1
|
Zhao J, Chen M, Li X, Chen Z, Li W, Guo R, Wang M, Jiang Z, Song Y, Wang J, Liu D. Construction and characterization of chimeric FcγR T cells for universal T cell therapy. Exp Hematol Oncol 2025; 14:6. [PMID: 39810257 PMCID: PMC11734343 DOI: 10.1186/s40164-025-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Several approaches are being explored for engineering off-the-shelf chimeric antigen receptor (CAR) T cells. In this study, we engineered chimeric Fcγ receptor (FcγR) T cells and tested their potential as a versatile platform for universal T cell therapy. METHODS Chimeric FcγR (CFR) constructs were generated using three distinct forms of FcγR, namely CD16A, CD32A, and CD64. The functionality of CFR T cells was evaluated through degranulation assays, specific target lysis experiments, in vitro cytokine production analysis, and assessment of tumor xenograft destruction specificity in mouse models using different monoclonal antibodies (MoAbs). RESULTS Three types of CFR T cells were engineered, 16s3, 32-8a, 64-8a CFR T cells. In the presence of rituximab (RTX), cytotoxicity of all three types of CFR T cells against CD20+ Raji-wt, K562-CD20+, and primary tumor cells was significantly higher than that of the mock T cells (P < 0.001). When herceptin was used, all three types of CFR T cells exhibited significant cytotoxicity against HER2+ cell lines of SK-BR-3, SK-OV-3, and HCC1954 (P < 0.001). The cytotoxicity of 64-8a CFR T cells was significantly inhibited by free human IgG at a physiological dose (P < 0.001), which was not observed in 16s3, 32-8a CFR T cells. Compared to 32-8a CFR T cells, 16s3 CFR T cells exhibited more prolonged cytotoxicity than 32-8a CFR T cells (P < 0.01). In in vivo assays using xenograft models, 16s3 CFR T cells significantly prolonged the survival of mice xenografted with Raji-wt cells in the presence of RTX (P < 0.001), and effectively reduced tumor burden in mice xenografted with SK-OV-3 cells in the presence of herceptin (P < 0.05). No significant non-specific cytotoxicity of CFR T cells was found in vivo. CONCLUSION The anti-tumor effects of the CFR T cells in vitro and in xenograft mouse models are mediated by specific MoAbs such as RTX and herceptin. The CFR T cells therefore have the features of universal T cells with specificity directed by MoAbs. 16s3 CFR T cells are chosen for clinical trials.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Manling Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xudong Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaoqi Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Delong Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
2
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
3
|
Gan SY, Tye GJ, Chew AL, Lai NS. Current development of Fc gamma receptors (FcγRs) in diagnostics: a review. Mol Biol Rep 2024; 51:937. [PMID: 39190190 DOI: 10.1007/s11033-024-09877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The ability of the immune system to fight against pathogens relies on the intricate collaboration between antibodies and Fc gamma receptors (FcγRs). These receptors are a group of transmembrane glycoprotein molecules, which can specifically detect and bind to the Fc portion of immunoglobulin G (IgG) molecules. They are distributed on a diverse array of immune cells, forming a strong defence system to eliminate invading threats. FcγRs have gained increasing attention as potential biomarkers for various diseases in recent years due to their ability to reflect immune dysregulation and disease pathogenesis. Increasing lines of evidence have shed new light on the remarkable association of FcγRs polymorphisms with the susceptibility of autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus nephritis. Several studies have also reported the application of FcγR as a novel biomarker for the diagnosis of infection and cancer. Due to the surge in interest and concern regarding the potential of FcγRs as promising diagnostic biomarkers, this review, thereby, serves to provide a comprehensive overview of the structural characteristics, functional roles, and expression patterns of FcγRs, with a particular focus on their evolving role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shin Yi Gan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Penang, 11700, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
4
|
Guo S, Chen M, Li S, Geng Z, Jin Y, Liu D. Natural Products Treat Colorectal Cancer by Regulating miRNA. Pharmaceuticals (Basel) 2023; 16:1122. [PMID: 37631037 PMCID: PMC10459054 DOI: 10.3390/ph16081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases are evolving as living standards continue to improve. Cancer is the main cause of death and a major public health problem that seriously threatens human life. Colorectal cancer is one of the top ten most common malignant tumors in China, ranking second after gastric cancer among gastrointestinal malignant tumors, and its incidence rate is increasing dramatically each year due to changes in the dietary habits and lifestyle of the world's population. Although conventional therapies, such as surgery, chemotherapy, and radiotherapy, have profoundly impacted the treatment of colorectal cancer (CRC), drug resistance and toxicity remain substantial challenges. Natural products, such as dietary therapeutic agents, are considered the safest alternative for treating CRC. In addition, there is substantial evidence that natural products can induce apoptosis, inhibit cell cycle arrest, and reduce the invasion and migration of colon cancer cells by targeting and regulating the expression and function of miRNAs. Here, we summarize the recent research findings on the miRNA-regulation-based antitumor mechanisms of various active ingredients in natural products, highlighting how natural products target miRNA regulation in colon cancer prevention and treatment. The application of natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is also discussed. Such approaches will contribute to the discovery of new regulatory mechanisms associated with disease pathways and provide a new theoretical basis for developing novel colon cancer drugs and compounds and identifying new therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (M.C.); (S.L.); (Z.G.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (M.C.); (S.L.); (Z.G.)
