1
|
Miyatsu M, Sukhbaatar A, Mishra R, Dorai A, Mori S, Kodama T. Optimization of lymphatic drug delivery system with carboplatin for metastatic lymph nodes. Sci Rep 2025; 15:16037. [PMID: 40341825 PMCID: PMC12062337 DOI: 10.1038/s41598-025-99602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Systemic chemotherapy is a common method for treatment of metastatic lymph nodes (LNs), but it has low tissue selectivity and high toxicity. Lymphatic drug delivery system (LDDS) is a novel approach to treat and prevent LN metastases. In a previous study, it was found that the increase of osmotic pressure with varied viscosity of the drug reagent enhances drug retention in the LNs. Here, we optimized the administration conditions to achieve a long-term therapeutic response by varying the dosages and injection rate, using the optimized osmotic pressure and varied viscosity of drug reagent for LDDS. A metastatic LN mouse model was created with MXH10/Mo/lpr mice. Luciferase labelled FM3A mouse mammary carcinoma cells were inoculated in subiliac LN (SiLN) to induce metastasis to the proper axillary LN (PALN). 4 days post tumor cell inoculation, carboplatin (CBDCA) was injected into the tumor-bearing SiLN under different administration conditions. Superior drug retention was observed in the group that received two-doses of CBDCA solution adjusted to an osmotic pressure and viscosity of 1897 kPa and 12 mPa·s, at an injection rate of 10 µL/min. Furthermore, this effect persisted for 42 days. This effect was accompanied by an upregulated expression of CD8, IL-12a, and IFN-γ in the spleen. These results suggest that dual-dose administration at 10 µL/min with hyper-osmotic and high viscosity formulation is optimal and can improve the long-term therapeutic efficacy of LN metastasis.
Collapse
Affiliation(s)
- Miriu Miyatsu
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Arunkumar Dorai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2‑1-1 Katahira, Aoba, Sendai, Miyagi, 980‑8577, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4‑1 Seiryo, Aoba, Sendai, Miyagi, 980‑8575, Japan.
| |
Collapse
|
2
|
Kodama T, Sukhbaatar A. Development of an intranodal drug delivery system using a mouse model with lymphadenopathy: novel discoveries and clinical application. Expert Opin Drug Deliv 2025; 22:555-564. [PMID: 39995110 DOI: 10.1080/17425247.2025.2471982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION The low drug delivery rate of systemic chemotherapy to metastatic lymph nodes (LNs) may be due to tumor growth without tumor neovascularization in the LNs, loss of existing blood vessels and lymph sinuses due to the tumor growth, and increased intranodal pressure. The lymphatic drug delivery system (LDDS) is a method of injecting anticancer drugs directly into the LNs and can overcome these problems. The world's first specific clinical study using the LDDS for head and neck cancer started in 2024 in Japan. In this review, the background of the development of LDDS up to the present clinical trials is described. AREAS COVERED The MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) recombinant inbred model mouse, vascular and lymphatic flow through LNs, the clinical N0 (cN0) LN model, preclinical studies of the LDDS, and its clinical application to treat head and neck cancer. EXPERT OPINION Conventionally, hematogenous and lymphatic administration have been the focus of attention for drug delivery to LNs. The LDDS is a method for injecting drugs directly to LNs, so it is important to develop a solvent and injecting method that can increase the uniformity of drug distribution within LNs.
