hoo Park
- Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eung-Ho Cho
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong Wook Choi
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Chul Ju Han
- Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kee Ho Lee
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang-Bum Kim
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
- Correspondence: (S.-B.K.); (H.J.S.)
| | - Hyun Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
- Correspondence: (S.-B.K.); (H.J.S.)
| |
Collapse
|
11
|
A Novel Oxidative Phosphorylation-Associated Gene Signature for Prognosis Prediction in Patients with Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:3594901. [PMID: 36105252 PMCID: PMC9467772 DOI: 10.1155/2022/3594901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common type of malignant tumor with high morbidity and mortality. The oxidative phosphorylation (OXPHOS) metabolic pathway produces adenosine triphosphate (ATP) by delivering electrons to transmembrane protein complexes in the mitochondria. This research was dedicated to identifying an OXPHOS-associated signature for the assessment of prognosis of HCC patients. A total of 371 HCC patients from the Cancer Genome Atlas (TCGA) and 231 HCC patients from the International Cancer Genome Consortium (ICGC) with RNA expression data and clinical data were employed as construction and validation cohorts, respectively. The least absolute shrinkage and selection operator (LASSO) Cox regression was applied to establish a multigene signature in the TCGA cohort, and the ICGC cohort was used for validation. The prognostic value of the risk signature was evaluated using univariate and multivariate Cox regression, Kaplan–Meier curves, and receiver operating characteristic (ROC) curves. The potential enrichment of biological functions was investigated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Meanwhile, we analyzed the correlation between the risk score and the tumor microenvironment (TME). A five-gene signature including ATP6V0B, ATP6V1C1, ATP6V1E1, TIMM9, and UQCRH was identified by LASSO Cox regression to classify patients into low- and high-risk groups. ROC curve analysis indicated that the five-gene signature is a prospective prognostic factor in HCC patients. Univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent prognostic factor for overall survival (OS). Functional analysis showed that differentially expressed genes (DEGs) between the low- and high-risk groups were enriched in mitosis and the cell cycle pathway. In addition, the five-gene signature was associated with innate immune cell infiltration, immune subtypes, and tumor stemness. A novel OXPHOS-associated gene signature can be used for prognostic prediction for patients with HCC.
Collapse
|
12
|
Proteomic Analysis of Prostate Cancer FFPE Samples Reveals Markers of Disease Progression and Aggressiveness. Cancers (Basel) 2022; 14:cancers14153765. [PMID: 35954429 PMCID: PMC9367334 DOI: 10.3390/cancers14153765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Prostate cancer (PCa) is the second most frequently diagnosed type of cancer in men. The lack of tools for accurate risk assessment is causing over-treatment of men with indolent PCa but also delayed detection of metastatic disease and thus high mortality. The aim of our study was to identify proteins related to the progression and aggressiveness of PCa that could serve as potential biomarkers for better risk stratification. To this end, we performed proteomic analysis of Formalin Fixed Paraffin Embedded (FFPE) prostate tissue specimens (n = 86) and compared them based on grade groups and biochemical recurrence status. Based on the valuable data generated by these comparisons, we have selected seven proteins (NMP1, UQCRH, HSPA9, MRPL3, VCAN, SERBP1, HSPE1) as common denominators of PCa aggressiveness and persistence that could potentially be used for the development of risk assessment tools. Notably, our observations are largely validated by transcriptomics data and literature. Abstract Prostate cancer (PCa) is the second most common cancer in men. Diagnosis and risk assessment are widely based on serum Prostate Specific Antigen (PSA) and biopsy, which might not represent the exact degree of PCa risk. Towards the discovery of biomarkers for better patient stratification, we performed proteomic analysis of Formalin Fixed Paraffin Embedded (FFPE) prostate tissue specimens using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Comparative analysis of 86 PCa samples among grade groups 1–5 identified 301 significantly altered proteins. Additional analysis based on biochemical recurrence (BCR; BCR+ n = 14, BCR- n = 51) revealed 197 significantly altered proteins that indicate disease persistence. Filtering the overlapping proteins of these analyses, seven proteins (NPM1, UQCRH, HSPA9, MRPL3, VCAN, SERBP1, HSPE1) had increased expression in advanced grades and in BCR+/BCR- and may play a critical role in PCa aggressiveness. Notably, all seven proteins were significantly associated with progression in Prostate Cancer Transcriptome Atles (PCTA) and NPM1NPM1, UQCRH, and VCAN were further validated in The Cancer Genome Atlas (TCGA), where they were upregulated in BCR+/BCR-. UQCRH levels were also associated with poorer 5-year survival. Our study provides valuable insights into the key regulators of PCa progression and aggressiveness. The seven selected proteins could be used for the development of risk assessment tools.