| |
Collapse
|
5
|
Deng Y, Tu D, O'Callaghan CJ, Liu G, Xu W. Two-stage multivariate Mendelian randomization on multiple outcomes with mixed distributions. Stat Methods Med Res 2023; 32:1543-1558. [PMID: 37338962 PMCID: PMC10515454 DOI: 10.1177/09622802231181220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
In clinical research, it is important to study whether certain clinical factors or exposures have causal effects on clinical and patient-reported outcomes such as toxicities, quality of life, and self-reported symptoms, which can help improve patient care. Usually, such outcomes are recorded as multiple variables with different distributions. Mendelian randomization (MR) is a commonly used technique for causal inference with the help of genetic instrumental variables to deal with observed and unobserved confounders. Nevertheless, the current methodology of MR for multiple outcomes only focuses on one outcome at a time, meaning that it does not consider the correlation structure of multiple outcomes, which may lead to a loss of statistical power. In situations with multiple outcomes of interest, especially when there are mixed correlated outcomes with different distributions, it is much more desirable to jointly analyze them with a multivariate approach. Some multivariate methods have been proposed to model mixed outcomes; however, they do not incorporate instrumental variables and cannot handle unmeasured confounders. To overcome the above challenges, we propose a two-stage multivariate Mendelian randomization method (MRMO) that can perform multivariate analysis of mixed outcomes using genetic instrumental variables. We demonstrate that our proposed MRMO algorithm can gain power over the existing univariate MR method through simulation studies and a clinical application on a randomized Phase III clinical trial study on colorectal cancer patients.
Collapse
Affiliation(s)
- Yangqing Deng
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | | | - Geoffrey Liu
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Pharmacogenetics Role of Genetic Variants in Immune-Related Factors: A Systematic Review Focusing on mCRC. Pharmaceutics 2022; 14:pharmaceutics14112468. [PMID: 36432658 PMCID: PMC9693433 DOI: 10.3390/pharmaceutics14112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pharmacogenetics plays a key role in personalized cancer treatment. Currently, the clinically available pharmacogenetic markers for metastatic colorectal cancer (mCRC) are in genes related to drug metabolism, such as DPYD for fluoropyrimidines and UGT1A1 for irinotecan. Recently, the impact of host variability in inflammatory and immune-response genes on treatment response has gained considerable attention, opening innovative perspectives for optimizing tailored mCRC therapy. A literature review was performed on the predictive role of immune-related germline genetic biomarkers on pharmacological outcomes in patients with mCRC. Particularly, that for efficacy and toxicity was reported and the potential role for clinical management of patients was discussed. Most of the available data regard therapy effectiveness, while the impact on toxicity remains limited. Several studies focused on the effects of polymorphisms in genes related to antibody-dependent cellular cytotoxicity (FCGR2A, FCGR3A) and yielded promising but inconclusive results on cetuximab efficacy. The remaining published data are sparse and mainly hypothesis-generating but suggest potentially interesting topics for future pharmacogenetic studies, including innovative gene-drug interactions in a clinical context. Besides the tumor immune escape pathway, genetic markers belonging to cytokines/interleukins (IL-8 and its receptors) and angiogenic mediators (IGF1) seem to be the best investigated and hopefully most promising to be translated into clinical practice after validation.
