1
|
Patel MS, Almubarak M, Matta J, Ortiz-Sanchez C, Encarnacion J, Ruiz-Deya G, Dutil J, Dhillon J, Yamoah K, Berglund A, Park H, Kilari D, Balagurunathan Y, Wang L, Park JY. 5hmC-profiles in Puerto Rican Hispanic/Latino men with aggressive prostate cancer. Front Oncol 2025; 15:1541878. [PMID: 40265030 PMCID: PMC12011585 DOI: 10.3389/fonc.2025.1541878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Puerto Rican (PR) Hispanic/Latino (H/L) men are an understudied population that has the highest prostate cancer (PCa) specific mortality among other Hispanic populations. Little information is known about the higher mortality in PR H/L men. It is thought that epigenetic changes in key genes may play a critical role in aggressive tumors. Methods We aimed to identify key 5-hydroxymethylcytosine (5hmC) changes in PR H/L men with aggressive PCa. We performed sequencing analysis using the 5hmC-enriched DNA from 22 prostate tumors and 24 adjacent normal FFPE samples. Results We identified 808 differentially methylated genes (DMGs) in tumors compared to adjacent normal tissues. These genes suggest key mechanisms, including upregulated signatures of negative Androgen Receptor (AR) regulation, Wnt/β-catenin pathway activation, and downregulation of tumor suppressor genes. Pathway analysis of DMGs demonstrated that DNA repair pathway was most upregulated in tumors. Since 5hmC abundance positively correlates with gene expression levels, we further investigated 808 DMGs in TCGA PCa gene expression data. Further, we identified 59 DMGs with significant gene expression changes in the same direction. Additionally, we identified 111 aggressiveness-related DMGs, of which, two hypomethylated genes (CCDC122, NUDT15) and four hypermethylated genes (PVT1, RPL30, TRMT12, UBR5) were found to be altered at transcriptomic level in a concordant manner in PR H/L PCa patients. Aberrant 5hmC and GE changes in these six genes were also associated with progression-free survival in the mixed PCa population. Discussion The 5hmC modifications and associated gene expression changes in these six genes could be linked to the highest prostate cancer (PCa)-specific mortality in PR H/L men. In conclusion, our study identified 59 DMGs showing concordant epigenetic and transcriptomic changes in tumor tissues and 111 DMGs showing association with aggressive PCa among PR H/L men. Our findings have significant implications for understanding these key genes' molecular mechanisms, which may drive PCa progression and mortality in this population. This will help in developing potential biomarkers or therapeutic targets for personalized treatment strategies in this high-risk subgroup. Future research will explore how these genes contribute to PCa-specific mortality through molecular analyses, with plans to validate them in a larger validation cohort.
Collapse
Affiliation(s)
- Manishkumar S. Patel
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Mousa Almubarak
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Carmen Ortiz-Sanchez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Jarline Encarnacion
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University-School of Medicine, Ponce, Puerto Rico
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Hyun Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Deepak Kilari
- Division of Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yoganand Balagurunathan
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Liang Wang
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
2
|
Lin S, Wang L, Han C, Dai Y, Li C, Liu Y, Zhang B, Huang N, Zhang A, Zhang T, Wang Y, Xie J, Tang H, Cheng Y, Yao H, Lou M, Xue L, Wu ZB. Targeting HTR2B suppresses nonfunctioning pituitary adenoma growth and sensitizes cabergoline treatment via inhibiting Gαq/PLC/PKCγ/STAT3 axis. Neuro Oncol 2024; 26:2010-2026. [PMID: 38989697 PMCID: PMC11534325 DOI: 10.1093/neuonc/noae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Managing nonfunctioning pituitary adenomas (NFPAs) is difficult due to limited drug treatments. Cabergoline's (CAB) effectiveness for NFPAs is debated. This study explores the role of HTR2B in NFPAs and its therapeutic potential. METHODS We conducted screening of bulk RNA-sequencing data to analyze HTR2B expression levels in NFPA samples. In vitro and in vivo experiments were performed to evaluate the effects of HTR2B modulation on tumor growth and cell cycle regulation. Mechanistic insights into the HTR2B-mediated signaling pathway were elucidated using pharmacological inhibitors and molecular interaction assays. RESULTS Elevated HTR2B expression was detected in NFPA samples, which was associated with increased tumor survival. Inhibition of HTR2B activity resulted in the suppression of tumor growth through modulation of the G2M cell cycle. The inhibition of HTR2B with PRX-08066 was found to block STAT3 phosphorylation and nuclear translocation by interfering with the Gαq/PLC/PKC pathway. A direct interaction between PKC-γ and STAT3 was critical for STAT3 activation. CAB was shown to activate pSTAT3 via HTR2B, reducing its therapeutic potential. However, the combination of an HTR2B antagonist with CAB significantly inhibited tumor cell proliferation in HTR2B-expressing pituitary tumor cell lines, a xenografted pituitary tumor model, and patient-derived samples. Analysis of patient-derived data indicated that a distinct molecular pattern characterized by upregulated HTR2B/PKC-γ and downregulated BTG2/GADD45A may benefit from combination treatment with CAB and PRX-08066. CONCLUSIONS HTR2B is a potential therapeutic target for NFPAs, and its inhibition could improve CAB efficacy. A dual therapy approach may be beneficial for NFPA patients with high HTR2B expression.
Collapse
Affiliation(s)
- Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangbo Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changxi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changsheng Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yang L, Ma D, Liu S, Zou L. The DHODH inhibitor teriflunomide impedes cell proliferation and enhances chemosensitivity to daunorubicin (DNR) in T-cell acute lymphoblastic leukemia. Ann Hematol 2024:10.1007/s00277-024-05998-0. [PMID: 39377943 DOI: 10.1007/s00277-024-05998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological tumor that requires novel treatment strategies, especially for relapsed/refractory cases. Dihydroorotate dehydrogenase (DHODH), a key enzyme in the de novo pyrimidine synthesis pathway, has been identified as a potential target for tumors. Besides, Teriflunomide (TRF) is a DHODH inhibitor with anticancer effects; however, its role in T-ALL remains poorly understood. Here, we investigated the potential anticancer effects of TRF on T-ALL cells, and the results showed that TRF inhibited cell proliferation, caused S-phase cell cycle arrest, and promoted apoptosis of T-ALL (MOLT4 and JURKAT) cell lines. In addition, TRF reduced the infiltration capacity of T-ALL cells in T-ALL xenograft mice while up-regulating the expression of P53 and BTG2. The BTG2 knockdown significantly attenuated the inhibitory effect of TRF on cellular growth and suppressed the TRF-mediated elevated expression of P53 in T-ALL cells. Moreover, combined treatment with TRF and daunorubicin (DNR) significantly reduced cell viability and promoted apoptosis in DNR-resistant T-ALL cells. Our study provides valuable insights into the critical role of TRF in treating T-ALL while increasing the sensitivity of DNR-resistant T-ALL cells to DNR.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Deyu Ma
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Shan Liu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders (Chongqing), Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Lin Zou
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Clinical Research Unit, Children's Hospital of Shanghai Jiao Tong University, 355 Luding Rd, Putuo District, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
4
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Zhang S, Gu J, Shi LL, Qian B, Diao X, Jiang X, Wu J, Wu Z, Shen A. A pan-cancer analysis of anti-proliferative protein family genes for therapeutic targets in cancer. Sci Rep 2023; 13:21607. [PMID: 38062199 PMCID: PMC10703880 DOI: 10.1038/s41598-023-48961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The recently discovered APRO (anti-proliferative protein) family encodes a group of trans-membrane glycoproteins and includes 6 members: TOB1, TOB2, BTG1, BTG2, BTG3 and BTG4. The APRO family is reportedly associated with the initiation and progression of cancers. This study aims to undertake a comprehensive investigation of the APRO family of proteins as a prognostic biomarker in various human tumors. We performed a pan-cancer analysis of the APRO family based on The Cancer Genome Atlas (TCGA). With the bioinformatics methods, we explored the prognostic value of the APRO family and the correlation between APRO family expression and tumor mutation burden (TMB), microsatellite instability (MSI), drug sensitivity, and immunotherapy in numerous cancers. Our results show that the APRO family was primarily down-regulated in cancer samples. The expression of APRO family members was linked with patient prognosis. In addition, APRO family genes showed significant association with immune infiltrate subtypes, tumor microenvironment, and tumor cell stemness. Finally, our study also demonstrated the relationship between APRO family genes and drug sensitivity. This study provides comprehensive information to understand the APRO family's role as an oncogene and predictor of survival in some tumor types.
