1
|
Chen H, Han C, Ha C. EXT1 and Its Methylation Involved in the Progression of Uterine Corpus Endometrial Carcinoma Pathogenesis. Appl Biochem Biotechnol 2025; 197:2133-2150. [PMID: 39673673 DOI: 10.1007/s12010-024-05116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecologic tumors. Due to the high recurrence and metastasis of UCEC, it is crucial for patients to find new biomarkers for diagnosis and therapy. In this study, R software and the TCGA database were used to screen candidate UCEC predictive markers. Western blot and RT-qPCR were performed to detect protein and mRNA expression of EXT1 in UCEC cell lines. In addition, MTT assay, flow cytometry, transwell assay, and wound healing assay were conducted to assess the cell viability, apoptosis, invasion, and migration in UCEC cells. Overlap-extension PCR technique was employed to construct the vector targeting the deletion of the methylated segment of EXT1. The results showed that a total of 11 candidate genes were obtained and EXT1 was identified as a potential target. The expression and methylation levels of EXT1 were both increased in UCEC tissues and cell lines, as well as elevated EXT1 was closely related to the poor prognosis of patients. Besides, the knockdown of EXT1 significantly inhibited the malignant biological behaviors in UCEC cells. Additionally, the current study also found that the deletion of 1559-2146 bp CpG island segment upregulated EXT1 expression and promoted malignant biological behaviors in UCEC cells. Furthermore, the presence of m7G RNA methylation in UCEC cells also was found. In conclusion, the methylation of EXT1 influenced the gene expression, thereby affecting the malignant biological behaviors in UCEC cells and regulating the pathological progression of UCEC.
Collapse
Affiliation(s)
- Hua Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China
| | - Cailing Han
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Shengli South Street, Xingqing District, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Huang F, Chen Y, Wu J, Zheng S, Huang R, Wan W, Hu K. Comprehensive bioinformatics analysis of metabolism‑related microRNAs in high myopia in young and old adults with age‑related cataracts. Mol Med Rep 2025; 31:46. [PMID: 39635836 PMCID: PMC11638740 DOI: 10.3892/mmr.2024.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
High myopia and age‑related cataracts are prevalent ocular disorders that compromise visual acuity. The molecular mechanisms underlying these conditions remain largely unclear. Here, microRNA (miRNA or miR) sequencing was performed on aqueous humor samples obtained from individuals with age‑related cataracts and high myopia (AH, n=9), young patients with high myopia (YH, n=9) and a control group of elderly patients with age‑related cataracts, matched in terms of sex and age (AN, n=9). miRNA sequencing and differential expression were performed. Intersecting miRNAs were identified, as well as metabolism‑related genes from MsigDB were intersected with miRNA target genes. Functional enrichment was performed and disease targets predicted using DisGeNET. A protein‑protein interaction network was built with STRING, and hub genes were identified via Cytoscape. GeneMANIA analyzed hub genes, while drug predictions were made using Comparative Toxicogenomics Database. Long non‑coding RNAs and transcription factors were predicted via mirNet and ChEA3. Results were validated by RT‑qPCR. A total of 18 miRNAs were significantly differential expressed between AH and AN group, of which eight were up‑ and 10 were downregulated. A total of 23 miRNAs were significantly differential expressed between the YH and AN group, of which six were up‑ and 17 were downregulated. hsa‑miR‑490‑3p, hsa‑miR‑4423‑3p and hsa‑miR‑4485‑3p may serve as characteristic miRNAs. A total of 289 target genes were predicted. Functional enrichment analysis yielded 169 terms, with 'herpes simplex virus 1 infection' the most significantly enriched. There were 19 metabolism‑associated target genes linked with these miRNAs, suggesting a potential role of metabolic processes in pathogenesis of these conditions. The biosynthetic process of carbohydrate derivatives may serve a key role during the development of high myopia. There were 10 hub genes and Propionyl‑CoA Carboxylase Subunit β could potentially serve as a biomarker. Drugs that could modulate their function were predicted; cyclosporine, tretinoin and acetaminophen may exert a broad influence on these hub genes. Hub gene networks based on the miRNAs were constructed to predict 44 associated long non‑coding RNAs and 98 transcription factors. The present findings offer novel insights into the molecular mechanisms of age‑related cataracts and high myopia and propose potential therapeutic targets.