Collapse
Affiliation(s)
- Tetsuya Kodama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Sukhbaatar A, Mori S, Sugiura T, Kodama T. Docetaxel administered through a novel lymphatic drug delivery system (LDDS) improved treatment outcomes for lymph node metastasis. Biomed Pharmacother 2024; 171:116085. [PMID: 38171241 DOI: 10.1016/j.biopha.2023.116085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Recently, sentinel lymph nodes (LNs) have been recognized as a starting point of hematogenous metastasis; thus, an increase in the control rate of LN metastasis is expected to improve the survival rate. Although surgical treatment and radiation therapy are commonly used for the radical treatment of LNs, these treatments are associated with lymphedema, pain, and an extended hospital stay. In a recent mouse study, activation of metastatic tumors in distant organs was reported after removing LNs, with or without metastasis to the LNs. Thus, there is the necessity for cancer treatment that can replace LN removal. Here, we evaluated the treatment efficacy of lymphatic drug delivery system (LDDS) with osmotic pressure and viscosity escalated Docetaxel at the early stage of LN metastasis. MXH10/Mo/lpr mice were inoculated with mouse breast cancer cells into Subiliac LN to create the metastatic mouse model. Docetaxel was injected into mouse mammary carcinoma cells inoculated LN as a single shot (SS) or double shot (DS) to understand the therapeutic mechanism of a single shot or double shot intervention using an in vivo imaging system, histology, and qPCR. The results showed that the DS administration of docetaxel at 1,960 kPa (12 mPa∙s) had better therapeutic outcomes with increased complete response and improved survival with reduced adverse events. The results also revealed that administration of a DS of docetaxel enhances differentiation of T helper cells, and improves survival and therapeutic outcomes. From a safety perspective, LDDS-administered DS of low-concentration docetaxel without any other anticancer treatments to LNs a novel approach to cancer management of LN metastasis. We emphasize that LDDS is a groundbreaking method of delivering anticancer drugs specifically to cancer susceptible LNs and is designed to enhance the effectiveness of cancer treatment while minimizing side effects.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tsuyoshi Sugiura
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
4
|
Sukhbaatar A, Mori S, Shiga K, Kodama T. Intralymphatic injection of chemotherapy drugs modulated with glucose improves their anticancer effect. Biomed Pharmacother 2023; 165:115110. [PMID: 37421779 DOI: 10.1016/j.biopha.2023.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
Lymph node metastasis (LNM) has a significant impact on cancer prognosis, emphasizing the need for effective treatment strategies. This study investigated the potential use of high osmotic pressure drug solutions with low viscosity administration using a lymphatic drug delivery system (LDDS) to improve LNM treatment outcomes. The hypothesis was that injection of epirubicin or nimustine at high osmotic pressure but without altered viscosity would enhance drug retention and accumulation in LNs, thereby improving the efficacy of treatment. Biofluorescence analysis revealed enhanced drug accumulation and retention in LNs after administration using LDDS compared to intravenous (i.v) injection. Histopathological results demonstrated minimal tissue damage in the LDDS groups. Pharmacokinetic analysis revealed an improved treatment response with higher drug accumulation and retention in LNs. The LDDS approach offers the potential for greatly reduced side effects of chemotherapy drugs, lower dosage requirements and crucially increased drug retention in LNs. The results highlight the promise of high osmotic pressure drug solutions with low viscosity administrated using the LDDS for enhancing the treatment efficacy of LN metastasis. Further research and clinical trials are warranted to validate these results and optimize the clinical translation of this novel treatment technique.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | - Kiyoto Shiga
- Department of Head and Neck Surgery, Iwate University Hospital, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate 028-3695, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan; Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
5
|