Collapse
Affiliation(s)
- Siming Zhang
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China
| | - Ling-Ling Shi
- Affiliated Nantong Hospital Third of Nantong University, Nantong, China
| | - Bo Qian
- Maternal and Child Care Hospital of Qidong, Nantong, China
| | - Xun Diao
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jindong Wu
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhijun Wu
- Department of Oncology, Nantong Traditional Chinese Medicine Hospital, Nantong, China.
| | - Aiguo Shen
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Islam F, Nath N, Zehravi M, Khan J, Jashim SBT, Charde MS, Chakole RD, Kumar KP, Babu AK, Nainu F, Khan SL, Rab SO, Emran TB, Wilairatana P. Exploring the role of natural bioactive molecules in genitourinary cancers: how far has research progressed? NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:39. [PMID: 37843642 PMCID: PMC10579213 DOI: 10.1007/s13659-023-00400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/17/2023] [Indexed: 10/17/2023]
Abstract
The primary approaches to treat cancerous diseases include drug treatment, surgical procedures, biotherapy, and radiation therapy. Chemotherapy has been the primary treatment for cancer for a long time, but its main drawback is that it kills cancerous cells along with healthy ones, leading to deadly adverse health effects. However, genitourinary cancer has become a concern in recent years as it is more common in middle-aged people. So, researchers are trying to find possible therapeutic options from natural small molecules due to the many drawbacks associated with chemotherapy and other radiation-based therapies. Plenty of research was conducted regarding genitourinary cancer to determine the promising role of natural small molecules. So, this review focused on natural small molecules along with their potential therapeutic targets in the case of genitourinary cancers such as prostate cancer, renal cancer, bladder cancer, testicular cancer, and so on. Also, this review states some ongoing or completed clinical evidence in this regard.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Kingdom of Saudi Arabia.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Sumiya Ben-Ta Jashim
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Manoj Shrawan Charde
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - Rita Dadarao Chakole
- Government College of Pharmacy, Vidyanagar, Karad, Satara, 415124, Maharashtra, India
| | - K Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Govt. of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), Mehrauli-Badarpur Road, PushpVihar, Sector 3, New Delhi, 110017, India
| | - A Kishore Babu
- Ratnadeep College of Pharmacy, Ratnapur, Jamkhed, Ahmednagar, 413206, Maharashtra, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI, 02912, USA.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
Ware AP, Satyamoorthy K, Paul B. Integrated multiomics analysis of chromosome 19 miRNA cluster in bladder cancer. Funct Integr Genomics 2023; 23:266. [PMID: 37542643 PMCID: PMC10404189 DOI: 10.1007/s10142-023-01191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
With 46 microRNAs (miRNAs) embedded tandemly over a distance of ~100 kb, chromosome 19 microRNA cluster (C19MC) is the largest miRNA cluster in the human genome. The C19MC is transcribed from a long noncoding genomic region and is usually expressed simultaneously at a higher level. Hence, we performed an integrative multiomics data analysis to examine C19MC regulation, expression patterns, and their impact on bladder cancer (BCa). We found that 43 members of C19MC were highly expressed in BCa. However, its co-localization with recurrent copy number variation (CNV) gain was not statistically significant to implicate its upregulation. It has been reported that C19MC expression is regulated by a well-established CpG island situated 17.6 kb upstream of the transcription start site, but we found that CpG probes at this island were hypomethylated, which was not statistically significant in the BCa cohort. In addition, the promoter region of C19MC is strongly regulated by a group of seven transcription factors (NR2F6, SREBF1, TBP, GATA3, GABPB1, ETV4, and ZNF444) and five chromatin modifiers (SMC3, KDMA1, EZH2, RAD21, and CHD7). Interestingly, these 12 genes were found to be overexpressed in BCa patients. Further, C19MC targeted 42 tumor suppressor (TS) genes that were downregulated, of which 15 were significantly correlated with patient survival. Our findings suggest that transcription factors and chromatin modifiers at the promoter region may regulate C19MC overexpression. The upregulated C19MC members, transcription regulators, and TS genes can be further exploited as potential diagnostic and prognostic indicators as well as for therapeutic management of BCa.
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Yang W, Wei C, Cheng J, Ding R, Li Y, Wang Y, Yang Y, Wang J. BTG2 and SerpinB5, a novel gene pair to evaluate the prognosis of lung adenocarcinoma. Front Immunol 2023; 14:1098700. [PMID: 37006240 PMCID: PMC10064863 DOI: 10.3389/fimmu.2023.1098700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionLung adenocarcinoma (LUAD), as the most frequent pathological subtype of non−small cell lung cancer, is often characterized by poor prognosis and low 5-year survival rate. Exploriton of new biomarkers and accurate molecular mechanisms for effectively predicting the prognosis of LUAD patients is still necessary. Presently, BTG2 and SerpinB5, which play important roles in tumors, are studied as a gene pair for the first time with the aim of exploring whether they can be used as potential prognostic markers.MethodsUsing the bioinformatics method to explore whether BTG2 and SerpinB5 can become independent prognostic factors, and explore their clinical application value and whether they can be used as immunotherapeutic markers. In addition, we also verify the conclusions obtained from external datasets, molecular docking, and SqRT-PCR.ResultsThe results show that compared with normal lung tissue, BTG2 expression level was down-regulated and SerpinB5 was up-regulated in LUAD. Additionally, Kaplan–Meier survival analysis demonstrate that the prognosis of low expression level of BTG2 was poor, and that of high expression level of SerpinB5 was poor, suggesting that both of them can be used as independent prognostic factors. Moreover, the prognosis models of the two genes were constructed respectively in this study, and their prediction effect was verified by external data. Besides, ESTIMATE algorithm reveals the relationship between this gene pair and the immune microenvironment. Furthermore, patients with a high expression level of BTG2 and a low expression level of SerpinB5 have higher immunophenoscore for CTLA-4 and PD-1 inhibitors than patients with a low expression level of BTG2 and a high expression level of SerpinB5, indicating that such patients have a more obvious effect of immunotherapy.DiscussionCollectively, all the results demonstrate that BTG2 and SerpinB5 might serve as potential prognostic biomarkers and novel therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yonghua Wang
- College of Life Sciences, Northwest University, Shaanxi, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yinfeng Yang, ; Jinghui Wang,
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yinfeng Yang, ; Jinghui Wang,
| |
Collapse
|
9
|
Fetisov TI, Borunova AA, Antipova AS, Antoshina EE, Trukhanova LS, Gorkova TG, Zuevskaya SN, Maslov A, Gurova K, Gudkov A, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Targeting Features of Curaxin CBL0137 on Hematological Malignancies In Vitro and In Vivo. Biomedicines 2023; 11:biomedicines11010230. [PMID: 36672738 PMCID: PMC9856019 DOI: 10.3390/biomedicines11010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The anticancer activity of Curaxin CBL0137, a DNA-binding small molecule with chromatin remodulating effect, has been demonstrated in different cancers. Herein, a comparative evaluation of CBL0137 activity was performed in respect to acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia and multiple myeloma (MM) cultured in vitro. MTT assay showed AML and MM higher sensitivity to CBL0137's cytostatic effect comparatively to other hematological malignancy cells. Flow cytometry cell cycle analysis revealed an increase in subG1 and G2/M populations after CBL0137 cell treatment, but the prevalent type of arrest varied. Apoptosis activation by CBL0137 measured by Annexin-V/PI dual staining was more active in AML and MM cells. RT2 PCR array showed that changes caused by CBL0137 in signaling pathways involved in cancer pathogenesis were more intensive in AML and MM cells. On the murine model of AML WEHI-3, CBL0137 showed significant anticancer effects in vivo, which were evaluated by corresponding changes in spleen and liver. Thus, more pronounced anticancer effects of CBL0137 in vitro were observed in respect to AML and MM. Experiments in vivo also indicated the perspective of CBL0137 use for AML treatment. This in accordance with the frontline treatment approach in AML using epigenetic drugs.