Collapse
Affiliation(s)
- Fanfan Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016, P.R. China
| | - Yanyi Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016, P.R. China
| | - Jiaxue Wu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016, P.R. China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016, P.R. China
| | - Rongxi Huang
- Department of Endocrinology, Chongqing General Hospital, Chongqing 401147, P.R. China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016, P.R. China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing 400016, P.R. China
| |
Collapse
|
3
|
Li Y, Shi D, Jiang Y, Hu Y, Liu Q, Xie Y, Zhang X. Establishment of potential lncRNA-related hub genes involved competitive endogenous RNA in lung adenocarcinoma. BMC Cancer 2024; 24:1371. [PMID: 39522011 PMCID: PMC11549862 DOI: 10.1186/s12885-024-13144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have a notable role in the diagnosis and prognosis of cancer. However, the associations between lncRNA-related hub genes (LRHGs) expression and the corresponding outcomes have not been fully understood in lung adenocarcinoma (LUAD). Here, a total of 71 patients diagnosed with LUAD and 60 healthy volunteers at The First Affiliated Hospital of Huzhou University from April, 2023 to December, 2023 were enrolled in the present study. A LRHGs model was established using least absolute shrinkage and selection operator analyses of The Cancer Genome Atlas-LUAD datasets. The underlying mechanisms of the LRHGs were investigated via Gene Set Enrichment Analysis and Gene Set Variation Analysis. Additionally, the diagnostic role of serum HOXD cluster antisense RNA 2 (HOXD-AS2) was assessed by receiver operating characteristic (ROC) curve analysis. Lastly, TCGA-LUAD samples were divided into high- and low-HOXD-AS2 expression groups based on the median expression. The associations between HOXD-AS2 expression and miR-4538 as well as Calmodulin-Dependent Protein Kinase Type II subunit Beta (CAMK2B) levels were conducted through Pearson correlation analysis. A comprehensive analysis identified 141 differentially expressed lncRNAs between 539 LUAD tissues and 59 normal samples. A prognostic marker for overall survival was established by constructing a predictive signature consisting of 9 LRHGs. Subsequently, 474 LUAD samples were categorized into a high or low-risk group based on the median of the risk score. An independent prognostic model was constructed to confirm the validity of this categorization. Further comparisons of the clinicopathological features and LRHG-related pathways were performed between the two groups. Examinations of LRHG expression in two LUAD clusters and of the association between LRHG expression and immune infiltration were also conducted. HOXD-AS2 expression was shown to be elevated in LUAD tissues compared with matched normal tissues, and the serum HOXD-AS2 level was also notably increased in LUAD samples compared with healthy controls. The results of the ROC analysis indicated that the sensitivity and specificity of HOXD-AS2 were higher than that of cytokeratin-19 fragment (CYFRA21-1), which is a serum marker for LUAD. Pearson analyses indicated that miR-4538 level was negatively associated with HOXD-AS2 expression, but CAMK2B level showed positive correlation in LUAD. The results of the present study therefore indicated that the constructed LRHG model, particularly HOXD-AS2, could independently diagnose and predict the prognosis of LUAD, which suggested the underlying mechanism of the HOXD-AS2/miR-4538/CAMK2B, and might offer efficient strategies for LUAD treatment.
Collapse
Affiliation(s)
- Yong Li
- Department of Laboratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Danfei Shi
- Department of Pathology, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Yan Jiang
- Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, No. 158 Guangchang Back Road, Huzhou, Zhejiang, 313000, P. R. China
| | - Yanqin Hu
- Department of Laboratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Qiuxia Liu
- Department of Laboratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Yanping Xie
- Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, No. 158 Guangchang Back Road, Huzhou, Zhejiang, 313000, P. R. China
| | - Xilin Zhang
- Central Laboratory, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, No. 158 Guangchang Back Road, Huzhou, Zhejiang, 313000, P. R. China.