Collapse
|
13
|
Griffith DOL. Genomic and transcriptomic somatic alterations of hepatocellular carcinoma in non-cirrhotic livers. Cancer Genet 2022; 264-265:90-99. [DOI: 10.1016/j.cancergen.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
14
|
Hou ZL, Han FY, Lou LL, Zhao WY, Huang XX, Yao GD, Song SJ. The nature compound dehydrocrenatidine exerts potent antihepatocellular carcinoma by destroying mitochondrial complexes in vitro and in vivo. Phytother Res 2022; 36:1353-1371. [PMID: 35112410 DOI: 10.1002/ptr.7398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Cumulative evidence indicates that mitochondria dysfunction plays an important role in tumour treatment. Given the limited efficacy and toxicity of current mitochondria-targeted drugs, research into effective mitochondria-targeted anticancer agents remains an irresistible general trend. In this study, it was found that dehydrocrenatidine (DEC), a β-carbolin alkaloid isolated from Picrasma quassiodes, displays a promising growth inhibitory effect in vitro and in vivo by inducing apoptosis of hepatocellular carcinoma (HCC) cells. Mechanistically, we provided that the possible target of DEC against HCC cells was determined by isobaric labels for relative and absolute quantification assay and validated them using further experiments. The results suggested that DEC can target and regulate the function of mitochondrial complexes I, III and IV, affecting oxidative phosphorylation and ultimately leading to mitochondrial dysfunction to exert its anti-HCC effects. In addition, the combination of DEC and sorafenib showed a synergistic effect and was also associated with mitochondrial dysfunction. Importantly, DEC did not show significant toxicity in mice. This study provided a new insight into underlying mechanisms in DEC-treated HCC cells, suggesting that DEC might be a mitochondrial targeting lead compound.
Collapse
Affiliation(s)
- Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Feng-Ying Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Li-Li Lou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wen-Yu Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
15
|
Bedi M, Ray M, Ghosh A. Active mitochondrial respiration in cancer: a target for the drug. Mol Cell Biochem 2022; 477:345-361. [PMID: 34716860 DOI: 10.1007/s11010-021-04281-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
The relative contribution of mitochondrial respiration and subsequent energy production in malignant cells has remained controversial to date. Enhanced aerobic glycolysis and impaired mitochondrial respiration have gained more attention in the metabolic study of cancer. In contrast to the popular concept, mitochondria of cancer cells oxidize a diverse array of metabolic fuels to generate a majority of the cellular energy by respiration. Several mitochondrial respiratory chain (MRC) subunits' expressions are critical for the growth, metastasis, and cancer cell invasion. Also, the assembly factors, which regulate the integration of individual MRC complexes into native super-complexes, are upregulated in cancer. Moreover, a series of anti-cancer drugs function by inhibiting respiration and ATP production. In this review, we have specified the roles of mitochondrial fuels, MRC subunits, and super-complex assembly factors that promote active respiration across different cancer types and discussed the potential roles of MRC inhibitor drugs in controlling cancer.
Collapse
Affiliation(s)
- Minakshi Bedi
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Manju Ray
- Department of Biophysics, Bose Institute, P 1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
- Department of Chemistry, Institute of Applied Science & Humanities GLA University Mathura, 17km Stone, NH-2, Mathura-Delhi Road, Mathura, UP, 281 406, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
16
|
Vidali S, Gerlini R, Thompson K, Urquhart JE, Meisterknecht J, Aguilar‐Pimentel JA, Amarie OV, Becker L, Breen C, Calzada‐Wack J, Chhabra NF, Cho Y, da Silva‐Buttkus P, Feichtinger RG, Gampe K, Garrett L, Hoefig KP, Hölter SM, Jameson E, Klein‐Rodewald T, Leuchtenberger S, Marschall S, Mayer‐Kuckuk P, Miller G, Oestereicher MA, Pfannes K, Rathkolb B, Rozman J, Sanders C, Spielmann N, Stoeger C, Szibor M, Treise I, Walter JH, Wurst W, Mayr JA, Fuchs H, Gärtner U, Wittig I, Taylor RW, Newman WG, Prokisch H, Gailus‐Durner V, Hrabě de Angelis M. Characterising a homozygous two-exon deletion in UQCRH: comparing human and mouse phenotypes. EMBO Mol Med 2021; 13:e14397. [PMID: 34750991 PMCID: PMC8649870 DOI: 10.15252/emmm.202114397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial disorders are clinically and genetically diverse, with isolated complex III (CIII) deficiency being relatively rare. Here, we describe two affected cousins, presenting with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy. Genetic investigations in both cases identified a homozygous deletion of exons 2 and 3 of UQCRH, which encodes a structural complex III (CIII) subunit. We generated a mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/- ), which also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death. The biochemical phenotypes observed in patient and Uqcrh-/- mouse tissues were remarkably similar, displaying impaired CIII activity, decreased molecular weight of fully assembled holoenzyme and an increase of an unexpected large supercomplex (SXL ), comprising mostly of one complex I (CI) dimer and one CIII dimer. This phenotypic similarity along with lentiviral rescue experiments in patient fibroblasts verifies the pathogenicity of the shared genetic defect, demonstrating that the Uqcrh-/- mouse is a valuable model for future studies of human CIII deficiency.
Collapse
|
17
|
Proteomic Analysis of Hypoxia-Induced Senescence of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:5555590. [PMID: 34484348 PMCID: PMC8416403 DOI: 10.1155/2021/5555590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Methods Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). Results Cell senescence detected by SA-β-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. Conclusions Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.