Collapse
Affiliation(s)
- Timur I. Fetisov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Anna A. Borunova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Alina S. Antipova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Tatyana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Andrei Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ekaterina A. Lesovaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, 390026 Ryazan, Russia
| | - Gennady A. Belitsky
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | | | - Kirill I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
10
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Zhang C, Sun Q, Zhang X, Qin N, Pu Z, Gu Y, Yan C, Zhu M, Dai J, Wang C, Li N, Jin G, Ma H, Hu Z, Zhang E, Tan F, Shen H. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun (Lond) 2022; 42:609-626. [PMID: 35730068 PMCID: PMC9257983 DOI: 10.1002/cac2.12325] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background Epigenetic alterations have been shown to contribute immensely to human carcinogenesis. Dynamic and reversible N6‐methyladenosine (m6A) RNA modification regulates gene expression and cell fate. However, the reasons for activation of KIAA1429 (also known as VIRMA, an RNA methyltransferase) and its underlying mechanism in lung adenocarcinoma (LUAD) remain largely unexplored. In this study, we aimed to clarify the oncogenic role of KIAA1429 in the tumorigenesis of LUAD. Methods Whole‐genome sequencing and transcriptome sequencing of LUAD data were used to analyze the gene amplification of RNA methyltransferase. The in vitro and in vivo functions of KIAA1429 were investigated. Transcriptome sequencing, methylated RNA immunoprecipitation sequencing (MeRIP‐seq), m6A dot blot assays and RNA immunoprecipitation (RIP) were performed to confirm the modified gene mediated by KIAA1429. RNA stability assays were used to detect the half‐life of the target gene. Results Copy number amplification drove higher expression of KIAA1429 in LUAD, which was correlated with poor overall survival. Manipulating the expression of KIAA1429 could regulate the proliferation and metastasis of LUAD. Mechanistically, the target genes of KIAA1429‐mediated m6A modification were confirmed by transcriptome sequencing and MeRIP‐seq assays. We also revealed that KIAA1429 could regulate BTG2 expression in an m6A‐dependent manner. Knockdown of KIAA1429 significantly decreased the m6A levels of BTG2 mRNA, leading to enhanced YTH m6A RNA binding protein 2 (YTHDF2, the m6A “reader”)‐dependent BTG2 mRNA stability and promoted the expression of BTG2; thus, participating in the tumorigenesis of LUAD. Conclusions Our data revealed the activation mechanism and important role of KIAA1429 in LUAD tumorigenesis, which may provide a novel view on the targeted molecular therapy of LUAD.
Collapse
Affiliation(s)
- Chang Zhang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Qi Sun
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xu Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhening Pu
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Ni Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, P. R. China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Gusu School, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China.,Research Unit of Prospective Cohort of Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China
| |
Collapse
|
12
|
AGO-RBP crosstalk on target mRNAs: Implications in miRNA-guided gene silencing and cancer. Transl Oncol 2022; 21:101434. [PMID: 35477066 PMCID: PMC9136600 DOI: 10.1016/j.tranon.2022.101434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3' untranslated regions (3' UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.
Collapse
|
13
|
Zhang J, Li C, Zhang L, Heng Y, Wang S, Pan Y, Cai L, Zhang Y, Xu T, Chen X, Hoffman RM, Jia L. Andrographolide, a diterpene lactone from the Traditional Chinese Medicine Andrographis paniculate, induces senescence in human lung adenocarcinoma via p53/p21 and Skp2/p27. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153933. [PMID: 35121394 DOI: 10.1016/j.phymed.2022.153933] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Senescence leads to permanent cell-cycle arrest and is a potential target for cancer therapy. Andrographolide (AD) is a diterpene lactone isolated from Traditional Chinese Medicine (TCM) Andrographis paniculate, which has been used as an anti-inflammatory drug in clinical practice with the potential to target senescence in recalcitrant lung cancer. PURPOSE To determine whether AD can induce senescence in human lung adenocarcinoma in vitro and in vivo and to elucidate the underlying mechanisms. METHODS SA-β-Gal staining was used to detect the expression of senescence-associated β-galactosidase (SA-β-Gal) in human lung adenocarcinoma cells A549 and NCI-H1795. DNA damage was examined by the detection of γH2AX foci. Cell cycle was analyzed by flow cytometry. Cancer cell proliferation was determined by ATPlite assay and clonogenic survival assay in vitro. Tumor growth was determined in a mouse model of A549. The expression level of proteins and mRNA was estimated by Western blotting and Quantitative RT-PCR, respectively. Small interfering RNA (siRNA) was used to knock down p21, p27 and p53 to explore the potential mechanism of AD-induced senescence in human lung adenocarcinoma cells. RESULTS AD-induced A549 and NCI-H1795 cell senescence determined by increased cell size, flattened morphology, DNA damage, cell cycle arrest as well as the increased expression of β-galactosidase. AD inhibited cell proliferation in lung cells in vitro and lung cells xenograft growth in nude mice. p21 and p27, the major cell cycle regulators and mediators of senescence, were upregulated at the protein level in AD-treated A549 lung adenocarcinoma in vitro and in vivo. Further studies demonstrated that AD induced cell senescence via p53/p21 and Skp2/p27. CONCLUSION In the present study, we found that the primary anti-inflammatory drug AD could have a potential antitumor effect in lung cancer. We demonstrated that AD induced lung adenocarcinoma senescence in vitro and in vivo via p53/p21 and Skp2/p27 for the first time. AD is therefore a promising senescence-inducing therapeutic for recalcitrant human lung adenocarcinoma.
Collapse
Affiliation(s)
- Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chunjie Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongqing Heng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated to Fudan University, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yunjing Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tong Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xihui Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA, USA; Anticancer, Inc., San Diego, CA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
14
|
Zhang XZ, Chen MJ, Fan PM, Jiang W, Liang SX. BTG2 Serves as a Potential Prognostic Marker and Correlates with Immune Infiltration in Lung Adenocarcinoma. Int J Gen Med 2022; 15:2727-2745. [PMID: 35300128 PMCID: PMC8922043 DOI: 10.2147/ijgm.s340565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background B-cell translocation gene 2 (BTG2) has been revealed to be involved in the occurrence and development of multiple cancers. However, the role of BTG2 in lung adenocarcinoma (LUAD) is still ambiguous. Thus, this study aims to investigate the prognostic value of BTG2 and its correlation with immune infiltration in LUAD. Methods The expression of BTG2 in LUAD was analyzed using the TIMER and UALCAN databases. The correlations between BTG2 expression and clinicopathological factors were investigated using the UALCAN databases. The Kaplan–Meier plotter, GEPIA, and TCGA databases were employed to assess the prognostic value of BTG2. The STRING database and Cytoscape software were used to construct an interaction network and mine co-expression genes. The TISIDB database was examined for a correlation between BTG2 and driver genes in LUAD. Enrichment analysis of co-expressed genes and BTG2 was performed using the LinkedOmics database. Finally, the correlations between BTG2 and immune infiltrates were investigated using the TIMER, GEO, and TISIDB database. Results BTG2 was significantly downregulated in LUAD. The decreased expression of BTG2 in LUAD was significantly correlated with higher cancer stages and shorter duration of overall survival. The expressions of BTG2-related co-expression genes were associated with the prognosis in LUAD. The expression of BTG2 was closely associated with the mutations of TP53 and ROS1. Enrichment analysis revealed that BTG2 was significantly correlated with immune‐associated signaling pathways and function. In addition, the expression of BTG2 was found to be closely related to immune infiltration, multiple gene markers of immune cells, chemokines, and chemokine receptors. Conclusion Our findings have effectively demonstrated that BTG2 expression was downregulated in LUAD, indicating poor prognosis. Closely relating to immune cell infiltration, BTG2 may be a promising immune-related biomarker and molecular target for patients with LUAD.