| |
Collapse
|
4
|
Jiang R, Li P, Meng E, Cheng X, Wu X, Wu H. Hsa_Circ_0008035 drives immune evasion of gastric cancer via promoting EXT1-mediated nuclear translocation of PKM2. Transl Oncol 2024; 48:102004. [PMID: 39053344 PMCID: PMC11325002 DOI: 10.1016/j.tranon.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 07/27/2024] Open
Abstract
Circular RNAs (circRNAs) have been reported to be associated with the malignant phenotypes of cancer. However, the role and underlying mechanism of hsa_Circ_0008035 in colorectal cancer (CRC) remains unclear. In this study, we elucidated the pivotal role of hsa_circ_0008035 in gastric cancer progression and immune evasion. Elevated hsa_circ_0008035 levels in gastric cancer patient serum correlated positively with disease advancement, including tumor stages and lymph node metastasis. Functional analyses revealed a negative association between hsa_circ_0008035 and CD8+ T cell number and function. Mechanistically, hsa_circ_0008035 encoded the novel protein EXT1-219aa, suppressing EXT1 phosphorylation and expression. Additionally, hsa_circ_0008035 regulated pyruvate metabolism by influencing the nucleus localization of PKM2. The identified EXT1/PKM2 axis further underscored the intricate regulatory mechanisms orchestrated by hsa_circ_0008035 in gastric cancer, offering potential diagnostic and therapeutic implications in the ongoing pursuit of targeted therapies for gastric cancer patients.
Collapse
Affiliation(s)
- Rongqi Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Enqing Meng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Xu Cheng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Xinyi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| |
Collapse
|
5
|
Balasundaram A, Mitra TS, Tayubi IA, Zayed H, Doss GPC. Deciphering the miRNA-mRNA Interaction Landscape between Breast Cancer and Triple-Negative Breast Cancer: An Integrated Bioinformatics Approach. ACS OMEGA 2024; 9:24379-24395. [PMID: 38882157 PMCID: PMC11170726 DOI: 10.1021/acsomega.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Breast cancer (BC) is globally recognized as the second most prevalent form of cancer. It predominantly affects women and can be categorized into distinct types based on the overexpression of specific cancer receptors.The key receptors implicated in this context are the human epidermal growth factor receptor-2 (HER2), estrogen receptor (ER), and progesterone receptor (PR), alongside a particularly intricate subclass known as triple-negative breast cancer (TNBC). This subclassification is critical for the stratification of breast cancer and informs therapeutic decision-making processes. Due to a lack of therapeutic targets, such as growth factor receptors, TNBC is the most aggressive type. Hence, identifying targetable regulators such as miRNAs could pave the way for potential therapeutic interventions. To identify common differentially expressed mRNAs (DE-mRNAs) in BC, including TNBC, we leveraged two data sets from the GEO collection and The Cancer Genome Atlas (TCGA). Significant DE-mRNAs were identified through PPI, MCODE, CytoNCA, and CytoHubba analyses. Following this, miRNAs were predicted using mirDIP. We utilized GSE42568, GSE185645, and TCGA and identified 159 common DE-mRNAs. Using Cytoscape plug-ins, we identified the 10 most significant DE-mRNAs in BC. Using mirDIP, target miRNAs for 10 DE-mRNAs were identified. We conducted an advanced analysis on the TNBC GEO data set (GSE45498) to corroborate the significance of shared DE-mRNAs and DE-miRNAs in TNBC. We identified four downregulated DE-miRNAs, including hsa-miR-802, hsa-miR-1258, hsa-miR-548a-3p, and hsa-miR-2053, significantly associated with TNBC. Our study revealed significant miRNA-mRNA interactions, specifically hsa-miR-802/MELK, hsa-miR-1258/NCAPG, miR-548a-3p/CCNA2, and hsa-miR-2053/NUSAP1, in both BC and TNBC. The observed downregulation of hsa-miR-548a-3p is associated with diminished survival rates in BC patients, emphasizing their potential utility as prognostic indicators. Furthermore, the differential expression of mRNAs, including CCNB2, UBE2C, MELK, and KIF2C, correlates with reduced survival outcomes, signifying their critical role as potential targets for therapeutic intervention in both BC and TNBC. These findings highlight specific regulatory mechanisms that are potentially crucial for understanding and treating these cancer types.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tanisha Saurav Mitra