Collapse
|
18
|
Mitochondrial Metabolic Signatures in Hepatocellular Carcinoma. Cells 2021; 10:cells10081901. [PMID: 34440674 PMCID: PMC8391498 DOI: 10.3390/cells10081901] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. HCC progression and metastasis are closely related to altered mitochondrial metabolism, including mitochondrial stress responses, metabolic reprogramming, and mitoribosomal defects. Mitochondrial oxidative phosphorylation (OXPHOS) defects and reactive oxygen species (ROS) production are attributed to mitochondrial dysfunction. In response to oxidative stress caused by increased ROS production, misfolded or unfolded proteins can accumulate in the mitochondrial matrix, leading to initiation of the mitochondrial unfolded protein response (UPRmt). The mitokines FGF21 and GDF15 are upregulated during UPRmt and their levels are positively correlated with liver cancer development, progression, and metastasis. In addition, mitoribosome biogenesis is important for the regulation of mitochondrial respiration, cell viability, and differentiation. Mitoribosomal defects cause OXPHOS impairment, mitochondrial dysfunction, and increased production of ROS, which are associated with HCC progression in mouse models and human HCC patients. In this paper, we focus on the role of mitochondrial metabolic signatures in the development and progression of HCC. Furthermore, we provide a comprehensive review of cell autonomous and cell non-autonomous mitochondrial stress responses during HCC progression and metastasis.
Collapse
|
19
|
Miyakuni K, Nishida J, Koinuma D, Nagae G, Aburatani H, Miyazono K, Ehata S. Genome-wide analysis of DNA methylation identifies the apoptosis-related gene UQCRH as a tumor suppressor in renal cancer. Mol Oncol 2021; 16:732-749. [PMID: 34133843 PMCID: PMC8807364 DOI: 10.1002/1878-0261.13040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
DNA hypermethylation is frequently observed in clear cell renal cell carcinoma (ccRCC) and correlates with poor clinical outcomes. However, the detailed function of DNA hypermethylation in ccRCC has not been fully uncovered. Here, we show the role of DNA methylation in ccRCC progression through the identification of a target(s) of DNA methyltransferases (DNMT). Our preclinical model of ccRCC using the serial orthotopic inoculation model showed the upregulation of DNMT3B in advanced ccRCC. Pretreatment of advanced ccRCC cells with 5-aza-deoxycytidine, a DNMT inhibitor, attenuated the formation of primary tumors through the induction of apoptosis. DNA methylated sites were analyzed genome-wide using methylation array in reference to RNA-sequencing data. The gene encoding ubiquinol cytochrome c reductase hinge protein (UQCRH), one of the components of mitochondrial complex III, was extracted as a methylation target in advanced ccRCC. Immunohistochemical analysis revealed that the expression of UQCRH in human ccRCC tissues was lower than normal adjacent tissues. Silencing of UQCRH attenuated the cytochrome c release in response to apoptotic stimuli and resulted in enhancement of primary tumor formation in vivo, implying the tumor-suppressive role of UQCRH. Moreover, 5-aza-deoxycytidine enhanced the therapeutic efficiency of mammalian target of rapamycin inhibitor everolimus in vivo. These findings suggested that the DNMT3B-induced methylation of UQCRH may contribute to renal cancer progression and implicated clinical significance of DNMT inhibitor as a therapeutic option for ccRCC.
Collapse
Affiliation(s)
- Kosuke Miyakuni
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Nishida
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Japan.,Environmental Science Center, The University of Tokyo, Japan
| |
Collapse
|
20
|
Beauvericin alters the expression of genes coding for key proteins of the mitochondrial chain in ovine cumulus-oocyte complexes. Mycotoxin Res 2020; 37:1-9. [PMID: 32981022 DOI: 10.1007/s12550-020-00409-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023]
Abstract
Beauvericin (BEA) is a member of the enniatin family of mycotoxins which has received increasing interest because of frequent occurrence in food and feed. By its ionophoric properties, BEA is able to alter membrane ion permeability uncoupling oxidative phosphorylation. It was also shown to alter oocyte mitochondrial function. In this study, the effects of BEA at 0.5, 1, ,3 and 5 μmol/L on expression of genes coding for key proteins of the mitochondrial chain in ovine oocytes and cumulus cells were evaluated at different time points of in vitro maturation (IVM), germinal vesicle (GV; t = 0), metaphase I (MI; t = 7 h), and metaphase II (MII; t = 24 h). The expression of nuclear (TFAM, NDUFA12, UQCRH, COX4, ATP5O) and mitochondrial (ND1, COX1, COX2, ATP6, ATP8) genes coding for proteins of Complexes I, III, IV, and V was analyzed by qRT-PCR. After BEA exposure, perturbed expression of all genes was observed in cumulus cells and in oocytes at the MI stage (7 h IVM). Expression of ND1, UQCRH, COX4 and ATP5O was downregulated in cumulus cells and upregulated in oocytes starting from 0.5 μmol/L BEA. Expression of TFAM, NDUFA12, COX1, COX2, ATP6, and ATP8 was upregulated starting from 1 μmol/L in cumulus cells and from 3 μmol/L in oocytes. Cumulus cells and oocytes displayed different gene expression patterns upon BEA exposure. The downregulation in cumulus cells of four genes coding for proteins of mitochondrial complexes could represent a major toxic event induced by BEA on the cumulus-oocyte complex which may result in mitochondrial functional alteration.