Collapse
Affiliation(s)
- Xiao Zhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Mao Jian Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, People’s Republic of China
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ping Ming Fan
- Department of Breast-Thoracic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan, People’s Republic of China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Xiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Correspondence: Shi Xiong Liang; Wei Jiang, Email ;
| |
Collapse
|
15
|
Zhang L, Wang X. Lowly expressed LNC01136 fails to aid HIF-1α to induce BTG2 expression resulting in increased proliferation of retinal microvascular endothelial cells. Microvasc Res 2022; 141:104315. [PMID: 35007537 DOI: 10.1016/j.mvr.2022.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Retinal neovascularization (RN), a major cause of blindness occurring in multiple types of ophthalmic diseases, is closely associated with hypoxic conditions. However, the underlying pathological mechanisms of RN have not been fully elucidated. BTG2 is anti-proliferative factor. The up-stream of BTG2 gene within 3000 bp expresses a long non-coding RNA, LNC01136. METHODS we initially compared the expression of BTG2 and LNC01136 in human retinal microvascular endothelial cells (hRMECs) with other eye-associated cells, including Muller cells, ARPE19 cells and RGC-5, in response to a hypoxia mimetic agent (CoCl2). FISH and PCR tests were performed to determine the enrichment of LNC01136 in different cellular components. LNC01136 were overexpressed or knockdown to determine the effect on BTG2 expression. Finally, ChIP, RIP and Co-IP assays were performed to determine the interaction among BTG2, HIF-1α, LNC01136 and CNOT7. RESULTS After the treatment with CoCl2, expression levels of BTG2 and LNC01136 were strongly induced in Muller cells, ARPE19 cells and RGC-5, but weakly in hRMECs. LNC01136 is prominently located in cell nucleus and aids HIF-1α to enhance transcription of BTG2, which consequently inhibits cell growth. The anti-proliferative effect of BTG2 is probably associated to the interaction with CNOT7 and the regulation of multiple cell cycle-related proteins. CONCLUSIONS This study revealed that LNC01136 is a cell growth suppressor by recruiting HIF-1α to induce BTG2 expression. However the low expression of LNC01136 in hRMECs compared to other eye-associated cells promoted hRMECs' proliferation, which is probably a cause of RN under hypoxia.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Ophthalmology, Hunan Children's Hospital, Changsha 410006, PR China
| | - Xilang Wang
- Department of Ophthalmology, Hunan Children's Hospital, Changsha 410006, PR China.
| |
Collapse
|
16
|
The Antitumor Effect of Caffeic Acid Phenethyl Ester by Downregulating Mucosa-Associated Lymphoid Tissue 1 via AR/p53/NF-κB Signaling in Prostate Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14020274. [PMID: 35053438 PMCID: PMC8773797 DOI: 10.3390/cancers14020274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), a honeybee propolis-derived bioactive ingredient, has not been extensively elucidated regarding its effect on prostate cancer and associated mechanisms. The mucosa-associated lymphoid tissue 1 gene (MALT1) modulates NF-κB signal transduction in lymphoma and non-lymphoma cells. We investigated the functions and regulatory mechanisms of CAPE in relation to MALT1 in prostate carcinoma cells. In p53- and androgen receptor (AR)-positive prostate carcinoma cells, CAPE downregulated AR and MALT1 expression but enhanced that of p53, thus decreasing androgen-induced activation of MALT1 and prostate-specific antigen expressions. p53 downregulated the expression of MALT in prostate carcinoma cells through the putative consensus and nonconsensus p53 response elements. CAPE downregulated MALT1 expression and thus inhibited NF-κB activity in p53- and AR-negative prostate carcinoma PC-3 cells, eventually reducing cell proliferation, invasion, and tumor growth in vitro and in vivo. CAPE induced the ERK/JNK/p38/AMPKα1/2 signaling pathways; however, pretreatment with the corresponding inhibitors of MAPK or AMPK1/2 did not inhibit the CAPE effect on MALT1 blocking in PC-3 cells. Our findings verify that CAPE is an effective antitumor agent for human androgen-dependent and -independent prostate carcinoma cells in vitro and in vivo through the inhibition of MALT1 expression via the AR/p53/NF-κB signaling pathways.
Collapse
|
17
|
Lin S, Wang L, Shi Z, Zhu A, Zhang G, Hong Z, Cheng C. Circular RNA circFLNA inhibits the development of bladder carcinoma through microRNA miR-216a-3p/BTG2 axis. Bioengineered 2021; 12:11376-11389. [PMID: 34852712 PMCID: PMC8810163 DOI: 10.1080/21655979.2021.2008659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that circular RNA circFLNA is abnormally expressed in a variety of malignant tumors, but its role and mechanism in bladder carcinoma (BCa) are still unclear. The present paper aims to contribute to research on the effects and mechanism of circFLNA on the malignant phenotype of BCa. In this study, the expressions of circFLNA, miR-216a-3p and BTG2 in BCa and BCa cells (EJ, T24, 5637, TCC-SUP) were detected by qRT-PCR. EdU staining, colony formation, Transwell assay, wound healing assays, and sphere formation assay were used to measure the cell proliferation, viability, invasion, migration, and cell stemness of BCa cells after circFLNA overexpression. In addition, the correlation existed between miR-216a-3p and circFLNA or BTG2 was confirmed by Dual-Luciferase Reporter assay and RNA pull-down. Western blot was utilized to determine the expression of BTG2, MMP2, epithelial-mesenchymal transition (EMT)-related proteins (vimentin, E-cadherin) and stem cell-specific proteins (CD34, OCT4, SOX2). Our study confirmed that downregulated circFLNA and BTG2 expression and upregulated miR-216a-3p were found in both BCa tissues and cell lines. Meanwhile, upregulated circFLNA inhibited proliferation, invasion and migration, EMT and stemness of BCa cells. MiR-216a-3p was a target gene of circFLNA and could target BTG2. Further analysis finally demonstrated that circFLNA sponged miR-216a-3p and indirectly promoted BTG2 expression, ultimately regulating proliferation, migration, invasion and EMT of BCa cells. In conclusion, circFLNA inhibits the malignant phenotype of BCa cells and their stemness through miR-216a-3p/BTG2, thus suppressing BCa progression.
Collapse
Affiliation(s)
- Shuangquan Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lei Wang
- College of Pharmacy, Nanchang Medical College, Jiangxi, China
| | - Zimin Shi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Anyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gan Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengdong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Cheng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Urinary Exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer. BMC Cancer 2021; 21:1293. [PMID: 34861847 PMCID: PMC8641206 DOI: 10.1186/s12885-021-08926-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background Bladder cancer (BC) is one of the most common malignancies globally. Early diagnosis of it can significantly improve patients’ survival and quality of life. Urinary exosomes (UEs)-derived miRNAs might be a promising biomarker for BC detection. Method A total of 12 patients with BC and 4 non-cancerous participants (as healthy control) were recruited from a single center between March 2018 and December 2019 as the discovery set. Midstream urine samples from each participants were collected and high-throughput sequencing and differentially expression analysis were conducted. Combined with miRNA expression profile of BC tissue from The Cancer Genome Atlas (TCGA), miRNAs biomarkers for BC were determined. Candidate miRNAs as biomarkers were selected followed by verification with a quantitative reverse-transcription polymerase chain reaction assay in an independent validation cohort consisting of 53 BC patients and 51 healthy controls. The receiver-operating characteristic (ROC) curve was established to evaluate the diagnostic performance of UE-derived miRNAs. The possible mechanism of miRNAs were revealed by bioinformatic analysis and explored in vitro experiments. Results We identified that miR-93-5p, miR-516a-5p were simultaneously significantly increased both in UEs from BC compared with healthy control and BC tissue compared with normal tissue, which were verified by RT-qPCR in the validation cohort. Subsequently, the performance to discover BC of the miR-93-5p, miR-516a-5p was further verified with an area under ROC curve (AUC) of 0.838 and 0.790, respectively, which was significantly higher than that of urine cytology (AUC = 0.630). Moreover, miR-93-5p was significantly increased in muscle-invasive BC compared with non-muscle-invasive BC with an AUC of 0.769. Bioinformatic analysis revealed that B-cell translocation gene 2(BTG2) gene may be the hub target gene of miR-93-5p. In vitro experiments verified that miR-93-5p suppressed BTG2 expression and promoted BC cells proliferation, invasion and migration. Conclusion Urine derived exosomes have a distinct miRNA profile in BC patients, and urinary exosomal miRNAs could be used as a promising non-invasive tool to detect BC. In vitro experiments suggested that miR-93-5p overexpression may contribute to BC progression via suppressing BTG2 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08926-x.