Mishra R, Sukhbaatar A, Mori S, Kodama T. Metastatic lymph node targeted CTLA4 blockade: a potent intervention for local and distant metastases with minimal ICI-induced pneumonia. J Exp Clin Cancer Res 2023; 42:132. [PMID: 37259163 DOI: 10.1186/s13046-023-02645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) elicits a strong and durable therapeutic response, but its application is limited by disparate responses and its associated immune-related adverse events (irAEs). Previously, in a murine model of lymph node (LN) metastasis, we showed that intranodal administration of chemotherapeutic agents using a lymphatic drug delivery system (LDDS) elicits stronger therapeutic responses in comparison to systemic drug delivery approaches, while minimizing systemic toxicity, due to its improved pharmacokinetic profile at the intended site. Importantly, the LN is a reservoir of immunotherapeutic targets. We therefore hypothesized that metastatic LN-targeted ICB can amplify anti-tumor response and uncouple it from ICB-induced irAEs. METHODS To test our hypothesis, models of LN and distant metastases were established with luciferase expressing LM8 cells in MXH10/Mo-lpr/lpr mice, a recombinant inbred strain of mice capable of recapitulating ICB-induced interstitial pneumonia. This model was used to interrogate ICB-associated therapeutic response and immune related adverse events (irAEs) by in vivo imaging, high-frequency ultrasound imaging and histopathology. qPCR and flowcytometry were utilized to uncover the mediators of anti-tumor immunity. RESULTS Tumor-bearing LN (tbLN)-directed CTLA4 blockade generated robust anti-tumor response against local and systemic metastases, thereby improving survival. The anti-tumor effects were accompanied by an upregulation of effector CD8T cells in the tumor-microenvironment and periphery. In comparison, non-specific CTLA4 blockade was found to elicit weaker anti-tumor effect and exacerbated ICI-induced irAEs, especially interstitial pneumonia. Together these data highlight the importance of tbLN-targeted checkpoint blockade for efficacious response. CONCLUSIONS Intranodal delivery of immune checkpoint inhibitors to metastatic LN can potentiate therapeutic response while minimizing irAEs stemming from systemic lowering of immune activation threshold.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
6
|
Mishra R, Sukhbaatar A, Dorai A, Mori S, Shiga K, Kodama T. Drug formulation augments the therapeutic response of carboplatin administered through a lymphatic drug delivery system. Cancer Sci 2022; 114:259-270. [PMID: 36168838 PMCID: PMC9807524 DOI: 10.1111/cas.15599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023] Open
Abstract
Treatment of metastatic lymph nodes (LNs) is challenging due to their unique architecture and biophysical traits. Systemic chemotherapy fails to impede tumor progression in LNs due to poor drug uptake and retention by LNs, resulting in fatal systemic metastasis. To effectively treat LN metastasis, achieving specific and prolonged retention of chemotherapy drugs in the tumor-draining LNs is essential. The lymphatic drug-delivery system (LDDS) is an ultrasound-guided drug-delivery methodology for administration of drugs to LNs that addresses these requirements. However, early-stage metastatic LNs have an additional set of drug transport barriers, such as elevated intranodal pressure and viscosity, that negatively impact drug diffusion. In the present study, using formulations of elevated osmotic pressure and viscosity relative to saline, we sought to favorably alter the LN's physical environment and study its impact on pharmacokinetics and consequently the therapeutic efficacy of carboplatin delivered using the LDDS. Our study confirmed the capability of a drug formulation with elevated osmotic pressure and viscosity to alter the architecture of LNs, as it caused notable expansion of the lymphatic sinus. Additionally, the study delineated an optimal range of osmotic pressure and viscosity, centered around 1897 kPa and 11.5 mPa·s, above and below which therapeutic efficacy was found to decline markedly. These findings suggest that formulation osmotic pressure and viscosity are parameters that require critical consideration as they can both hinder and promote tumorigenesis. The facile formulation reported here has wide-ranging applicability across cancer spectrums and is thus anticipated to be of great clinical benefit.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research CenterGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| | - Arunkumar Dorai
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research CenterGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| | - Kiyoto Shiga
- Department of Otolaryngology‐Head & Neck SurgeryIwate Medical UniversityYahabaJapan,Head & Neck Cancer centerIwate Medical University HospitalYahabaJapan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for CancerGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan,Biomedical Engineering Cancer Research CenterGraduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
| |
Collapse
|
7
|
Sukhbaatar A, Mori S, Kodama T. Intranodal delivery of modified docetaxel: Innovative therapeutic method to inhibit tumor cell growth in lymph nodes. Cancer Sci 2022; 113:1125-1139. [PMID: 35100484 PMCID: PMC8990862 DOI: 10.1111/cas.15283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/29/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022] Open
Abstract