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Iftikhar Aslam Tayubi
- Department of Computer Science, Faculty of Computing and Information Technology, Rabigh (FCITR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - George Priya C Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Wang Y, Huang Y, Zhu H, Guo Z, Cheng J, Zhang C, Zhong M. Exostoisns (EXT1/2) in Head and Neck Cancers: An In Silico Analysis and Clinical Correlates. Int Dent J 2024; 74:446-453. [PMID: 37989698 PMCID: PMC11123571 DOI: 10.1016/j.identj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVES The exostosins (EXT), which are responsible for heparan sulfate backbone synthesis and play a vital role in tissue homeostasis, have been reported to be correlated with prognosis of various cancers. However, the expression, prognostic value, and immune infiltration of EXT1 and EXT2 in head and neck squamous cell carcinoma (HNSC) remain uncertain. METHODS GEPIA, UALCAN, and Xiantao bioinformatics tools were used to explore the EXT1 and EXT2 expression level in HNSC. GEPIA and Sangerbox were utilised to obtain the prognostic value of EXT1 and EXT2 in HNSC. Genetic alterations, immune cell infiltration, and single-cell analysis were conducted in cBioPortal, TIMER, and TISCH2. In addition, the expressions of EXT1 and EXT2 were validated by real-time polymerase chain reaction (PCR) in HNSC samples. RESULTS EXT1 and EXT2 were highly expressed in HNSC, especially in malignant cells. Only EXT2 was significantly negatively correlated to the prognosis of patients with HNSC. EXT1 and EXT2 were found to be associated with focal adhesin and cell adhesin molecule binding. EXT1 expression levels were considerably connected with CD8+ T cell infiltrating levels, whilst EXT2 expression levels were considerably negatively connected with infiltrating levels of CD4+ T cells, macrophages, neutrophils, and dendritic cells in HNSC. The gene mutation rates of EXT1 and EXT2 in HNSC were 7% and 2.8%, respectively. Moreover, EXT2 was validated to be highly expressed in HNSC samples by real-time PCR. CONCLUSION EXT2 was highly expressed and presented negative correlation with the prognosis and immune infiltration of HNSC, which might be a potential biomarker for HNSC.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yan Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Houwei Zhu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Zhenzhen Guo
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Jun Cheng
- Department of Oral Histopathology, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Churen Zhang
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Ming Zhong
- Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Selvan AJA, Kannan B, Pandi C, Jayaseelan VP, Arumugam P. EXT2: a novel prognostic and predictive biomarker for head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:282-289. [PMID: 38155009 DOI: 10.1016/j.oooo.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/15/2023] [Accepted: 11/19/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE This study focused on EXT2, a member of the EXT family involved in heparan sulfate synthesis, to evaluate its potential as a prognostic and predictive biomarker in head-neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS The present study used the cancer genome atlas head-neck squamous cell carcinoma (TCGA-HNSC) dataset-based UALCAN database to analyze the EXT2 expression and its clinicopathological features. In addition, we recruited 51 oral squamous cell carcinoma patients (OSCC), the most common HNSCC subtype, to validate the EXT2 mRNA expression analysis. In addition, we identified the role of EXT2 in prognosis using a Kaplan-Meier plot and immune signature using the tumor infiltration level. Furthermore, functional roles were analyzed using the EXT2 gene and protein networks. RESULTS The expression of EXT2 mRNA was significantly upregulated in OSCC tumors, which is consistent with the UALCAN-based results. EXT2 protein was also significantly overexpressed in HNSCC samples and was correlated with clinicopathological features. High EXT2 expression is associated with poor survival outcomes in HNSCC patients. Functional analysis of EXT2 using in silico tools revealed its involvement in critical pathways, including Wnt signaling, proteoglycans in cancer, and cellular responses to fibroblast growth and inflammation. CONCLUSION These findings highlight the potential of EXT2 as a prognostic and predictive biomarker of HNSCC.