Collapse
|
19
|
Chen M, Dong H, Deng S, Zhou Y. Development and validation of a prognostic nomogram for patients with lung adenocarcinoma based on a novel 6-DNA repair-related gene signature. Am J Transl Res 2021; 13:1952-1970. [PMID: 34017369 PMCID: PMC8129254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
DNA repair-related genes (DRGs) have attracted much attention in the field of oncology. However, the prognostic role of DRGs and their biological function in lung adenocarcinoma (LUAD) remains rudimentary and inconclusive. In this study, 716 LUAD cases from two different cohorts were collected. Samples from The Cancer Genome Atlas (TCGA) were used as the training set, and data from Gene Expression Omnibus (GEO) datasets were used for validation. Using multivariate Cox analysis and LASSO regression, we constructed a DRG signature and used it, together with clinical indices, to develop a nomogram to predict 1-, 3-, and 5-year survival rates. We identified a six-DRG signature to estimate the survival of LUAD patients, which distinguished high-risk from low-risk patients with LUAD in both the training and validation cohorts. We also observed elevated levels of infiltrating CD4 memory activated T cells, resting NK cells, M0 and M1 macrophages, and activated mast cells in the high-risk group. Finally, a nomogram incorporating the signature and clinical parameters was superior to the American Joint Committee on Cancer (AJCC) staging system in predicting the survival of LUAD patients. The DRG prognostic signature and integrated nomogram could be a useful tool to predict prognosis in patients with LUAD.
Collapse
Affiliation(s)
- Minjie Chen
- Queen Mary College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Hui Dong
- Departmend of Histology and Embryology, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shengchang Deng
- Departmend of Histology and Embryology, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Ying Zhou
- Departmend of Histology and Embryology, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
20
|
Qu L, Zhang W, Li J, Liu P. The miR-146b-5p promotes Ewing's sarcoma cells progression via suppressing the expression of BTG2. Sci Prog 2021; 104:368504211002043. [PMID: 33844600 PMCID: PMC10454925 DOI: 10.1177/00368504211002043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ewing sarcoma (ES) is a malignant tumor that occurs mostly in children. However, the underlying mechanisms of ES are still unknown. Analyzing the results of two previous miRNA array reports, we found that miR-146b-5p might be an onco-miRNA in ES progression. To test this hypothesis, we detected the expression levels of miR-146b-5p by real-time PCR and observed the effects of miR-146b-5p on the progression of ES cells by CCK8 and transwell assays. Bioinformatics and luciferase assays were used to identify the target genes of miR-146b-5p. It showed that the expression levels of miR-146b-5p were upregulated in ES cell lines compared with human mesenchymal stem cells (MSCs). Up- or downregulation of miR-146b-5p in ES cell lines could effectively promote or block the proliferation, migration, and invasion of ES cells, respectively. Furthermore, we demonstrated that BTG2 was one of the target genes and mediated the effects of miR-146b-5p in ES cells. Interestingly, we also found that miR-146b-5p was partly involved in the anticancer effects of pemetrexed in ES cells. Our study revealed that miR-146b-5p affected the progression of ES by suppressing BTG2, which might shed light on anticancer drug development and ES treatment in the future.
Collapse
Affiliation(s)
- Lizhen Qu
- Department of Orthopedics Trauma, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| | - Wu Zhang
- Department of Orthopedics, Zaozhuang Hospital of ZaoZhuang Mining Group, ZaoZhuang, Shandong, P.R. China
| | - Jiajiang Li
- Department of Orthopedics, Zaozhuang Hospital of ZaoZhuang Mining Group, ZaoZhuang, Shandong, P.R. China
| | - Peng Liu
- Department of Orthopedics Trauma, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, P.R. China
| |
Collapse
|
21
|
Ma H, Huang C, Huang Q, Li G, Li J, Huang B, Zhong Q, Cao C. Circular RNA circ_0014717 Suppresses Hepatocellular Carcinoma Tumorigenesis Through Regulating miR-668-3p/BTG2 Axis. Front Oncol 2021; 10:592884. [PMID: 33598424 PMCID: PMC7883829 DOI: 10.3389/fonc.2020.592884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have reported a close association between circRNAs and cancer development. CircRNAs have been recognized to be involved in various biological processes. Up to now, the function of circRNAs in hepatocellular carcinoma (HCC) is still poorly known. qRT-PCR was used to test circ_0014717 expression in HCC tissue samples and cells was determined. It was shown that circ_0014717 was significantly decreased in HCC. Then, we observed overexpression of circ_0014717 obviously repressed HCC cell growth, migration and invasion. Next, we predicted circ_0014717 acted as a sponge of miR-668-3p. miR-668-3p has been reported to participate in several diseases. In our work, it was shown miR-668-3p was greatly increased in HCC and the direct binding sites between circ_0014717 and miR-668-3p were validated. In addition, B-cell translocation gene 2 (BTG2) is closely involved in cellular carcinogenic processes. BTG2 was predicted as a target for miR-668-3p. By performing rescue assays, we demonstrated that circ_0014717 repressed HCC progression via inhibiting BTG2 expression and sponging miR-668-3p. It was manifested loss of circ_0014717 induced HCC progression, which was reversed by BTG2 in Hep3B cells. In conclusion, our findings illustrated a novel circ_0014717/miR-668-3p/BTG2 regulatory signaling pathway in HCC.
Collapse
Affiliation(s)
- Hongxi Ma
- Clinical Laboratory, Wuzhou Gongren Hospital, Wuzhou, China
| | - Chunchun Huang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiuhuan Huang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guangzhi Li
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun Li
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bin Huang
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qiuhong Zhong
- Department of Ultrasonics, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Cong Cao
- Department of General Practice, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
22
|
Huang L, Han J, Yu H, Liu J, Gui L, Wu Z, Zhao X, Su S, Fu G, Li F. CircRNA_000864 Upregulates B-cell Translocation Gene 2 Expression and Represses Migration and Invasion in Pancreatic Cancer Cells by Binding to miR-361-3p. Front Oncol 2020; 10:547942. [PMID: 33425718 PMCID: PMC7793745 DOI: 10.3389/fonc.2020.547942] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer is a fatal disease with a very poor prognosis due to its characteristic insidious symptoms, early metastasis, and chemoresistance. Circular RNAs (circRNAs) are involved in the development of pancreatic cancer. Aim Hence, the aim of this study is to elucidate the mechanism of circRNA_000864 in regulating BTG2 expression in pancreatic cancer by binding to miR-361-3p. Methods CircRNA_000864, miR-361-3p, and BTG2 expression patterns in the pancreatic cancer tissues were detected by RT-qPCR. Correlation among circRNA_000864, miR-361-3p, and BTG2 was evaluated by RNA-pull down assay, RNA Immunoprecipitation assay, and dual-luciferase reporter gene assay. After ectopic expression and depletion experiments, 5-ethynyl-2′-deoxyuridine assay, Transwell assay, and flow cytometry were employed to assess the cell proliferation, migration and invasion, cell cycle, and apoptosis. Xenotransplantation of nude mice was conducted to detect the effects of circRNA_000864, miR-361-3p, and BTG2 on tumor growth. Results CircRNA_000864 and BTG2 were poorly expressed, and miR-361-3p was highly expressed in the pancreatic cancer tissues. CircRNA_000864 bound to miR-361-3p could target BTG2. Cell proliferation, migration, and invasion were inhibited, and the cell cycle arrest and apoptosis were stimulated after overexpression of circRNA_000864 or BTG2 or downregulation of miR-361-3p. Overexpression of circRNA_000864 or downregulation of miR-361-3p also decreased the tumor growth in vivo. Conclusions Conjointly, our findings elicited that the overexpression of circRNA_000864 could promote BTG2 expression to inhibit pancreatic cancer development by binding to miR-361-3p, which represents an appealing therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Linsheng Huang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junxiang Han
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jialing Liu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lili Gui
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zhengkun Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xinxu Zhao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Shiqi Su
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Gaohang Fu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
23
|
Li S, Han Y, Liang X, Zhao M. LINC01089 inhibits the progression of cervical cancer via inhibiting miR-27a-3p and increasing BTG2. J Gene Med 2020; 23:e3280. [PMID: 33025678 DOI: 10.1002/jgm.3280] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing evidence confirms that long non-coding RNA (lncRNA) has a vital impact on the procession of cervical cancer (CC). The present study aimed to investigate the clinical significance of LINC01089 in CC, as well as explore its biological functions and potential molecular mechanisms. METHODS A quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to investigate the expression of LINC01089 and miR-27a-3p in CC cells and tissues. Analysis of the correlation between the expression level of LINC01089 and the clinical pathological parameters of CC was then conducted. The human CC cell lines HeLa and SiHa were utilized for transfection to establish a gain-of-function model and loss-of-function models. Western blotting and a qRT-PCR were performed to detect B-cell translocation gene-2 (BTG2) expression in CC cells. Cell counting kit (CCK)-8 and 5-bromo-2-deoxyuridine (BrdU) assays were performed to detect the proliferation of CC cells. The transwell method was employed to evaluate the migration and invasion of CC cells. The interactions between LINC01089 and miR-27a-3p were verified by bioinformatics, a dual luciferase reporter gene experiment and a RNA immunoprecipitation experiment, respectively. RESULTS The expression of LINC01089 in CC was markedly down-regulated. The low expression of LINC01089 in CC was closely associated with a larger tumor size and positive lymph node metastasis. Moreover, overexpression of LINC01089 impeded the proliferation and metastasis of CC cells, whereas knockdown of LINC01089 had the opposite biological functions. In terms of mechanism, LINC01089 could sponge miR-27a-3p and indirectly up-regulate BTG2 expression. CONCLUSIONS LINC01089, as a tumor suppressor, impedes the development of CC by targeting miR-27a-3p to up-regulate BTG2 expression.