Delivery of chemotherapeutic agents into metastatic lymph nodes (LNs) is challenging as they are unevenly distributed in the body. They are difficult to access via traditional systemic routes of drug administration, which produce significant adverse effects and result in low accumulation of drugs into the cancerous LN. To improve the survival rate of patients with LN metastasis, a lymphatic drug delivery system (LDDS) has been developed to target metastatic LN by delivering chemotherapy agents into sentinel LN (SLN) under ultrasound guidance. The LDDS is an advanced method that can be applied in the early stage of the progression of tumor cells in the SLN before tumor mass formation has occurred. Here we investigated the optimal physicochemical ranges of chemotherapeutic agents’ solvents with the aim of increasing treatment efficacy using the LDDS. We found that an appropriate osmotic pressure range for drug administration was 700–3,000 kPa, with a viscosity < 40 mPa⋅s. In these physicochemical ranges, expansion of lymphatic vessels and sinuses, drug retention, and subsequent antitumor effects could be more precisely controlled. Furthermore, the antitumor effects depended on the tumor progression stage in the SLN, the injection rate, and the volumes of administered drugs. We anticipate these optimal ranges to be a starting point for developing more effective drug regimens to treat metastatic LN with the LDDS.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 980-8579, Japan
| |
Collapse
|
8
|
Sukhbaatar A, Kodama T. Protocols for the Evaluation of a Lymphatic Drug Delivery System Combined with Bioluminescence to Treat Metastatic Lymph Nodes. Methods Mol Biol 2022; 2524:333-346. [PMID: 35821485 DOI: 10.1007/978-1-0716-2453-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescence (BL) imaging is a powerful non-invasive imaging modality widely used in a broad range of biological disciplines for many types of measurements. The applications of BL imaging in biomedicine are diverse, including tracking bacterial progression, research on gene expression patterns, monitoring tumor cell growth/regression or treatment responses, determining the location and proliferation of stem cells, and so on. It is particularly valuable when studying tissues at depths of 1 to 2 cm in mouse models during preclinical research. Here we describe the protocols for the therapeutic evaluation of a lymphatic drug delivery system (LDDS) using an in vivo BL imaging system (IVIS) for the treatment of metastatic lymph nodes (LNs) with 5-fluorouracil (5-FU). The LDDS is a method that directly injects anticancer drugs into sentinel LNs (SLNs) and delivers them to their downstream LNs. In the protocol, we show that metastases in the proper axillary LN (PALN) are induced by the injection of luciferase-expressing tumor cells into the subiliac LN (SiLN) of MXH10/Mo-lpr/lpr (MXH10/Mo/lpr) mice. 5-FU is injected using the LDDS into the accessory axillary LN (AALN) to treat tumor cells in the PALN after the tumor cell growth is confirmed in the PALN. The tumor growth and therapeutic effects are evaluated by IVIS. This method can be used to evaluate tumor growth and efficacy of anticancer drugs/particles, radiotherapy, surgery, and/or a combination of these methods in various experimental procedures in the oncology field.
Collapse
Affiliation(s)
- Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
9
|
Characterizing perfusion defects in metastatic lymph nodes at an early stage using high-frequency ultrasound and micro-CT imaging. Clin Exp Metastasis 2021; 38:539-549. [PMID: 34654990 DOI: 10.1007/s10585-021-10127-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
A perfusion defect in a metastatic lymph node (LN) can be visualized as a localized area of low contrast on contrast-enhanced CT, MRI or ultrasound images. Hypotheses for perfusion defects include abnormal hemodynamics in neovascular vessels or a decrease in blood flow in pre-existing blood vessels in the parenchyma due to compression by LN tumor growth. However, the mechanisms underlying perfusion defects in LNs during the early stage of LN metastasis have not been investigated. We show that tumor mass formation with very few microvessels was associated with a perfusion defect in a non-enlarged LN at the early stage of LN metastasis in a LN adenopathy mouse (LN size circa 10 mm). We found in a mouse model of LN metastasis, induced using non-keratinizing tumor cells, that during the formation of the perfusion defect in a non-enlarged LN, the number of blood vessels ≤ 50 μm in diameter decreased, while those of > 50 μm in diameter increased. The methods used were contrast-enhanced high-frequency ultrasound and contrast-enhanced micro-CT imaging systems, with a maximum spatial resolution of > 30 μm. Furthermore, we found no tumor angiogenesis or oxygen partial pressure (pO2) changes in the metastatic LN. Our results demonstrate that the perfusion defect appears to be a specific form of tumorigenesis in the LN, which is a vascular-rich organ. We anticipate that a perfusion defect on ultrasound, CT or MRI images will be used as an indicator of a non-enlarged metastatic LN at an early stage.