Collapse
|
7
|
Bignucolo A, Scarabel L, Toffoli G, Cecchin E, De Mattia E. Predicting drug response and toxicity in metastatic colorectal cancer: the role of germline markers. Expert Rev Clin Pharmacol 2022; 15:689-713. [PMID: 35829762 DOI: 10.1080/17512433.2022.2101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the introduction of targeted agents leading to therapeutic advances, clinical management of patients with metastatic colorectal cancer (mCRC) is still challenged by significant interindividual variability in treatment outcomes, both in terms of toxicity and therapy efficacy. The study of germline genetic variants could help to personalize and optimize therapeutic approaches in mCRC. AREAS COVERED A systematic review of pharmacogenetic studies in mCRC patients published on PubMed between 2011 and 2021, evaluating the role of germline variants as predictive markers of toxicity and efficacy of drugs currently approved for treatment of mCRC, was perfomed. EXPERT OPINION Despite the large amount of pharmacogenetic data published to date, only a few genetic markers (i.e., DPYD and UGT1A1 variants) reached the clinical practice, mainly to prevent the toxic effects of chemotherapy. The large heterogeneity of available studies represents the major limitation in comparing results and identifying potential markers for clinical use, the role of which remains exploratory in most cases. However, the available published findings are an important starting point for future investigations. They highlighted new promising pharmacogenetic markers within the network of inflammatory and immune response signaling. In addition, the emerging role of previously overlooked rare variants has been pointed out.
Collapse
Affiliation(s)
- Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| |
Collapse
|
8
|
Mata-Molanes JJ, Rebollo-Liceaga J, Martínez-Navarro EM, Manzano RG, Brugarolas A, Juan M, Sureda M. Relevance of Fc Gamma Receptor Polymorphisms in Cancer Therapy With Monoclonal Antibodies. Front Oncol 2022; 12:926289. [PMID: 35814459 PMCID: PMC9263556 DOI: 10.3389/fonc.2022.926289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs), including immune checkpoint inhibitors (ICIs), are an important breakthrough for the treatment of cancer and have dramatically changed clinical outcomes in a wide variety of tumours. However, clinical response varies among patients receiving mAb-based treatment, so it is necessary to search for predictive biomarkers of response to identify the patients who will derive the greatest therapeutic benefit. The interaction of mAbs with Fc gamma receptors (FcγR) expressed by innate immune cells is essential for antibody-dependent cellular cytotoxicity (ADCC) and this binding is often critical for their in vivo efficacy. FcγRIIa (H131R) and FcγRIIIa (V158F) polymorphisms have been reported to correlate with response to therapeutic mAbs. These polymorphisms play a major role in the affinity of mAb receptors and, therefore, can exert a profound impact on antitumor response in these therapies. Furthermore, recent reports have revealed potential mechanisms of ICIs to modulate myeloid subset composition within the tumour microenvironment through FcγR-binding, optimizing their anti-tumour activity. The purpose of this review is to highlight the clinical contribution of FcγR polymorphisms to predict response to mAbs in cancer patients.
Collapse
Affiliation(s)
- Juan J. Mata-Molanes
- Oncology Platform, Hospital Quirónsalud Torrevieja, Alicante, Spain
- *Correspondence: Juan J. Mata-Molanes,
| | | | | | | | | | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Manuel Sureda
- Oncology Platform, Hospital Quirónsalud Torrevieja, Alicante, Spain
| |
Collapse
|
9
|
He J, Yu L, Qiao Z, Yu B, Liu Y, Ren H. Genetic polymorphisms of FCGR2A, ORAI1 and CD40 are associated with risk of lung cancer. Eur J Cancer Prev 2022; 31:7-13. [PMID: 34871197 DOI: 10.1097/cej.0000000000000671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FCGR2A, ORAI1 and CD40 are all involved in the immune and inflammatory responses in the human body, whereas its association with lung cancer is still unclear. This study aimed to investigate the effects of polymorphisms in these genes on the susceptibility to lung cancer. Six candidate single nucleotide polymorphisms (SNPs) were genotyped using a MassARRAY platform in a discovery cohort, including 400 lung cancer patients and 400 healthy controls, and validated in a replication cohort, including 529 lung cancer cases and 532 controls. Comparing the allele frequency distributions, we found that the rs1801274-G, rs511278-T and rs1883832-T were risk alleles for lung cancer (P < 0.05), whereas the minor allele of rs12320939-T was a protective allele for the disease (P = 0.037). Comparing the genotype frequency distributions, we found that rs1801274-GG, rs511278-CT and of rs1883832-TT were risk genotype for lung cancer (P < 0.05). Genetic model analysis showed that the rs1801274 A>G was correlated with an elevated risk of lung cancer in recessive and log-additive models (P < 0.05); rs511278 C>T exhibited an increased risk of disease in dominant and log-additive models (P < 0.05); rs1883832 C>T had a strong relationship with risk of disease in all three models (P < 0.001), whereas rs12320939 G>T was correlated to a reduced risk of disease in recessive and log-additive models (P < 0.05). Finally, the association between the above SNPs and lung cancer risk was validated in a replication cohort (P < 0.05). These results shed new light on the association between immune-related genes and risk of lung cancer, and might be useful for the identification of high-risk individuals.