Collapse
Affiliation(s)
- Shuoxi Li
- Jiamusi College of Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang Province, China
| | - Yu Han
- Graduate school of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xuesong Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong Province, China
| | - Min Zhao
- Jiamusi College of Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
24
|
Pudova EA, Krasnov GS, Nyushko KM, Kobelyatskaya AA, Savvateeva MV, Poloznikov AA, Dolotkazin DR, Klimina KM, Guvatova ZG, Simanovsky SA, Gladysh NS, Tokarev AT, Melnikova NV, Dmitriev AA, Alekseev BY, Kaprin AD, Kiseleva MV, Snezhkina AV, Kudryavtseva AV. miRNAs expression signature potentially associated with lymphatic dissemination in locally advanced prostate cancer. BMC Med Genomics 2020; 13:129. [PMID: 32948204 PMCID: PMC7500008 DOI: 10.1186/s12920-020-00788-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Background Prostate cancer is one of the most common and socially significant cancers among men. The aim of our study was to reveal changes in miRNA expression profiles associated with lymphatic dissemination in prostate cancer and to identify the most prominent miRNAs as potential prognostic markers for future studies. Methods High-throughput miRNA sequencing was performed for 44 prostate cancer specimens taken from Russian patients, with and without lymphatic dissemination (N1 – 20 samples; N0 – 24 samples). Results We found at least 18 microRNAs with differential expression between N0 and N1 sample groups: miR-182-5p, miR-183-5p, miR-96-5p, miR-25-3p, miR-93-5p, miR-7-5p, miR-615-3p, miR-10b, miR-1248 (N1-miRs; elevated expression in N1 cohort; p < 0.05); miR-1271-5p, miR-184, miR-222-3p, miR-221-5p, miR-221-3p, miR-455-3p, miR-143-5p, miR-181c-3p and miR-455-5p (N0-miRs; elevated expression in N0; p < 0.05). The expression levels of N1-miRs were highly correlated between each other (the same is applied for N0-miRs) and the expression levels of N0-miRs and N1-miRs were anti-correlated. The tumor samples can be divided into two groups depending on the expression ratio between N0-miRs and N1-miRs. Conclusions We found the miRNA expression signature associated with lymphatic dissemination, in particular on the Russian patient cohort. Many of these miRNAs are well-known players in either oncogenic transformation or tumor suppression. Further experimental studies with extended sampling are required to validate these results.
Collapse
Affiliation(s)
- Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill M Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Maria V Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Daniyar R Dolotkazin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya M Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Simanovsky
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Zhu B, Chen W, Fu Y, Cui X, Jin L, Chao J, Yun X, Gao P, Shan S, Li J, Yin X, Zhu C, Qin X. MicroRNA-27a-3p Reverses Adriamycin Resistance by Targeting BTG2 and Activating PI3K/Akt Pathway in Breast Cancer Cells. Onco Targets Ther 2020; 13:6873-6884. [PMID: 32764979 PMCID: PMC7368588 DOI: 10.2147/ott.s256153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Aim This study aimed to explore the regulative mechanisms of miR-27a-3p in chemo-resistance of breast cancer cells. Materials and Methods qRT-PCR was employed to determine miR-27a-3p expression in two breast cancer cell lines, MCF-7 and MCF-7/adriamycin-resistant cell line (MCF-7/ADR). The two cell lines were treated with miR-27a-3p mimics or inhibitors or corresponding negative control (NC), respectively. The changes were investigated by qRT-PCR, CCK-8 assay, Western blot (WB), colony formation assay, and flow cytometry assay. Moreover, luciferase reporter assay was analyzed to verify the downstream target gene of miR-27a-3p. Further investigation in the correlation between miR-27a-3p and BTG2 was launched by WB, flow cytometry assay, and CCK-8 assay. The expression of Akt and p-Akt was detected by WB. Key Findings Significantly higher miR-27a-3p expression was confirmed in MCF-7/ADR as compared with sensitive cell line MCF-7 (P<0.05). The down-regulation of miR-27a-3p in MCF-7/ADR enhanced the sensitivity of cancer cells to adriamycin treatment, decreased multidrug resistance gene 1/P-glycoprotein (MDR1/P-gp) expression, enhanced the apoptosis-related proteins expression, increased adriamycin-induced apoptosis, and inhibited cell proliferation as compared to NC groups (P<0.05). The up-regulation of miR-27a-3p in MCF-7 showed the opposite results. BTG2 is identified as a direct target of miR-27a-3p and its down-regulation reversed ADR-resistance. BTG2 treatment exhibited inhibitory effect on PI3K/Akt pathway in MCF-7/ADR cells. Significance miR-27a-3p might be associated with resistance of breast cancer cells to adriamycin treatments, modulating cell proliferation and apoptosis by targeting BTG2 and promoting the PI3K/Akt pathway in breast cancer cells. miR-27a-3p/BTG2 axis might be a potential therapeutic target for clinical BC resistance.