Collapse
Affiliation(s)
- Angel Jenifer Arul Selvan
- Saveetha Medical College, and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Balachander Kannan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Chandra Pandi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Vijayashree Priyadharsini Jayaseelan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Paramasivam Arumugam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Zhao F, Chen Y, Xie Y, Kong S, Song L, Li H, Guo C, Yin Y, Zhang W, Zhu T. Identification of Zip8-correlated hub genes in pulmonary hypertension by informatic analysis. PeerJ 2023; 11:e15939. [PMID: 37663293 PMCID: PMC10470448 DOI: 10.7717/peerj.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Background Pulmonary hypertension (PH) is a syndrome characterized by marked remodeling of the pulmonary vasculature and increased pulmonary vascular resistance, ultimately leading to right heart failure and even death. The localization of Zrt/Irt-like Protein 8 (ZIP8, a metal ion transporter, encoded by SLC39A8) was abundantly in microvasculature endothelium and its pivotal role in the lung has been demonstrated. However, the role of Zip8 in PH remains unclear. Methods Bioinformatics analysis was employed to identify SLC39A8 expression patterns and differentially expressed genes (DEGs) between PH patients and normal controls (NC), based on four datasets (GSE24988, GSE113439, GSE117261, and GSE15197) from the Biotechnology Gene Expression Omnibus (NCBI GEO) database. Gene set enrichment analysis (GSEA) was performed to analyze signaling pathways enriched for DEGs. Hub genes were identified by cytoHubba analysis in Cytoscape. Reverse transcriptase-polymerase chain reaction was used to validate SLC39A8 and its correlated metabolic DEGs expression in PH (SU5416/Hypoxia) mice. Results SLC39A8 expression was downregulated in PH patients, and this expression pattern was validated in PH (SU5416/Hypoxia) mouse lung tissue. SLC39A8-correlated genes were mainly enriched in the metabolic pathways. Within these SLC39A8-correlated genes, 202 SLC39A8-correlated metabolic genes were screened out, and seven genes were identified as SLC39A8-correlated metabolic hub genes. The expression patterns of hub genes were analyzed between PH patients and controls and further validated in PH mice. Finally, four genes (Fasn, Nsdhl, Acat2, and Acly) were downregulated in PH mice. However, there were no significant differences in the expression of the other three hub genes between PH mice and controls. Of the four genes, Fasn and Acly are key enzymes in fatty acids synthesis, Nsdhl is involved in cholesterol synthesis, and Acat2 is implicated in cholesterol metabolic transformation. Taken together, these results provide novel insight into the role of Zip8 in PH.
Collapse
Affiliation(s)
- FanRong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yujing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - LiaoFan Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Hanfei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Chao Guo
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yanyan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Weifang Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Departments of Pharmacy, The Second Affiliated Hospital, Nanchang, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| |
Collapse
|
9
|
Sumiya R, Yamada K, Hagiwara T, Nagasaka S, Miyazaki H, Igari T, Kawamura YI. Kallikrein-related peptidase 13 expression and clinicopathological features in lung squamous cell carcinoma. Mol Clin Oncol 2023; 19:64. [PMID: 37559880 PMCID: PMC10407464 DOI: 10.3892/mco.2023.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 08/11/2023] Open
Abstract
Lung squamous cell carcinoma (LSCC) is associated with poor prognosis. Molecular targeting drugs have been demonstrated to be effective for lung adenocarcinoma; however, they are often not effective for LSCC. Kallikrein-related peptidase 13 (KLK13) expression enhances the malignancy of lung adenocarcinoma; however, its expression and crucial role in LSCC remain largely unknown. The present study examined the relationship between the KLK13 expression and clinicopathological features of LSCC. A total of 94 patients diagnosed with LSCC who underwent lobectomy, segmentectomy or wedge resection were selected. KLK13 expression was evaluated through immunostaining of formalin-fixed paraffin-embedded sections of surgical specimens. Of the 94 LSCC samples, 70 exhibited no KLK13 expression, while the remaining 24 exhibited ectopic expression. KLK13 expression in tumors was focal and restricted to the cytoplasm of keratinized cells. LSCC cases were classified into KLK13-negative and KLK13-positive groups, and KLK13 expression was positively associated with E-cadherin expression (P=0.0143). Associations between KLK13 expression and keratinization (P=0.0052) or absence of lymphatic vessel invasion (P=0.0603) were observed; however, these trends did not reach statistical significance. The present findings indicated that KLK13 expression in keratinized LSCC may have a protective role in lymphatic vessel invasion of LSCC, which suggests its significance for therapeutic applications against LSCC.