Collapse
|
10
|
Fukumura R, Sukhbaatar A, Mishra R, Sakamoto M, Mori S, Kodama T. Study of the physicochemical properties of drugs suitable for administration using a lymphatic drug delivery system. Cancer Sci 2021; 112:1735-1745. [PMID: 33629407 PMCID: PMC8088917 DOI: 10.1111/cas.14867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Lymph node (LN) metastasis is thought to account for 20‐30% of deaths from head and neck cancer. The lymphatic drug delivery system (LDDS) is a new technology that enables the injection of drugs into a sentinel LN (SLN) during the early stage of tumor metastasis to treat the SLN and secondary metastatic LNs. However, the optimal physicochemical properties of the solvent used to carry the drug have not been determined. Here, we show that the osmotic pressure and viscosity of the solvent influenced the antitumor effect of cisplatin (CDDP) in a mouse model of LN metastasis. Tumor cells were inoculated into the proper axillary LN (PALN), and the LDDS was used to inject CDDP solution into the subiliac LN (SiLN) to treat the tumor cells in the downstream PALN. CDDP dissolved in saline had no therapeutic effects in the PALN after it was injected into the SiLN using the LDDS or into the tail vein (as a control). However, CDDP solution with an osmotic pressure of ~ 1,900 kPa and a viscosity of ~ 12 mPa⋅s suppressed tumor growth in the PALN after it was injected into the SiLN using the LDDS. The high osmotic pressure dilated the lymphatic vessels and sinuses to enhance drug flow in the PALN, and the high viscosity increased the retention of CDDP in the PALN. Our results demonstrate that optimizing the osmotic pressure and viscosity of the solvent can enhance the effects of CDDP, and possibly other anticancer drugs, after administration using the LDDS.
Collapse
Affiliation(s)
- Ryoichi Fukumura
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Maya Sakamoto
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral Information and Radiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Kato S, Takeda K, Sukhbaatar A, Sakamoto M, Mori S, Shiga K, Kodama T. Intranodal pressure of a metastatic lymph node reflects the response to lymphatic drug delivery system. Cancer Sci 2020; 111:4232-4241. [PMID: 32882076 PMCID: PMC7648019 DOI: 10.1111/cas.14640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer metastasis to lymph nodes (LNs) almost certainly contributes to distant metastasis. Elevation of LN internal pressure (intranodal pressure, INP) during tumor proliferation is associated with a poor prognosis for patients. We have previously reported that a lymphatic drug delivery system (LDDS) allows the direct delivery of anticancer drugs into the lymphatic system and is a promising treatment strategy for early‐stage LN metastasis. However, methods for evaluating the treatment effects have not been established. Here, we used a mouse model of MXH10/Mo‐lpr/lpr, which develops a systemic swelling of LNs, and murine malignant fibrous histiocytoma‐like (KM‐Luc/GFP) cells or murine breast cancer (FM3A‐Luc) cells inoculated into the subiliac LN of mice to produce a tumor‐bearing LN model. The changes in INP during intranodal tumor progression and after treatment with cis‐dichlorodiammineplatinum(II) (CDDP) using an LDDS were measured. We found that tumor progression was associated with an increase in INP that occurred independently of LN volume changes. The elevation in INP was suppressed by CDDP treatment with the LDDS when intranodal tumor progression was significantly inhibited. These findings indicate that INP is a useful parameter for monitoring the therapeutic effect in patients with LN metastasis who have been given drugs using an LDDS, which will serve to manage cancer metastasis treatment and contribute to an improved quality of life for cancer patients.