Collapse
|
21
|
UQCRH downregulation promotes Warburg effect in renal cell carcinoma cells. Sci Rep 2020; 10:15021. [PMID: 32929120 PMCID: PMC7490363 DOI: 10.1038/s41598-020-72107-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Ubiquinol-cytochrome c reductase hinge protein (UQCRH) is the hinge protein for the multi-subunit complex III of the mitochondrial electron transport chain and is involved in the electron transfer reaction between cytochrome c1 and c. Recent genome-wide transcriptomic and epigenomic profiling of clear cell renal cell carcinoma (ccRCC) by The Cancer Genome Atlas (TCGA) identified UQCRH as the top-ranked gene showing inverse correlation between DNA hypermethylation and mRNA downregulation. The function and underlying mechanism of UQCRH in the Warburg effect metabolism of ccRCC have not been characterized. Here, we verified the clinical association of low UQCRH expression and shorter survival of ccRCC patients through in silico analysis and identified KMRC2 as a highly relevant ccRCC cell line that displays hypermethylation-induced UQCRH extinction. Ectopic overexpression of UQCRH in KMRC2 restored mitochondrial membrane potential, increased oxygen consumption, and attenuated the Warburg effect at the cellular level. UQCRH overexpression in KMRC2 induced higher apoptosis and slowed down in vitro and in vivo tumor growth. UQCRH knockout by CRISPR/Cas9 had little impact on the metabolism and proliferation of 786O ccRCC cell line, suggesting the dispensable role of UQCRH in cells that have entered a Warburg-like state through other mechanisms. Together, our study suggests that loss of UQCRH expression by hypermethylation may promote kidney carcinogenesis through exacerbating the functional decline of mitochondria thus reinforcing the Warburg effect.
Collapse
|
22
|
Pla-Pagà L, Guirro M, Gual-Grau A, Gibert-Ramos A, Foguet-Romero E, Catalán Ú, Mayneris-Perxachs J, Canela N, Valls RM, Arola L, Solà R, Pedret A. Proteomic Analysis of Heart and Kidney Tissues in Healthy and Metabolic Syndrome Rats after Hesperidin Supplementation. Mol Nutr Food Res 2020; 64:e1901063. [PMID: 32281714 DOI: 10.1002/mnfr.201901063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Indexed: 01/17/2023]
Abstract
SCOPE Proteomics has provided new strategies to elucidate the mechanistic action of hesperidin, a flavonoid present in citrus fruits. Thus, the aim of the present study is to determine the effects of hesperidin supplementation (HS) on the proteomic profiles of heart and kidney tissue samples from healthy and metabolic syndrome (MS) rats. METHODS AND RESULTS 24 Sprague Dawley rats are randomized into four groups: healthy rats fed with a standard diet without HS, healthy rats administered with HS (100 mg kg-1 day-1 ), MS rats without HS, and MS rats administered with HS (100 mg kg-1 day-1 ) for eight weeks. Heart and kidney samples are obtained, and proteomic analysis is performed by mass spectrometry. Multivariate, univariate, and ingenuity pathways analyses are performed. Comparative and semiquantitative proteomic analyses of heart and kidney tissues reveal differential protein expression between MS rats with and without HS. The top diseases and functions implicated are related to the cardiovascular system, free radical scavenging, lipid metabolism, glucose metabolism, and renal and urological diseases. CONCLUSION This study is the first to demonstrate the protective capacity of hesperidin to change to the proteomic profiles in relation to different cardiovascular risk biomarkers in the heart and kidney tissues of MS rats.