Collapse
Affiliation(s)
- Ryusuke Sumiya
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Thoracic Surgery, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kazuhiko Yamada
- Department of Surgery, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Teruki Hagiwara
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Satoshi Nagasaka
- Department of Thoracic Surgery, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hideki Miyazaki
- Pathology Division of Clinical Laboratory, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Toru Igari
- Pathology Division of Clinical Laboratory, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yuki I. Kawamura
- Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|
10
|
Avčin SL, Črepinšek K, Jenko Bizjan B, Šket R, Kovač J, Vrhovšek B, Blazina J, Blatnik O, Kordič R, Kitanovski L, Jazbec J, Debeljak M, Tesovnik T. Integrative Transcriptomic Profiling of the Wilms Tumor. Cancers (Basel) 2023; 15:3846. [PMID: 37568662 PMCID: PMC10416970 DOI: 10.3390/cancers15153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Our study aimed to identify relevant transcriptomic biomarkers for the Wilms tumor, the most common pediatric kidney cancer, independent of the histological type and stage. Using next-generation sequencing, we analyzed the miRNA profiles of 74 kidney samples, which were divided into two independent groups: fresh frozen tissue and formalin-fixed paraffin-embedded tissue samples. Subsequent mRNA expression profiling and pathway analysis were performed to establish the interplay and potential involvement of miRNAs and mRNA in the Wilms tumor. Comparative analysis, irrespective of post-dissection tissue processing, revealed 41 differentially expressed miRNAs, with 27 miRNAs having decreased expression and 14 miRNAs having increased expression in the Wilms tumor tissue compared to healthy kidney tissue. Among global mRNA transcriptomic profile differences, cross-sectional analysis suggested a limited list of genes potentially regulated by differentially expressed miRNAs in the Wilms tumor. This study identified the comprehensive miRNA and mRNA profile of the Wilms tumor using next-generation sequencing and bioinformatics approach, providing better insights into the pathogenesis of the Wilms tumor. The identified Wilms tumor miRNAs have potential as biomarkers for the diagnosis and treatment of the Wilms tumor, regardless of histological subtype and disease stage.
Collapse
Affiliation(s)
- Simona Lucija Avčin
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Klementina Črepinšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Robert Šket
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Blaž Vrhovšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Jerca Blazina
- Department of Pathology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Olga Blatnik
- Department of Pathology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Kordič
- Department of Pediatric Surgery, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Lidija Kitanovski
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Jazbec
- Department of Haematology and Oncology, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia; (S.L.A.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maruša Debeljak
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Institute of Special Laboratory Diagnostic, University Children’s Hospital, University Medical Centre Ljubljana (UMC), 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Gao Y, Cheng X, Han M. ZEB1-activated Notch1 promotes circulating tumor cell migration and invasion in lung squamous cell carcinoma. Clin Transl Oncol 2023; 25:817-829. [PMID: 36418641 DOI: 10.1007/s12094-022-02993-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is recognized as the major subtypes of non-small cell lung cancer (NSCLC). Circulating tumor cells (CTCs) are critical players in tumor metastasis. A molecular profiling of CTCs has previously identified notch receptor 1 (Notch1) as an important mediator in NSCLC. Therefore, we investigate Notch1 roles in LUSC and its related mechanisms. METHODS The serum levels of Notch1 were measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The CTCs isolated from blood samples were characterized via an immunofluorescence method. Cell motion was determined using Transwell chambers. The regulatory relationship between Notch1 and zinc finger E-box-binding homeobox 1 (ZEB1) was verified by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The protein levels were detected by western blotting. RESULTS Higher Notch1 expression in patients with LUSC than that in normal controls was observed. Notch1 knockdown inhibited cell motion and epithelial-mesenchymal transition (EMT). ZEB1 transcriptionally activated Notch1. ZEB1 upregulation exacerbated the malignant phenotypes of CTCs. CONCLUSION ZEB1-activated Notch1 promotes malignant phenotypes of CTCs in LUSC and indicates poor prognosis.