Collapse
Affiliation(s)
- Jinxi He
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liang Yu
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhixiong Qiao
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bo Yu
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yang Liu
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
| |
Collapse
|
10
|
Klinghammer K, Fayette J, Kawecki A, Dietz A, Schafhausen P, Folprecht G, Rottey S, Debourdeau P, Lavernia J, Jacobs A, Ahrens-Fath I, Dietrich B, Baumeister H, Zurlo A, Ochsenreither S, Keilholz U. A randomized phase II study comparing the efficacy and safety of the glyco-optimized anti-EGFR antibody tomuzotuximab against cetuximab in patients with recurrent and/or metastatic squamous cell cancer of the head and neck - the RESGEX study. ESMO Open 2021; 6:100242. [PMID: 34482179 PMCID: PMC8424211 DOI: 10.1016/j.esmoop.2021.100242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background The aim of the RESGEX study was to compare the efficacy and safety of the anti-epidermal growth factor receptor (anti-EGFR) antibody tomuzotuximab against cetuximab both in combination with chemotherapy in patients with recurrent and/or metastatic squamous cell cancer of the head and neck in the first-line treatment. Patients and methods In this phase II trial 240 patients were equally randomized for six cycles to receive either tomuzotuximab (initial dose 990 mg then 720 mg) weekly and cisplatin 100 mg/m2 and fluorouracil (5-FU; 1000 mg/m2/day, days 1-4) every 3 weeks or cetuximab (400 mg/m2 subsequent 250 mg/m2) weekly with the same chemotherapeutic backbone followed by antibody maintenance treatment. The primary endpoint was progression-free survival. Results Median progression-free survival was 6.5 months [95% confidence interval (CI) 5.9-7.9 months] in the tomuzotuximab group and 6.2 months (95% CI 5.8-7.3 months) in the cetuximab group (P = 0.86). The median overall survival (OS) estimate was 11.6 months (95% CI 9.5-17.2 months) in the tomuzotuximab group and 13.8 months (95% CI 12.3-16.4 months) in the cetuximab group (P = 0.96). In an exploratory analysis a small subgroup of p16-positive patients had a significantly longer OS compared with p16-negative patients (hazard ratio 1.860, 95% CI 1.09-3.16, P = 0.02). Conclusions The glyco-engineered antibody tomuzotuximab failed to demonstrate improved efficacy with a chemotherapeutic backbone in the first-line treatment of recurrent or metastatic head and neck squamous cell carcinoma. It remains a so far unanswered question whether such antibody would partner better with different drugs such as checkpoint inhibitors. Tomuzotuximab has a potential higher antibody-dependent cell cytotoxicity than other EGFR-directed antibodies. Comparison of two anti-EGFR antibodies combined with chemotherapy in patients with squamous cell cancer of head and neck. Efficacy, safety, and tolerability of tomuzotuximab and cetuximab in combination with chemotherapy were similar.
Collapse
Affiliation(s)
- K Klinghammer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité Comprehensive Cancer Center, Berlin, Germany.
| | - J Fayette
- Medical Oncology, Centre Léon Bérard, Lyon, France
| | - A Kawecki
- Cancer Center-Maria Sklodowska-Curie Memorial Institute, Warsaw, Poland
| | - A Dietz
- University of Leipzig, Leipzig, Germany; Outpatient Chemotherapy, University of Leipzig, Leipzig, Germany
| | - P Schafhausen
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - G Folprecht
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - S Rottey
- Ghent University Hospital, Department of Medical Oncology, Ghent, Belgium
| | | | | | | | | | | | | | - A Zurlo
- Glycotope GmbH, Berlin, Germany
| | - S Ochsenreither
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité Comprehensive Cancer Center, Berlin, Germany
| | - U Keilholz
- Charité Comprehensive Cancer Center, Berlin, Germany
| |
Collapse
|
11
|
FCGR2A Could Function as a Prognostic Marker and Correlate with Immune Infiltration in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8874578. [PMID: 34285919 PMCID: PMC8275393 DOI: 10.1155/2021/8874578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 06/17/2021] [Indexed: 01/28/2023]
Abstract
Objective We aim to investigate the correlation between FCGR2A mRNA level and prognosis of head and neck squamous cancer (HNSC) in public databases. In addition, we investigated the correlation between FCGR2A expression and clinicopathological characteristics and tumor-infiltrating immune cells in HNSC patients. Methods FCGR2A mRNA expression in multiple cancers was analyzed based on Gene Expression Profiling Interactive Analysis. A protein-protein interaction network was obtained based on the STRING database. The 10 proteins most closely related to FCGR2A (i.e., CD3G, PLCG2, LAT, LYN, SYK, FCGR3A, PIK3R1, HCK, ITGAM, and ITGB2) were screened, followed by establishing the protein-protein interaction network. The correlation between FCGR2A expression and immunocytes was investigated, together with the effects of FCGR2A on the metastasis, recurrence, and survival of HNSC. Results FCGR2A expression in several carcinoma tissues was significantly higher than that of adjacent tissues. Significant differences were noticed in the HNSC samples and the adjacent tissue samples except the seven samples of grade 4. There were statistical differences between the FCGR2A expression in tissues of grade 1, grade 2, and grade 3 (P < 0.05). In the tissues of grade 4, the expression of FCGR2A was the lowest. The FCGR2A protein was a type of II-a receptor in γFc of the low-affinity immunoglobulin, which could bind with the Fc region of the immunoglobulin γ. There was a correlation between the FCGR2A gene and the distal HNSC metastasis. FCGR2A gene expression was correlated with the survival and prognosis. The GSE65858 dataset was selected for the validation. The FCGR2A expression was significantly correlated with total survival (P = 0.0107) and progression-free survival (P = 0.0362). Conclusions Our findings shed light on the importance of FCGR2A in HNSC and illustrated a potential relationship between FCGR2A and tumor-immune interactions.