Collapse
Affiliation(s)
- Laura Pla-Pagà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain
| | - Maria Guirro
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain.,Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructures, Av/ Universitat 1, Reus, 43204, Spain
| | - Andreu Gual-Grau
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Albert Gibert-Ramos
- Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Elisabet Foguet-Romero
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructures, Av/ Universitat 1, Reus, 43204, Spain
| | - Úrsula Catalán
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain.,Institut d'Investigació Sanitària Pere Virgili, Av/ Universitat 1, Reus, 43204, Spain
| | - Jordi Mayneris-Perxachs
- Centre for Omic Sciences, Joint Unit Universitat Rovira i Virgili-EURECAT, Centre Tecnològic de Catalunya, Unique Scientific and Technical Infrastructures, Av/ Universitat 1, Reus, 43204, Spain
| | - Nuria Canela
- Institut d'Investigació Sanitària Pere Virgili, Av/ Universitat 1, Reus, 43204, Spain
| | - Rosa M Valls
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Nutrigenomics Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, C/ Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Rosa Solà
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain.,Hospital Universitari Sant Joan, Av/ Doctor Josep Laporte 2, Reus, 43204, Spain
| | - Anna Pedret
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Av/ Universitat 1, Reus, 43204, Spain.,Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation and Cardiovascular Disease Group (NFOC-SALUT), C/ Sant Llorenç 21, Reus, 43201, Spain
| |
Collapse
|
23
|
Mukherjee S, Ghosh A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 2020; 53:1-20. [PMID: 32304865 DOI: 10.1016/j.mito.2020.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The mitochondrial respiratory chain (MRC) is comprised of ~92 nuclear and mitochondrial DNA-encoded protein subunits that are organized into five different multi-subunit respiratory complexes. These complexes produce 90% of the ATP required for cell sustenance. Specific sets of subunits are assembled in a modular or non-modular fashion to construct the MRC complexes. The complete assembly process is gradually chaperoned by a myriad of assembly factors that must coordinate with several other prosthetic groups to reach maturity, makingthe entire processextensively complicated. Further, the individual respiratory complexes can be integrated intovarious giant super-complexes whose functional roles have yet to be explored. Mutations in the MRC subunits and in the related assembly factors often give rise to defects in the proper assembly of the respiratory chain, which then manifests as a group of disorders called mitochondrial diseases, the most common inborn errors of metabolism. This review summarizes the current understanding of the biogenesis of individual MRC complexes and super-complexes, and explores how mutations in the different subunits and assembly factors contribute to mitochondrial disease pathology.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
24
|
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 2019; 122:168-181. [PMID: 31819197 PMCID: PMC7052168 DOI: 10.1038/s41416-019-0651-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Driver mutations in oncogenic pathways, rewiring of cellular metabolism and altered ROS homoeostasis are intimately connected hallmarks of cancer. Electrons derived from different metabolic processes are channelled into the mitochondrial electron transport chain (ETC) to fuel the oxidative phosphorylation process. Electrons leaking from the ETC can prematurely react with oxygen, resulting in the generation of reactive oxygen species (ROS). Several signalling pathways are affected by ROS, which act as second messengers controlling cell proliferation and survival. On the other hand, oncogenic pathways hijack the ETC, enhancing its ROS-producing capacity by increasing electron flow or by impinging on the structure and organisation of the ETC. In this review, we focus on the ETC as a source of ROS and its modulation by oncogenic pathways, which generates a vicious cycle that resets ROS levels to a higher homoeostatic set point, sustaining the cancer cell phenotype.
Collapse
Affiliation(s)
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|
25
|
Attenuation of Equine Lentivirus Alters Mitochondrial Protein Expression Profile from Inflammation to Apoptosis. J Virol 2019; 93:JVI.00653-19. [PMID: 31391270 DOI: 10.1128/jvi.00653-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Equine infectious anemia virus (EIAV) is an equine lentivirus similar to HIV-1, targets host immune cells, and causes a life-long infection in horses. The Chinese live EIAV vaccine is attenuated from long-term passaging of a highly virulent strain in vitro The parent pathogenic strain (EIAVDLV34) induces a host inflammatory storm to cause severe pathological injury of animals. However, the vaccine strain (EIAVDLV121) induces a high level of apoptosis to eliminate infected cells. To investigate how these processes are regulated, we performed a comparative proteomics analysis and functional study in equine monocyte-derived macrophages (eMDMs) and found that the divergent mitochondrial protein expression profiles caused by EIAV strains with different virulence led to disparate mitochondrial function, morphology, and metabolism. This in turn promoted the distinct transformation of macrophage inflammatory polarization and intrinsic apoptosis. In EIAVDLV34-infected cells, a high level of glycolysis and increased mitochondrial fragmentation were induced, resulting in the M1-polarized proinflammatory-type transformation of macrophages and the subsequent production of a strong inflammatory response. Following infection with EIAVDLV121, the infected cells were transformed into M2-polarized anti-inflammatory macrophages by inhibition of glycolysis. In this case, a decrease in the mitochondrial membrane potential and impairment of the electron transport chain led to increased levels of apoptosis and reactive oxygen species. These results correlated with viral pathogenicity loss and may help provide an understanding of the key mechanism of lentiviral attenuation.IMPORTANCE Following viral infection, the working pattern and function of the cell can be transformed through the impact on mitochondria. It still unknown how the mitochondrial response changes in cells infected with viruses in the process of virulence attenuation. EIAVDLV121 is the only effective lentiviral vaccine for large-scale use in the world. EIAVDLV34 is the parent pathogenic strain. Unlike EIAVDLV34-induced inflammation storms, EIAVDLV121 can induce high levels of apoptosis. For the first time, we found that, after the mitochondrial protein expression profile is altered, EIAVDLV34-infected cells are transformed into M1-polarized-type macrophages and cause inflammatory injury and that the intrinsic apoptosis pathway is activated in EIAVDLV121-infected cells. These studies shed light on how the mitochondrial protein expression profile changes between cells infected by pathogenic lentivirus strains and cells infected by attenuated lentivirus strains to drive different cellular responses, especially from inflammation to apoptosis.