Collapse
Affiliation(s)
- Shigeki Kato
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazu Takeda
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Maya Sakamoto
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral Diagnosis, Tohoku University Hospital, Sendai, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Sendai, Japan
| | - Kiyoto Shiga
- Department of Head and Neck Surgery, Iwate Medical University, Yahaba-cho, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1, Sendai, Aoba, Miyagi, 9808575, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Use of a Lymphatic Drug Delivery System and Sonoporation to Target Malignant Metastatic Breast Cancer Cells Proliferating in the Marginal Sinuses. Sci Rep 2019; 9:13242. [PMID: 31519920 PMCID: PMC6744402 DOI: 10.1038/s41598-019-49386-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 01/31/2023] Open
Abstract
Lymph node (LN) metastasis through the lymphatic network is a major route for cancer dissemination. Tumor cells reach the marginal sinuses of LNs via afferent lymphatic vessels (LVs) and form metastatic lesions that lead to distant metastasis. Thus, targeting of metastatic cells in the marginal sinuses could improve cancer treatment outcomes. Here, we investigated whether lymphatic administration of a drug combined with sonoporation could be used to treat a LN containing proliferating murine FM3A breast cancer cells, which are highly invasive, in its marginal sinus. First, we used contrast-enhanced high-frequency ultrasound and histopathology to analyze the structure of LVs in MXH10/Mo-lpr/lpr mice, which exhibit systemic lymphadenopathy. We found that contrast agent injected into the subiliac LN flowed into the marginal sinus of the proper axillary LN (PALN) and reached the cortex. Next, we examined the anti-tumor effects of our proposed technique. We found that a strong anti-tumor effect was achieved by lymphatic administration of doxorubicin and sonoporation. Furthermore, our proposed method prevented tumor cells in the marginal sinus from invading the parenchyma of the PALN and resulted in tumor necrosis. We conclude that lymphatic administration of a drug combined with sonoporation could exert a curative effect in LNs containing metastatic cells in their marginal sinuses.
Collapse
|
13
|
Fujii H, Horie S, Sukhbaatar A, Mishra R, Sakamoto M, Mori S, Kodama T. Treatment of false-negative metastatic lymph nodes by a lymphatic drug delivery system with 5-fluorouracil. Cancer Med 2019; 8:2241-2251. [PMID: 30945479 PMCID: PMC6536938 DOI: 10.1002/cam4.2125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/16/2023] Open
Abstract
Metastatic lymph nodes (LNs) may be the origin of systemic metastases. It will be important to develop a strategy that prevents systemic metastasis by treating these LNs at an early stage. False‐negative metastatic LNs, which are found during the early stage of metastasis development, are those that contain tumor cells but have a size and shape similar to LNs that do not host tumor cells. Here, we show that 5‐fluorouracil (5‐FU), delivered by means of a novel lymphatic drug delivery system (LDDS), can treat LNs with false‐negative metastases in a mouse model. The effects of 5‐FU on four cell lines were investigated using in vitro cytotoxicity and cell survival assays. The therapeutic effects of LDDS‐administered 5‐FU on false‐negative metastatic LNs were evaluated using bioluminescence imaging, high‐frequency ultrasound (US), and histology in MHX10/Mo‐lpr/lpr mice. These experimental animals develop LNs that are similar in size to human LNs. We found that all cell lines showed sensitivity to 5‐FU in the in vitro assays. Furthermore, a concentration‐dependent effect of 5‐FU to inhibit tumor growth was observed in tumor cells with low invasive growth characteristics, although a significant reduction in metastatic LN volume was not detected in MHX10/Mo‐lpr/lpr mice. Adverse effects of 5‐FU were not detected. 5‐Fluorouracil administration with a LDDS is an effective treatment method for false‐negative metastatic LNs. We anticipate that the delivery of anticancer drugs by a LDDS will be of great benefit in the prevention and treatment of cancer metastasis via LNs.
Collapse
Affiliation(s)
- Honoka Fujii
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University, Aoba, Sendai, Miyagi, Japan
| | - Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Maya Sakamoto
- Department of Oral Diagnosis, Tohoku University Hospital, Aoba, Sendai, Miyagi, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, Aoba, Sendai, Miyagi, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan.,Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, Aoba, Sendai, Miyagi, Japan
| |
Collapse
|