Collapse
|
12
|
Patel P, Michael JV, Naik UP, McKenzie SE. Platelet FcγRIIA in immunity and thrombosis: Adaptive immunothrombosis. J Thromb Haemost 2021; 19:1149-1160. [PMID: 33587783 DOI: 10.1111/jth.15265] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Sepsis and autoimmune diseases remain major causes of morbidity and mortality. The last decade has seen a new appreciation of platelets in host defense, in both immunity and thrombosis. Platelets are first responders in the blood to microbes or non-microbial antigens. The role of platelets in physiologic immunity is counterbalanced by their role in pathology, for example, microvascular thrombosis. Platelets encounter microbes and antigens via both innate and adaptive immune processes; platelets also help to shape the subsequent adaptive response. FcγRIIA is a receptor for immune complexes opsonized by IgG or pentraxins, and expressed in humans by platelets, granulocytes, monocytes and macrophages. With consideration of the roles of IgG and Fc receptors, the host response to microbes and autoantigens can be called adaptive immunothrombosis. Here we review newer developments involving platelet FcγRIIA in humans and humanized mice in immunity and thrombosis, with special attention to heparin-induced thrombocytopenia, systemic lupus erythematosus, and bacterial sepsis. Human genetic diversity in platelet receptors and the utility of humanized mouse models are highlighted.
Collapse
Affiliation(s)
- Pravin Patel
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James V Michael
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ulhas P Naik
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven E McKenzie
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Dendritic Cell Tumor Vaccination via Fc Gamma Receptor Targeting: Lessons Learned from Pre-Clinical and Translational Studies. Vaccines (Basel) 2021; 9:vaccines9040409. [PMID: 33924183 PMCID: PMC8074394 DOI: 10.3390/vaccines9040409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant recent improvements in the field of immunotherapy, cancer remains a heavy burden on patients and healthcare systems. In recent years, immunotherapies have led to remarkable strides in treating certain cancers. However, despite the success of checkpoint inhibitors and the advent of cellular therapies, novel strategies need to be explored to (1) improve treatment in patients where these approaches fail and (2) make such treatments widely and financially accessible. Vaccines based on tumor antigens (Ag) have emerged as an innovative strategy with the potential to address these areas. Here, we review the fundamental aspects relevant for the development of cancer vaccines and the critical role of dendritic cells (DCs) in this process. We first offer a general overview of DC biology and routes of Ag presentation eliciting effective T cell-mediated immune responses. We then present new therapeutic avenues specifically targeting Fc gamma receptors (FcγR) as a means to deliver antigen selectively to DCs and its effects on T-cell activation. We present an overview of the mechanistic aspects of FcγR-mediated DC targeting, as well as potential tumor vaccination strategies based on preclinical and translational studies. In particular, we highlight recent developments in the field of recombinant immune complex-like large molecules and their potential for DC-mediated tumor vaccination in the clinic. These findings go beyond cancer research and may be of relevance for other disease areas that could benefit from FcγR-targeted antigen delivery, such as autoimmunity and infectious diseases.
Collapse
|
14
|
Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13030422. [PMID: 33800976 PMCID: PMC8003994 DOI: 10.3390/pharmaceutics13030422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
With more than 90 approved drugs by 2020, therapeutic antibodies have played a central role in shifting the treatment landscape of many diseases, including autoimmune disorders and cancers. While showing many therapeutic advantages such as long half-life and highly selective actions, therapeutic antibodies still face many outstanding issues associated with their pharmacokinetics (PK) and pharmacodynamics (PD), including high variabilities, low tissue distributions, poorly-defined PK/PD characteristics for novel antibody formats, and high rates of treatment resistance. We have witnessed many successful cases applying PK/PD modeling to answer critical questions in therapeutic antibodies’ development and regulations. These models have yielded substantial insights into antibody PK/PD properties. This review summarized the progress, challenges, and future directions in modeling antibody PK/PD and highlighted the potential of applying mechanistic models addressing the development questions.