Collapse
|
26
|
Zhou Y, Zheng X, Xu B, Hu W, Huang T, Jiang J. The Identification and Analysis of mRNA-lncRNA-miRNA Cliques From the Integrative Network of Ovarian Cancer. Front Genet 2019; 10:751. [PMID: 31497032 PMCID: PMC6712160 DOI: 10.3389/fgene.2019.00751] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the leading causes of cancer mortality in women. Since little clinical symptoms were shown in the early period of ovarian cancer, most patients were found in phases III-IV or with abdominal metastasis when diagnosed. The lack of effective early diagnosis biomarkers makes ovarian cancer difficult to screen. However, in essence, the fundamental problem is we know very little about the regulatory mechanisms during tumorigenesis of ovarian cancer. There are emerging regulatory factors, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), which have played important roles in cancers. Therefore, we analyzed the RNA-seq profiles of 407 ovarian cancer patients. An integrative network of 20,424 coding RNAs (mRNAs), 10,412 lncRNAs, and 742 miRNAs were construed with variance inflation factor (VIF) regression method. The mRNA-lncRNA-miRNA cliques were identified from the network and analyzed. Such promising cliques showed significant correlations with survival and stage of ovarian cancer and characterized the complex sponge regulatory mechanism, suggesting their contributions to tumorigenicity. Our results provided novel insights of the regulatory mechanisms among mRNAs, lncRNAs, and miRNAs and highlighted several promising regulators for ovarian cancer detection and treatment.
Collapse
Affiliation(s)
- You Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Wenwei Hu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (CAS), Shanghai, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| |
Collapse
|
27
|
Dong JJ, Ying L, Shi KQ. Expression of the Wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma. Cancer Cell Int 2019; 19:34. [PMID: 30814912 PMCID: PMC6376661 DOI: 10.1186/s12935-019-0743-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background The Wnt gene family members are known to participate regulating various normal and pathological processes including tumorigenesis. However, the association between Wnt ligands gene family and prognosis in hepatocellular carcinoma has not been systematically studied. Therefore, we evaluated the role of Wnt ligands gene family in hepatocellular carcinoma using publicly available data from The Cancer Genome Atlas (TCGA). Methods Clinical information and RNA-Seq mRNA expression data were derived from TCGA hepatocellular carcinoma cohort. Differences in overall survival (OS) and disease-free survival (DFS) between increased and decreased expression groups (defined by X-tile analyses) of Wnt ligands gene family were compared using Kaplan-Meier method and Cox regression model, with p-values calculated via log-rank test. Gene Set Enrichment Analysis (GSEA) was performed. Results Multivariate analysis adjusted for patient age, sex, BMI, tumor grade, and TMN stage revealed that Wnt1, Wnt3 and Wnt5B expressions were independent prognostic factors for OS and DFS (OS: HR = 0.58, P = 0.006; HR = 0.65, P = 0.03; HR = 0.56, P = 0.023, respectively; DFS: HR = 0.52, P < 0.001; HR = 1.93, P = 0.003; HR = 0.59, P = 0.011, respectively). Furthermore, expression of Wnt1 and Wnt5B was significantly associated with TMN stage (P = 0.02 and P = 0.03 for OS; P = 0.02 and P = 0.02 for DFS). GSEA showed that nucleotide excision repair was differentially enriched in Wnt1 low expression phenotype and aminoacyl trna biosynthesis and basal transcription factors were differentially enriched in Wnt5B low expression phenotype. Conclusions Our results identified associations of several Wnt ligands with prognosis of HCC patients, indicating that these genes could serve as prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Jia-Jia Dong
- 1Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Li Ying
- 1Department of Ultrasonography, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Ke-Qing Shi
- 2Precision Medical Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, China
| |
Collapse
|
28
|
TMEM165, a Golgi transmembrane protein, is a novel marker for hepatocellular carcinoma and its depletion impairs invasion activity. Oncol Rep 2018; 40:1297-1306. [PMID: 30015898 PMCID: PMC6072395 DOI: 10.3892/or.2018.6565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/26/2018] [Indexed: 01/13/2023] Open
Abstract
Transmembrane protein 165 (TMEM165), a Golgi protein, functions in ion homeostasis and vesicular trafficking in the Golgi apparatus. While mutations in TMEM165 are known to cause human 'congenital disorders of glycosylation', a recessive autosomal metabolic disease, the potential association of this protein with human cancer development has not been explored to date. In the present study, we revealed that TMEM165 is overexpressed in HCC and its depletion weakens the invasive activity of cancer cells through suppression of matrix metalloproteinase‑2 (MMP‑2) expression. Levels of TMEM165 mRNA and protein were clearly increased in HCC patient tissues and cell cultures. Quantitative real‑time RT‑PCR analysis of fresh HCC tissues (n=88) revealed association of TMEM165 overexpression with more frequent macroscopic vascular invasion, microscopic serosal invasion and higher α‑fetoprotein levels. Notably, depletion of TMEM165 led to a marked decrease in the invasive activity of two different HCC cell types, Huh7 and SNU475, accompanied by downregulation of MMP‑2. Our collective findings clearly indicated that TMEM165 contributed to the progression of HCC by promoting invasive activity, supporting its utility as a novel biomarker and therapeutic target for cancer.