Collapse
Affiliation(s)
- Bei Zhu
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Weixian Chen
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Yue Fu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xiaohan Cui
- Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Lei Jin
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Jiadeng Chao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xiao Yun
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Peng Gao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China.,Dalian Medical University, Dalian 116023, People's Republic of China
| | - Shiting Shan
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Jun Li
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China.,Dalian Medical University, Dalian 116023, People's Republic of China
| | - Xu Yin
- Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Chunfu Zhu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| |
Collapse
|
26
|
Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer? Eur J Pharmacol 2020; 881:173226. [PMID: 32485246 DOI: 10.1016/j.ejphar.2020.173226] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Bladder cancer accounts for high morbidity and mortality around the world and its incidence rate is suggested to be higher in following years. A number of factors involve in bladder cancer development such as lifestyle and drugs. However, it appears that genetic factors play a significant role in bladder cancer development and progression. Phosphatase and tensin homolog (PTEN) is a cancer-related transcription factor that is corelated with reduced proliferation and invasion of cancer cells by negatively targeting PI3K/Akt/mTOR signaling pathway. In the present review, we aimed to explore the role of PTEN in bladder cancer cells and how upstream modulators affect PTEN in this life-threatening disorder. Down-regulation of PTEN is associated with poor prognosis, chemoresistance and progression of cancer cells. Besides, microRNAs, long non-coding RNAs, circular RNAs and other molecular pathways such as NF-kB are able to target PTEN in bladder cancer cells. Notably, anti-tumor drugs such as kaempferol, β-elemene and sorafenib upregulate the expression of PTEN to exert their inhibitory effects on bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Loss of Spry1 reduces growth of BRAF V600-mutant cutaneous melanoma and improves response to targeted therapy. Cell Death Dis 2020; 11:392. [PMID: 32444628 PMCID: PMC7244546 DOI: 10.1038/s41419-020-2585-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathway activation is a central step in BRAFV600-mutant cutaneous melanoma (CM) pathogenesis. In the last years, Spry1 has been frequently described as an upstream regulator of MAPK signaling pathway. However, its specific role in BRAFV600-mutant CM is still poorly defined. Here, we report that Spry1 knockdown (Spry1KO) in three BRAFV600-mutant CM cell lines markedly induced cell cycle arrest and apoptosis, repressed cell proliferation in vitro, and impaired tumor growth in vivo. Furthermore, our findings indicated that Spry1KO reduced the expression of several markers of epithelial–mesenchymal transition, such as MMP-2 both in vitro and in vivo. These effects were associated with a sustained and deleterious phosphorylation of ERK1/2. In addition, p38 activation along with an increase in basal ROS levels were found in Spry1KO clones compared to parental CM cell lines, suggesting that BRAFV600-mutant CM may restrain the activity of Spry1 to avoid oncogenic stress and to enable tumor growth. Consistent with this hypothesis, treatment with the BRAF inhibitor (BRAFi) vemurafenib down-regulated Spry1 levels in parental CM cell lines, indicating that Spry1 expression is sustained by the MAPK/ERK signaling pathway in a positive feedback loop that safeguards cells from the potentially toxic effects of ERK1/2 hyperactivation. Disruption of this feedback loop rendered Spry1KO cells more susceptible to apoptosis and markedly improved response to BRAFi both in vitro and in vivo, as a consequence of the detrimental effect of ERK1/2 hyperactivation observed upon Spry1 abrogation. Therefore, targeting Spry1 might offer a treatment strategy for BRAFV600-mutant CM by inducing the toxic effects of ERK-mediated signaling.
Collapse
|
28
|
Chen QY, Shen S, Sun H, Wu F, Kluz T, Kibriya MG, Chen Y, Ahsan H, Costa M. PBMC gene expression profiles of female Bangladeshi adults chronically exposed to arsenic-contaminated drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113672. [PMID: 31918125 PMCID: PMC11062206 DOI: 10.1016/j.envpol.2019.113672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Arsenic, a class I human carcinogen, is ubiquitously found throughout the environment and around the globe, posing a great public health concern. Notably, Bangladesh and regions of West Bengal have been found to have high levels (0.5-4600 μg/L) of arsenic drinking water contamination, and approximately 50 million of the world's 200 million people chronically exposed to arsenic in Bangladesh alone. This study was carried out to examine genome-wide gene expression changes in individuals chronically exposed to arsenic-contaminated drinking water. Our study population includes twenty-nine Bangladeshi female participants with urinary arsenic levels ranging from 22.32 to 1828.12 μg/g creatinine. RNA extracted from peripheral blood mononuclear cells (PBMCs) were evaluated using RNA-Sequencing analysis. Our results indicate that a total of 1,054 genes were significantly associated with increasing urinary arsenic levels (FDR p < 0.05), which include 418 down-regulated and 636 up-regulated genes. Further Ingenuity Pathway Analysis revealed potential target genes (DAPK1, EGR2, APP), microRNAs (miR-155, -338, -210) and pathways (NOTCH signaling pathway) related to arsenic carcinogenesis. The selection of female-only participants provides a homogenous study population since arsenic has significant sex dependent effects, and the wide exposure range provides new insight for key gene expression changes that correlate with increasing urinary arsenic levels.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA.
| | - Steven Shen
- Institute of Health Informatics, University of Minnesota, 55455, Minneapolis, MN, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA
| | - Fen Wu
- Department of Population Health and Environmental Medicine, 10016, New York University School of Medicine, New York, NY, USA
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA
| | - Muhammad G Kibriya
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Yu Chen
- Department of Population Health and Environmental Medicine, 10016, New York University School of Medicine, New York, NY, USA
| | - Habibul Ahsan
- Institute for Population and Precision Health, Department of Public Health Sciences, The University of Chicago, Chicago, IL, 60637, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 10010, New York, NY, USA.
| |
Collapse
|
29
|
Wang X, Ding Y, Wang J, Wu Y. Identification of the Key Factors Related to Bladder Cancer by lncRNA-miRNA-mRNA Three-Layer Network. Front Genet 2020; 10:1398. [PMID: 32047516 PMCID: PMC6997565 DOI: 10.3389/fgene.2019.01398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer is the most common malignant tumor of the urinary system, and it has high incidence, high degree of malignancy, and easy recurrence after surgery. The etiology and pathogenesis of bladder cancer are not fully understood, but more and more studies have shown that its development may be regulated by some core molecules. To identify key molecules in bladder cancer, we constructed a three-layer network by merging lncRNA-miRNA regulatory network, miRNA-mRNA regulatory network, and lncRNA-mRNA coexpression network, and further analyzed the topology attributes of the network including the degree, betweenness centrality and closeness centrality of nodes. We found that miRNA-93 and miRNA-195 are controllers for a three-layer network and regulators of numerous target genes associated with bladder cancer. Functional enrichment analysis of their target mRNAs revealed that miRNA-93 and miRNA-195 may be closely related to bladder cancer by disturbing the homeostasis of the cell cycle or HTLV-I infection. In addition, since E2F1 and E2F2 are enriched in various KEGG signaling pathways, we conclude that they are important target genes of miRNA-93, and participate in the apoptotic process by forming a complex with a certain protein or transcription factor activity, sequence-specific DNA binding in bladder cancer. Similarly, AKT3 is an important target gene of miRNA-195, its expression is associated with PI3K-Akt-mTOR signaling pathway and AMPK-mTOR signaling pathway. Therefore, we speculate that AKT3 may participate in proliferation and apoptosis of bladder cancer cells through these pathways, and ultimately affect the biological behavior of tumor cells. Furthermore, through survival analysis, we found that miRNA-195 and miRNA-93 are associated with poor prognosis of bladder cancer. And the Kaplan-Meier curve showed that 24 mRNAs and nine lncRNAs are closely related to overall survival of bladder cancer.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, China
| | - Jie Wang
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| | - Yanyan Wu
- School of Science, Jiangnan University, Wuxi, China.,Laboratory of Media Design and Software Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Lin YH, Tsui KH, Chang KS, Hou CP, Feng TH, Juang HH. Maspin is a PTEN-Upregulated and p53-Upregulated Tumor Suppressor Gene and Acts as an HDAC1 Inhibitor in Human Bladder Cancer. Cancers (Basel) 2019; 12:cancers12010010. [PMID: 31861435 PMCID: PMC7016534 DOI: 10.3390/cancers12010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Maspin is a member of the clade B serine protease inhibitor superfamily and exhibits diverse regulatory effects in various types of solid tumors. We compared the expressions of maspin and determined its potential biological functions and regulatory mechanisms in bladder carcinoma cells in vitro and in vivo. The results of RT-qPCR indicated that maspin expressed significantly lower levels in the bladder cancer tissues than in the paired normal tissues. The immunohistochemical assays of human bladder tissue arrays revealed similar results. Maspin-knockdown enhanced cell invasion whereas the overexpression of maspin resulted in the opposite process taking place. Knockdown of maspin also enhanced tumorigenesis in vivo and downregulated protein levels of acetyl-histone H3. Moreover, in bladder carcinoma cells, maspin modulated HDAC1 target genes, including cyclin D1, p21, MMP9, and vimentin. Treatment with MK2206, which is an Akt inhibitor, upregulated maspin expression, whereas PTEN-knockdown or PTEN activity inhibitor (VO-OHpic) treatments demonstrated reverse results. The ectopic overexpression of p53 or camptothecin treatment induced maspin expression. Our study indicated that maspin is a PTEN-upregulated and p53-upregulated gene that blocks cell growth in vitro and in vivo, and may act as an HDAC1 inhibitor in bladder carcinoma cells. We consider that maspin is a potential tumor suppressor gene in bladder cancer.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan 33302, Taiwan; (Y.-H.L.); (K.-H.T.); (C.-P.H.)