Collapse
|
15
|
Shah A, Rauth S, Aithal A, Kaur S, Ganguly K, Orzechowski C, Varshney GC, Jain M, Batra SK. The Current Landscape of Antibody-based Therapies in Solid Malignancies. Am J Cancer Res 2021; 11:1493-1512. [PMID: 33391547 PMCID: PMC7738893 DOI: 10.7150/thno.52614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients.
Collapse
|
16
|
De Mattia E, Bignucolo A, Toffoli G, Cecchin E. Genetic Markers of the Host to Predict the Efficacy of Colorectal Cancer Targeted Therapy. Curr Med Chem 2020; 27:4249-4273. [PMID: 31298142 DOI: 10.2174/0929867326666190712151417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
The introduction of anti-EGFR (cetuximab and panitumumab) and antiangiogenic (bevacizumab, regorafeninb, ramucirumab, and aflibercept) agents in the therapeutic armamentarium of the metastatic colorectal cancer (CRC) has significantly improved the therapeutic efficacy and patients survival. However, despite the great improvements achieved in the patients life expectation, the high inter-individual heterogeneity in the response to the targeted agents still represent an issue for the management of advanced CRC patients. Even if the role of tumor genetic mutations as predictive markers of drug efficacy has been well-established, the contribution of the host genetic markers is still controversial. Promising results regard the germ-line immune-profile, inflammation and tumor microenvironment. Inherent variations in KRAS 3'UTR region as well as EGF/ EGFR genes were investigated as markers of cetuximab effectiveness. More recently interesting data in the field of anti- EGFR agents were generated also for germ-line variants in genes involved in inflammation (e.g. COX-2, LIFR, IGF1 signaling), immune system (e.g., FCGRs, IL-1RA), and other players of the RAS signaling, including the Hippo pathway related genes (e.g. Rassf, YAP, TAZ). Host genetic variants in VEGF-dependent (i.e., EGF, IGF-1, HIF1α, eNOS, iNOS) and -independent (i.e., EMT cascade, EGFL7) pathways, with specific attention on inflammation and immune system-related factors (e.g., IL-8, CXCR-1/2, CXCR4-CXCL12 axis, TLRs, GADD34, PPP1R15A, ANXA11, MKNK1), were investigated as predictive markers of bevacizumab outcome, generating some promising results. In this review, we aimed to summarize the most recent literature data regarding the potential role of common and rare inhered variants in predicting which CRC patients will benefit more from a specifically targeted drug administration.
Collapse
Affiliation(s)
- Elena De Mattia
- Clinical and Experimental Pharmacology, "Centro di Riferimento Oncologico"- National Cancer Institute, via Franco Gallini 2, 33081, Aviano (PN), Italy
| | - Alessia Bignucolo
- Clinical and Experimental Pharmacology, "Centro di Riferimento Oncologico"- National Cancer Institute, via Franco Gallini 2, 33081, Aviano (PN), Italy
| | - Giuseppe Toffoli
- Clinical and Experimental Pharmacology, "Centro di Riferimento Oncologico"- National Cancer Institute, via Franco Gallini 2, 33081, Aviano (PN), Italy
| | - Erika Cecchin
- Clinical and Experimental Pharmacology, "Centro di Riferimento Oncologico"- National Cancer Institute, via Franco Gallini 2, 33081, Aviano (PN), Italy
| |
Collapse
|
17
|
Liu Y, Zhou Y, Huang K, Fang X, Li Y, Wang F, An L, Chen Q, Zhang Y, Shi A, Yu S, Zhang J. Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor. Cell Prolif 2020; 53:e12858. [PMID: 32592435 PMCID: PMC7445407 DOI: 10.1111/cpr.12858] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Traditional cancer therapy and regular immunotherapy are ineffective for treating triple-negative breast cancer (TNBC) patients. Recently, chimeric antigen receptor-engineered natural killer cells (CAR NK) have been applied to target several hormone receptors on different cancer cells to improve the efficacy of immunotherapy. Furthermore, epidermal growth factor receptor (EGFR) is a potential therapeutic target for TNBC. Here, we demonstrated that EGFR-specific CAR NK cells (EGFR-CAR NK cells) could be potentially used to treat patients with TNBC exhibiting enhanced EGFR expression. MATERIALS AND METHODS We investigated the cytotoxic effects of EGFR-CAR NK cells against TNBC cells in vitro and in vivo. The two types of EGFR-CAR NK cells were generated by transducing lentiviral vectors containing DNA sequences encoding the single-chain variable fragment (scFv) regions of the two anti-EGFR antibodies. The cytotoxic and anti-tumor effects of the two cell types were examined by performing cytokine release and cytotoxicity assays in vitro, and tumor growth assays in breast cancer cell line-derived xenograft (CLDX) and patient-derived xenograft (PDX) mouse models. RESULTS Both EGFR-CAR NK cell types were activated by TNBC cells exhibiting upregulated EGFR expression and specifically triggered the lysis of the TNBC cells in vitro. Furthermore, the two EGFR-CAR NK cell types inhibited CLDX and PDX tumors in mice. CONCLUSIONS This study suggested that treatment with EGFR-CAR NK cells could be a promising strategy for TNBC patients.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
- Changchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBETZhengzhouChina
| | | | - Kuo‐Hsiang Huang
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
| | - Xujie Fang
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
| | - Ying Li
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
| | - Feifei Wang
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBETZhengzhouChina
| | - Li An
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBETZhengzhouChina
| | - Qingfei Chen
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
| | - Yunchao Zhang
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
| | - Aihua Shi
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBETZhengzhouChina
| | - Shuang Yu
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
- Xuzhou Medical UniversityXuzhouChina
| | - Jingzhong Zhang
- The Key Laboratory of Bio‐Medical DiagnosticsSuzhou Institute of Biomedical Engineering and Technology (SIBET)Chinese Academy of SciencesSuzhouChina
- Xuzhou Medical UniversityXuzhouChina
- Tianjin Guokeyigong Science and Technology Development Company LimitedTianjinChina
- Zhengzhou Institute of Engineering and Technology Affiliated with SIBETZhengzhouChina
| |
Collapse
|
18
|
Makaro A, Fichna J, Włodarczyk M. Single Nucleotide Polymorphisms in Colitis-Associated Colorectal Cancer: A Current Overview with Emphasis on the Role of the Associated Genes Products. Curr Drug Targets 2020; 21:1456-1462. [PMID: 32718287 DOI: 10.2174/1389450121666200727105218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Colitis-Associated Colorectal Cancer (CA-CRC) is one of the most severe complications of Inflammatory Bowel Disease (IBD) and constitutes the cause of death in 10-15% of patients. The risk ratio for carcinogenesis depends on numerous factors, such as the extent of intestinal inflammatory lesions and the duration of the disease. CA-CRC is a major problem of today's gastroenterology and colorectal surgery due to the fact that the incidence and prevalence of IBD are increasing. In this review, we discussed the current state of knowledge regarding genetic differences between sporadic CRC and CA-CRC, especially pertaining to the chromosomal instability mechanism (CIN). In order to explain CA-CRC molecular basis, we have analyzed the data from studies regarding the correlations between CA-CRC and the presence of Single Nucleotide Polymorphisms (SNPs). Further focus on the role of associated proteins has emphasized the role of NF-κB signaling as the main link between inflammation and carcinogenesis during the course of IBD.
Collapse
Affiliation(s)
- Adam Makaro
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Marcin Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland,Department of General and Colorectal Surgery, Medical University of Lodz, Haller Square 1, 90-624 Lodz, Poland
| |
Collapse
|
19
|
Qian D, Liu H, Zhao L, Wang X, Luo S, Moorman PG, Patz EF, Su L, Shen S, Christiani DC, Wei Q. Novel genetic variants in genes of the Fc gamma receptor-mediated phagocytosis pathway predict non-small cell lung cancer survival. Transl Lung Cancer Res 2020; 9:575-586. [PMID: 32676321 PMCID: PMC7354140 DOI: 10.21037/tlcr-19-318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Both antibody-dependent cellular cytotoxicity and phagocytosis activate innate immunity, and the Fc gamma receptor (FCGR)-mediated phagocytosis is an integral part of the process. We assessed associations between single-nucleotide polymorphisms (SNPs) in FCGR-related genes and survival of patients with non-small cell lung cancer (NSCLC). Methods We evaluated associations between 24,734 (SNPs) in 97 FCGR-related genes and survival of 1,185 patients with NSCLC using a published genome-wide association study (GWAS) dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial and validated the results in another independent dataset of 894 NSCLC patients. Results In the single-locus analysis with Bayesian false discovery probability (BFDP) for multiple testing correction, we found 1,084 SNPs to be significantly associated overall survival (OS) (P<0.050 and BFDP ≤0.80), of which two independent SNPs (PLCG2 rs9673682 T>G and PLPP1 rs115613985 T>A) were further validated in another GWAS dataset of 894 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study, with combined allelic hazards ratios for OS of 0.87 [95% confidence interval (CI): 0.81-0.94 and P=5.90×10-4] and 1.18 (95% CI: 1.08-1.29 and 1.32×10-4, respectively). Expression quantitative trait loci analysis showed that the rs9673682 G allele was significantly correlated with increased mRNA expression levels of PLCG2 in 373 transformed lymphoblastoid cell-lines (P=7.20×10-5). Additional evidence from differential expression analysis further supported a tumor-suppressive effect of PLCG2 on OS of patients with lung cancer, with lower mRNA expression levels in both lung squamous carcinoma and adenocarcinoma than in adjacent normal tissues. Conclusions Genetic variants in PLCG2 of the FCGR-mediated phagocytosis pathway may be promising predictors of NSCLC survival, possibly through modulating gene expression, but additional investigation of the molecular mechanisms of PLPP1 rs115613985 is warranted.