Collapse
|
29
|
Wang K, Bai Y, Chen S, Huang J, Yuan J, Chen W, Yao P, Miao X, Wang Y, Liang Y, Zhang X, He M, Yang H, Guo H, Wei S. Genetic correction of serum AFP level improves risk prediction of primary hepatocellular carcinoma in the Dongfeng-Tongji cohort study. Cancer Med 2018; 7:2691-2698. [PMID: 29696820 PMCID: PMC6010894 DOI: 10.1002/cam4.1481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022] Open
Abstract
Serum alpha-fetoprotein (AFP) is the most commonly used tumor biomarker for screening and diagnosis of primary hepatocellular carcinoma (HCC). However, the predictive effect for HCC risk is still unsatisfactory. The aim of this prospective study was to estimate whether the individual genetic correction could improve the prediction efficiency of AFP for HCC risk. A prospective analysis with 9819 baseline HCC-free individuals based on a large population-based Chinese cohort study was performed. Two single-nucleotide polymorphisms (SNPs) associated with serum AFP level were used to calculate the genetic corrected AFP level (rs12506899 and rs2251844). Statistical analysis including logistic regression analysis and the area under the receiver operating characteristic (ROC) curve were used to assess the discriminative ability of the original and genetic corrected AFP level for HCC risk. The odds ratios (ORs) and 95% confidence intervals (95% CIs) were presented. Fifty-seven participants were diagnosed with HCC for the first time. After adjusting AFP level with genetic effects, the participants for HCC risk increased compared to those with AFP level alone (OR = 5.34, 95% CI = 2.57-11.13; P < 0.001 vs. OR = 5.04, 95% CI = 2.46-10.30; P < 0.001). In addition, the area under the curve (AUC) for the discrimination of HCC elevated from 0.611 to 0.726. The efficiency in HCC prediction using serum AFP level can be improved by adjusting AFP level based on genetic effects. The genetic correction effect on serum AFP should be considered in the clinic application of such tumor biomarkers.
Collapse
Affiliation(s)
- Ke Wang
- Department of Epidemiology and BiostatisticsMinistry of Education Key Laboratory of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yansen Bai
- Department of Occupational and Environmental HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Shi Chen
- Department of Epidemiology and BiostatisticsMinistry of Education Key Laboratory of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jiao Huang
- Department of Epidemiology and BiostatisticsMinistry of Education Key Laboratory of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Jing Yuan
- Department of Occupational and Environmental HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Weihong Chen
- Department of Occupational and Environmental HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ping Yao
- Department of Nutrition and Food HygieneSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaoping Miao
- Department of Epidemiology and BiostatisticsMinistry of Education Key Laboratory of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Youjie Wang
- Department of Maternal and Child HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuan Liang
- Department of Social Medicine and Health ManagementSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaomin Zhang
- Department of Occupational and Environmental HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Meian He
- Department of Occupational and Environmental HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Handong Yang
- Dongfeng Central HospitalDongfeng Motor Corporation and Hubei University of MedicineShiyanHubeiChina
| | - Huan Guo
- Department of Occupational and Environmental HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Sheng Wei
- Department of Epidemiology and BiostatisticsMinistry of Education Key Laboratory of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
30
|
Parris TZ, Rönnerman EW, Engqvist H, Biermann J, Truvé K, Nemes S, Forssell-Aronsson E, Solinas G, Kovács A, Karlsson P, Helou K. Genome-wide multi-omics profiling of the 8p11-p12 amplicon in breast carcinoma. Oncotarget 2018; 9:24140-24154. [PMID: 29844878 PMCID: PMC5963621 DOI: 10.18632/oncotarget.25329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Genomic instability contributes to the neoplastic phenotype by deregulating key cancer-related genes, which in turn can have a detrimental effect on patient outcome. DNA amplification of the 8p11-p12 genomic region has clinical and biological implications in multiple malignancies, including breast carcinoma where the amplicon has been associated with tumor progression and poor prognosis. However, oncogenes driving increased cancer-related death and recurrent genetic features associated with the 8p11-p12 amplicon remain to be identified. In this study, DNA copy number and transcriptome profiling data for 229 primary invasive breast carcinomas (corresponding to 185 patients) were evaluated in conjunction with clinicopathological features to identify putative oncogenes in 8p11-p12 amplified samples. Illumina paired-end whole transcriptome sequencing and whole-genome SNP genotyping were subsequently performed on 23 samples showing high-level regional 8p11-p12 amplification to characterize recurrent genetic variants (SNPs and indels), expressed gene fusions, gene expression profiles and allelic imbalances. We now show previously undescribed chromothripsis-like patterns spanning the 8p11-p12 genomic region and allele-specific DNA amplification events. In addition, recurrent amplification-specific genetic features were identified, including genetic variants in the HIST1H1E and UQCRHL genes and fusion transcripts containing MALAT1 non-coding RNA, which is known to be a prognostic indicator for breast cancer and stimulated by estrogen. In summary, these findings highlight novel candidate targets for improved treatment of 8p11-p12 amplified breast carcinomas.