Collapse
Affiliation(s)
- Yong Gao
- Department of Clinical Laboratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, Fuyang, 236015, Anhui, China
| | - Xinyuan Cheng
- Ocean University of China, Qingdao, 266100, Shandong, China
| | - Mingfeng Han
- Department of Respiratory, Fuyang Second People's Hospital, Fuyang Infectious Disease Clinical College, Anhui Medical University, No. 1088, Yinghe West Road, Yingzhou District, Fuyang, 236015, Anhui, China.
| |
Collapse
|
12
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
13
|
Insights into the Peritumoural Brain Zone of Glioblastoma: CDK4 and EXT2 May Be Potential Drivers of Malignancy. Int J Mol Sci 2023; 24:ijms24032835. [PMID: 36769158 PMCID: PMC9917451 DOI: 10.3390/ijms24032835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Despite the efforts made in recent decades, glioblastoma is still the deadliest primary brain cancer without cure. The potential role in tumour maintenance and progression of the peritumoural brain zone (PBZ), the apparently normal area surrounding the tumour, has emerged. Little is known about this area due to a lack of common definition and due to difficult sampling related to the functional role of peritumoural healthy brain. The aim of this work was to better characterize the PBZ and to identify genes that may have role in its malignant transformation. Starting from our previous study on the comparison of the genomic profiles of matched tumour core and PBZ biopsies, we selected CDK4 and EXT2 as putative malignant drivers of PBZ. The gene expression analysis confirmed their over-expression in PBZ, similarly to what happens in low-grade glioma and glioblastoma, and CDK4 high levels seem to negatively influence patient overall survival. The prognostic role of CDK4 and EXT2 was further confirmed by analysing the TCGA cohort and bioinformatics prediction on their gene networks and protein-protein interactions. These preliminary data constitute a good premise for future investigations on the possible role of CDK4 and EXT2 in the malignant transformation of PBZ.
Collapse
|
14
|
Zhang Q, Yang P, Pang X, Guo W, Sun Y, Wei Y, Pang C. Preliminary exploration of the co-regulation of Alzheimer's disease pathogenic genes by microRNAs and transcription factors. Front Aging Neurosci 2022; 14:1069606. [PMID: 36561136 PMCID: PMC9764863 DOI: 10.3389/fnagi.2022.1069606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of age-related neurodegenerative disease. Unfortunately, due to the complexity of pathological types and clinical heterogeneity of AD, there is a lack of satisfactory treatment for AD. Previous studies have shown that microRNAs and transcription factors can modulate genes associated with AD, but the underlying pathophysiology remains unclear. Methods The datasets GSE1297 and GSE5281 were downloaded from the gene expression omnibus (GEO) database and analyzed to obtain the differentially expressed genes (DEGs) through the "R" language "limma" package. The GSE1297 dataset was analyzed by weighted correlation network analysis (WGCNA), and the key gene modules were selected. Next, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis for the key gene modules were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, for the GSE150693 dataset, the "R" package "survivation" was used to integrate the data of survival time, AD transformation status and 35 characteristics, and the key microRNAs (miRNAs) were selected by Cox method. We also performed regression analysis using least absolute shrinkage and selection operator (Lasso)-Cox to construct and validate prognostic features associated with the four key genes using different databases. We also tried to find drugs targeting key genes through DrugBank database. Results GO and KEGG enrichment analysis showed that DEGs were mainly enriched in pathways regulating chemical synaptic transmission, glutamatergic synapses and Huntington's disease. In addition, 10 hub genes were selected from the PPI network by using the algorithm Between Centrality. Then, four core genes (TBP, CDK7, GRM5, and GRIA1) were selected by correlation with clinical information, and the established model had very good prognosis in different databases. Finally, hsa-miR-425-5p and hsa-miR-186-5p were determined by COX regression, AD transformation status and aberrant miRNAs. Conclusion In conclusion, we tried to construct a network in which miRNAs and transcription factors jointly regulate pathogenic genes, and described the process that abnormal miRNAs and abnormal transcription factors TBP and CDK7 jointly regulate the transcription of AD central genes GRM5 and GRIA1. The insights gained from this study offer the potential AD biomarkers, which may be of assistance to the diagnose and therapy of AD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenbo Guo