Collapse
Affiliation(s)
- Danwen Qian
- Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Lingling Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Xiaomeng Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Patricia G Moorman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Edward F Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Radiology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Li Su
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Sipeng Shen
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
20
|
Shepshelovich D, Townsend AR, Espin-Garcia O, Latifovic L, O'Callaghan CJ, Jonker DJ, Tu D, Chen E, Morgen E, Price TJ, Shapiro J, Siu LL, Kubo M, Dobrovic A, Ratain MJ, Xu W, Mushiroda T, Liu G. Fc-gamma receptor polymorphisms, cetuximab therapy, and overall survival in the CCTG CO.20 trial of metastatic colorectal cancer. Cancer Med 2018; 7:5478-5487. [PMID: 30318772 PMCID: PMC6246957 DOI: 10.1002/cam4.1819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/22/2022] Open
Abstract
Background Two germ line Fc‐γ receptor (FCGR) polymorphisms, rs1801274 [FCGR2A; His(H)131Arg(R)] and rs396991 [FCGR3A; Phe(F)158Val(V)], produce altered proteins through amino acid substitutions. We previously reported that the FCGR2A H/H genotype was associated with longer overall survival (OS) in cetuximab‐treated chemotherapy‐refractory patients with metastatic colorectal cancer. Here, we aimed to replicate and extend this finding in the Canadian Clinical Trials Group CO.20 trial. Methods After germ line DNA genotyping, polymorphic relationships with survival were assessed using log‐rank tests and hazard ratios (HR) from Cox proportional hazard models, adjusting for known prognostic factors. The dominant genetic inheritance model was used for the main analysis. Results Of 592 wild‐type KRAS patients treated with cetuximab, those with the FCGR2A H/H genotype (n = 165, 28%) had improved OS (HR: 0.66, P < 0.001; median absolute benefit, 1.3 months) compared to those with R/‐ genotype (n = 427, 72%). Patients with H/R had intermediate results under a codominant genetic inheritance model (HR: 0.72, P = 0.003). No significant associations were found between FCGR3A genotype and OS. In an exploratory analysis, patients with the combination of FCGR2A H/H + FCGR3A F/F genotype had significantly better OS (HR: 0.33, P = 0.003; median absolute benefit, 12.5 months) than patients with the combination of double‐variant R/R + V/V genotype. Progression‐free survival results were similar to OS. Toxicity rates were not associated with either polymorphism. Conclusions The FCGR2A genotype was associated with efficacy but not with toxicity in wild‐type KRAS, cetuximab‐treated colorectal cancer patients. FCGR3A genotype may modulate the relationship between FCGR2A polymorphism and outcome. FCGR2A is a promising biomarker for clinical management for these patients.
Collapse
Affiliation(s)
- Daniel Shepshelovich
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amanda R Townsend
- Medical Oncology, University of Adelaide, Adelaide, South Australia, Australia
| | - Osvaldo Espin-Garcia
- Department of Biostatistics, Princess Margaret Cancer Centre, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lidija Latifovic
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.,Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Chris J O'Callaghan
- Canadian Cancer Trials Group (CCTG), Queens University, Kingston, Ontario, Canada
| | - Derek J Jonker
- Medical Oncology, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group (CCTG), Queens University, Kingston, Ontario, Canada
| | - Eric Chen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric Morgen
- Department of Laboratory Medicine and Pathology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Timothy J Price
- Medical Oncology, University of Adelaide, Adelaide, South Australia, Australia
| | - Jeremy Shapiro
- Department of Medical Oncology, Cabrini Health, Malvern, Victoria, Australia
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Alexander Dobrovic
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia.,Translational Genomics and Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | | | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Geoffrey Liu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.,Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|