Collapse
Affiliation(s)
- Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Truvé
- Bioinformatics Core Facility, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Sahlgrenska University Hospital, Department of Clinical Pathology and Genetics, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Wang X, Yu T, Liao X, Yang C, Han C, Zhu G, Huang K, Yu L, Qin W, Su H, Liu X, Peng T. The prognostic value of CYP2C subfamily genes in hepatocellular carcinoma. Cancer Med 2018; 7:966-980. [PMID: 29479826 PMCID: PMC5911570 DOI: 10.1002/cam4.1299] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Cytochrome P2C (CYP2C) subfamily members (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) are known to participate in clinical drug metabolism. However, the association between CYP2C subfamily members and hepatocellular carcinoma (HCC) remains unclear. This study investigated the prognostic value of CYP2C subfamily gene expression levels with HCC prognosis. Data of 360 HCC patients in The Cancer Genome Atlas database and 231 in the Gene Expression Omnibus database were analyzed. Kaplan-Meier analysis and a Cox regression model were used to ascertain overall survival and recurrence-free survival, and to calculate median survival time using hazard ratios (HR) and 95% confidence intervals (CI). In TCGA database, low expression of CYP2C8, CYP2C9, and CYP2C19 in tumor tissue was associated with a short median survival time (all crude P = 0.001, adjusted P = 0.004, P = 0.047, and P = 0.020, respectively). In TCGA database, joint effects analysis of the combinations of CYP2C8 and CYP2C9, CYP2C8 and CYP2C19, and CYP2C9 and CYP2C19 revealed that high expression of two genes (group 4; group IV, group d) was associated with a reduced risk of death as compared to low expression (group 1, group I, and group a) (adjusted P = 0.005, P = 0.013, and P = 0.016, respectively). In TCGA database, joint effects analysis of CYP2C8, CYP2C9, and CYP2C19 showed that the risk of death from HCC was lower for groups C and D than for group A (adjusted P = 0.012 and P = 0.008, respectively). CYP2C8, CYP2C9, and CYP2C19 gene expression levels are potential prognostic markers of HCC following hepatectomy.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Tingdong Yu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Xiwen Liao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Chengkun Yang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Chuangye Han
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Guangzhi Zhu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Ketuan Huang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Long Yu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan Province 450000China
| | - Wei Qin
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Hao Su
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| | - Xiaoguang Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
- Department of Hepatobiliary SurgeryAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong Province 524001China
| | - Tao Peng
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanning 530021Guangxi ProvinceChina
| |
Collapse
|
32
|
Park ER, Kim SB, Lee JS, Kim YH, Lee DH, Cho EH, Park SH, Han CJ, Kim BY, Choi DW, Yoo YD, Yu A, Lee JW, Jang JJ, Park YN, Suh KS, Lee KH. The mitochondrial hinge protein, UQCRH, is a novel prognostic factor for hepatocellular carcinoma. Cancer Med 2017; 6:749-760. [PMID: 28332314 PMCID: PMC5387164 DOI: 10.1002/cam4.1042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/10/2023] Open
Abstract
Alterations in mitochondrial respiration contribute to the development and progression of cancer via abnormal biogenesis, including generation of reactive oxygen species. Ubiquinol–cytochrome c reductase hinge protein (UQCRH) consists of the cytochrome bc1 complex serving respiration in mitochondria. In the present study, we analyzed UQCRH abnormalities in hepatocellular carcinoma (HCC) and its association with clinical outcomes of patients. UQCRH expression in HCC was determined via semiquantitative and quantitative real‐time reverse transcriptase polymerase chain reaction of 96 surgically resected HCC tissues positive for hepatitis B virus surface antigen. UQCRH was frequently overexpressed in HCC tissues (46.8%, based on 2.1‐fold cutoff). UQCRH overexpression was observed in HCCs with larger tumor size, poorer differentiation, or vascular invasion. Kaplan–Meier analysis revealed significantly shorter overall (P = 0.005) and recurrence‐free survival (P = 0.027) in patients with tumors overexpressing UQCRH. The prognostic impact of UQCRH was significant in subgroups of patients divided according to the α‐fetoprotein (AFP) level. The patient subgroup with higher AFP levels (≥20 ng/mL) exhibited significant differences in 5‐year overall (18.5% vs. 67.9%) and recurrence‐free survival rates (11.1% vs. 46.4%) between groups with and without UQCRH overexpression. In contrast, no marked survival differences were observed between subgroups with lower AFP levels (<20 ng/mL). Multivariate analysis defined UQCRH as an independent poor prognostic factor. Conclusively, our results indicate that UQCRH overexpression is correlated with poor outcomes of HCC patients. Furthermore, in patients grouped as high risk based on elevated AFP, lack of UQCRH overexpression could be a useful indicator for clinical treatment.
Collapse
Affiliation(s)
- Eun-Ran Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Pathology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Bum Kim
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jee-San Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yang-Hyun Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Dong-Hyoung Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Eung-Ho Cho
- Department of Surgery, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Sun-Hoo Park
- Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Chul Ju Han
- Department of Internal Medicine, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Dong Wook Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ami Yu
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul, Korea
| | - Jae Won Lee
- Department of Statistics, Korea University, Seoul, Korea
| | - Ja June Jang
- Department of Pathology, Seoul National University School of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University School of Medicine, Seoul, Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Biotechnology, College of Natural Science, Seoul Women's University, Seoul, Korea
| |
Collapse
|