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yue Sun
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yanyu Wei
- National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
15
|
Wu H, Zhao X, Zhu T, Rong D, Wang Y, Leng D, Wu D. A Glycosyltransferase-Related Signature for Predicting Overall Survival in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:856671. [PMID: 35899200 PMCID: PMC9311713 DOI: 10.3389/fgene.2022.856671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Background: Here, we establish a prognostic signature based on glycosyltransferase-related genes (GTRGs) for head and neck squamous cell carcinoma (HNSCC) patients. Methods: The prognostic signature of GTRGs was constructed via univariate and multivariate Cox analyses after obtaining the expression patterns of GTRGs from the TCGA. A nomogram based on the signature and clinical parameters was established to predict the survival of each HNSCC patient. Potential mechanisms were explored through gene set enrichment analysis (GSEA) and immune cell infiltration, immune checkpoints, immunotherapy, and tumor mutational burden (TMB) analyses. The expression differences and prognostic efficacy of the signature were verified through the gene expression omnibus (GEO) and several online databases. Results: The prognostic signature was constructed based on five glycosyltransferases (PYGL, ALG3, EXT2, FUT2, and KDELC1) and validated in the GSE65858 dataset. The pathways enriched in the high- and low-risk groups were significantly different. The high-risk group had higher tumor purity; lower infiltration of immune cells, such as CD8+ T cells and Tregs; higher cancer-associated fibroblast (CAF) infiltration; lower immune function; and lower checkpoint expression. The signature can also be applied to distinguish whether patients benefit from immunotherapy. In addition, the high-risk group had a higher TMB and more gene mutations, including those in TP53, CSMD1, CDKN2A, and MUC17. Conclusion: We propose a prognostic signature based on glycosyltransferases for HNSCC patients that may provide potential targets and biomarkers for the precise treatment of HNSCC.
Collapse
Affiliation(s)
- Huili Wu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiao Zhao
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Tingting Zhu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Di Rong
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ying Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Diya Leng
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Daming Wu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Oral and Maxillofacial Imaging, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
- *Correspondence: Daming Wu,
| |
Collapse
|
16
|
Identification of ribosomal protein family in triple-negative breast cancer by bioinformatics analysis. Biosci Rep 2021; 41:227258. [PMID: 33305312 PMCID: PMC7789804 DOI: 10.1042/bsr20200869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for ∼20% of all breast cancer (BC) cases. The management of TNBC represents a challenge due to its worse prognosis, heterogeneity and lack of targeted therapy. Moreover, its mechanisms are not fully clear. The aim of the study is to identify crucial genes between TNBC and non-TNBC for underlying targets for diagnostic and therapeutic methods of TNBC. The differentially expressed genes (DEGs) between TNBC and non-TNBC were selected from the Gene Expression Omnibus (GEO) database after the integrated analysis of two datasets (GSE65194 and GSE76124). Then Gene ontology (GO) and KEGG analysis were performed by DAVID database, protein-protein interaction (PPI) of DEGs was constructed by Search Tool for the Retrieval of Reciprocity Genes (STRING) database. Furthermore, centrality analysis and module analysis were carried out by Cytoscape to analyze the TNBC-related PPI. Subsequently, overall survival (OS) analysis was performed by GEPIA. Finally, the expressions of these key genes in TNBC and non-TNBC tissues were tested by qRT-PCR. The results showed that 955 DEGs were obtained, which were mainly enriched in ribosome, ribosomal subunit, and so on. Moreover, 19 candidate genes were focused on by centrality analysis and module analysis. Furthermore, we found the low expressions of ribosomal protein S9 (RPS9), ribosomal protein S14 (RPS14), ribosomal protein S27 (RPS27), ribosomal protein L11 (RPL11) and ribosomal protein L14 (RPL14) were related to a poor OS in BC patients. Additionally, qRT-PCR results suggested that these five genes were notably down-regulated in TNBC tissues. In summary, the present study suggests that ribosomal proteins are related to TNBC, and they may play an important role in the diagnosis, treatment and prognosis of TNBC.
Collapse
|