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118112
| |
Collapse
|
31
|
Transgelin, a p53 and PTEN-Upregulated Gene, Inhibits the Cell Proliferation and Invasion of Human Bladder Carcinoma Cells in Vitro and in Vivo. Int J Mol Sci 2019; 20:ijms20194946. [PMID: 31591355 PMCID: PMC6801752 DOI: 10.3390/ijms20194946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Transgelin (TAGLN/SM22-α) is a regulator of the actin cytoskeleton, affecting the survival, migration, and apoptosis of various cancer cells divergently; however, the roles of TAGLN in bladder carcinoma cells remain inconclusive. We compared expressions of TAGLN in human bladder carcinoma cells to the normal human bladder tissues to determine the potential biological functions and regulatory mechanisms of TAGLN in bladder carcinoma cells. Results of RT-qPCR and immunoblot assays indicated that TAGLN expressions were higher in bladder smooth muscle cells, fibroblast cells, and normal epithelial cells than in carcinoma cells (RT-4, HT1376, TSGH-8301, and T24) in vitro. Besides, the results of RT-qPCR revealed that TAGLN expressions were higher in normal tissues than the paired tumor tissues. In vitro, TAGLN knockdown enhanced cell proliferation and invasion, while overexpression of TAGLN had the inverse effects in bladder carcinoma cells. Meanwhile, ectopic overexpression of TAGLN attenuated tumorigenesis in vivo. Immunofluorescence and immunoblot assays showed that TAGLN was predominantly in the cytosol and colocalized with F-actin. Ectopic overexpression of either p53 or PTEN induced TAGLN expression, while p53 knockdown downregulated TAGLN expression in bladder carcinoma cells. Our results indicate that TAGLN is a p53 and PTEN-upregulated gene, expressing higher levels in normal bladder epithelial cells than carcinoma cells. Further, TAGLN inhibited cell proliferation and invasion in vitro and blocked tumorigenesis in vivo. Collectively, it can be concluded that TAGLN is an antitumor gene in the human bladder.
Collapse
|
32
|
Migration and Invasion Enhancer 1 Is an NF-ĸB-Inducing Gene Enhancing the Cell Proliferation and Invasion Ability of Human Prostate Carcinoma Cells In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11101486. [PMID: 31581708 PMCID: PMC6826896 DOI: 10.3390/cancers11101486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Migration and invasion enhancer 1 (MIEN1) is a membrane-anchored protein and exists in various cancerous tissues. However, the roles of MIEN1 in prostate cancer have not yet been clearly addressed. We determined the expression, biological functions, and regulatory mechanisms of MIEN1 in the prostate. The results of immunohistochemical analysis indicated that MIEN1 was expressed specifically in epithelial cells and significantly higher in adenocarcinoma as compared to in normal tissues. MIEN1 enhanced in vitro cell proliferation, invasion, and in vivo tumorigenesis. Meanwhile, MIEN1 attenuated cisplatin-induced apoptosis in PC-3 cells. Overexpression of NF-ĸB-inducing kinase (NIK) enhanced MIEN1 expression, while overexpression of NF-ĸB inhibitor α (IĸBα) blocked MIEN1 expression in PC-3 cells. In prostate carcinoma cells, MIEN1 provoked Akt phosphorylation; moreover, MIEN1 downregulated N-myc downstream regulated 1 (NDRG1) but upregulated interleukin-6 (IL-6) gene expression. MK2206, an Akt inhibitor, impeded the modulation of MIEN1 on NDRG1 and IL-6 expressions. Our studies suggest that MIEN1 is an NF-ĸB downstream oncogene in the human prostate. Accordingly, the modulation of Akt signaling in the gene expressions of NDRG1 and IL-6 may account for the functions of MIEN1 in cell proliferation, invasion, and tumorigenesis in prostate carcinoma cells.
Collapse
|
33
|
Xie Y, Du J, Liu Z, Zhang D, Yao X, Yang Y. MiR-6875-3p promotes the proliferation, invasion and metastasis of hepatocellular carcinoma via BTG2/FAK/Akt pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:7. [PMID: 30621734 PMCID: PMC6323674 DOI: 10.1186/s13046-018-1020-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/26/2018] [Indexed: 12/30/2022]
Abstract
Background Increasing evidence supports the association of microRNA with tumor occurrence and development. However, the expression of miR-6875-3p and its role in cell proliferation, invasion and metastasis in hepatocellular carcinoma (HCC) remains elusive. Methods The expression of miR-6875-3p and BTG2 in HCC tissues and cell lines was detected by using in situ hybridization, immunohistochemistry and qRT-PCR, respectively. A western blot assay, qRT-PCR and Luciferase reporter assay were employed to study the interaction between miR-6875-3p and BTG2. Cell proliferation invasion and metastasis were measured by MTT, transwell and matrigel analyses in vitro. In vivo, tumorigenicity and metastasis assays were performed in nude mice. Results We found that miR-6875-3p were elevated expressed in HCC tissues and cell lines, and negatively correlated with BTG2 expression, while positively correlated with tumor staging, size, degree of differentiation, and vascular invasion of HCC. Moreover, in vitro and in vivo assays showed that miR-6875-3p regulates EMT and improve the proliferation, metastasis and stem cell-like properties of HCC cells. BTG2 was identified as a direct and functional target of miR-6875-3p via the 3’-UTR of BTG2. We also confirmed that miR-6875-3p plays its biological functions via the BTG2/FAK/Akt pathway. Conclusion Our study provides evidence that high expression of miR-6875-3p can promote tumorigenesis of HCC in vitro and in vivo, so as to function as a novel oncogene in HCC. In mechanism, we found that miR-6875-3p plays its biological functions via the BTG2/FAK/Akt pathway. Electronic supplementary material The online version of this article (10.1186/s13046-018-1020-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingjun Xie
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Jian Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, People's Republic of China
| | - Zefeng Liu
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Dan Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Xiaoxiao Yao
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China
| | - Yongsheng Yang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
34
|
Tsui KH, Chiang KC, Lin YH, Chang KS, Feng TH, Juang HH. BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinoma cells. Cancer Med 2017; 7:184-195. [PMID: 29239139 PMCID: PMC5773943 DOI: 10.1002/cam4.1263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Although widely deemed as a tumor suppressor gene, the role of B-cell translocation gene 2 (BTG2) in bladder cancer is still inconclusive. We investigated the role and regulatory mechanism of BTG2 in bladder cancer. BTG2 expression in human bladder tissues was determined by RT-qPCR and immunoblotting assays. Expressions of BTG2 and PTEN in bladder carcinoma cells were determined by immunoblotting, RT-qPCR, or reporter assays. The 3 H-thymidine incorporation assay, flow cytometry, and the xenograft animal model were used to determine the cell growth. BTG2 expression was lower in human bladder cancer tissues than normal bladder tissues. Highly differentiated bladder cancer cells, RT4, expressed higher BTG2 than the less-differentiated bladder cancer cells, HT1376 and T24. Overexpression of BTG2 in T24 cells inhibited cell growth in vitro and in vivo. Camptothecin and doxorubicin treatments in RT-4 cells or transient overexpression of p53 into p53-mutant HT1376 cells induced p53 and BTG2 expression. Further reporter assays with site-mutation of p53 response element from GGGAAAGTCC to GGAGTCC within BTG2 promoter area showed that p53-induced BTG2 gene expression was dependent on the p53 response element. Ectopic PTEN overexpression in T24 cells blocked the Akt signal pathway which attenuated cell growth via upregualtion of BTG2 gene expression, while reverse effect was found in PTEN-knockdown RT-4 cells. PTEN activity inhibitor (VO-OHpic) treatment decreased BTG2 expression in RT-4 and PTEN-overexpressed T24 cells. Our results suggested that BTG2 functioned as a bladder cancer tumor suppressor gene, and was induced by p53 and PTEN. Modulation of BTG2 expression seems a promising way to treat human bladder cancer.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kun-Chun Chiang
- Zebrafish center, Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Tsui-Hsia Feng
- School of Nursing, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital-Linkou, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|