1
|
Leroy A, Teh AL, Dondelinger F, Alvarez MA, Wang D. Longitudinal prediction of DNA methylation to forecast epigenetic outcomes. EBioMedicine 2025; 115:105709. [PMID: 40267756 PMCID: PMC12051112 DOI: 10.1016/j.ebiom.2025.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/27/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Epigenetic changes in early life play an important role in the development of health conditions in children. Longitudinally measuring and forecasting changes in DNA methylation can reveal patterns of ageing and disease progression, but biosamples may not always be available. METHODS We introduce a probabilistic machine learning framework based on multi-mean Gaussian processes, accounting for individual and gene correlations across time to forecast the methylation status of an individual into the future. Predicted methylation values were used to compute future epigenetic age and compared to chronological age. FINDINGS We show that this method can simultaneously predict methylation status at multiple genomic sites in children (age 5-7) using methylation data from earlier ages (0-4). Less than 10% difference between observed and predicted methylation values is found in approximately 95% of methylation sites. We show that predicted methylation profiles can be used to estimate other molecular phenotypes, such as epigenetic age, at any timepoint and enable association tests with health outcomes measured at the same timepoint. INTERPRETATION Limited longitudinal profiling of DNA methylation coupled with machine learning enables forecasting of epigenetic ageing and future health outcomes. FUNDING Wellcome Trust, Singapore National Research Foundation (NRF), Singapore National Medical Research Council (NMRC), Agency for Science, Technology and Research (A∗STAR), UK Academy of Medical Sciences and the UK Engineering and Physical Sciences Research Council (EPSRC).
Collapse
Affiliation(s)
- Arthur Leroy
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom; Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom.
| | - Ai Ling Teh
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Frank Dondelinger
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Mauricio A Alvarez
- Department of Computer Science, The University of Manchester, Manchester, United Kingdom; Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Dennis Wang
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom; Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
2
|
Ezegbogu M, Wilkinson E, Reid G, Rodger EJ, Brockway B, Russell-Camp T, Kumar R, Chatterjee A. Cell-free DNA methylation in the clinical management of lung cancer. Trends Mol Med 2024; 30:499-515. [PMID: 38582623 DOI: 10.1016/j.molmed.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
The clinical use of cell-free DNA (cfDNA) methylation in managing lung cancer depends on its ability to differentiate between malignant and healthy cells, assign methylation changes to specific tissue sources, and elucidate opportunities for targeted therapy. From a technical standpoint, cfDNA methylation analysis is primed as a potential clinical tool for lung cancer screening, early diagnosis, prognostication, and treatment, pending the outcome of elaborate validation studies. Here, we discuss the current state of the art in cfDNA methylation analysis, examine the unique features and limitations of these new methods in a clinical context, propose two models for applying cfDNA methylation data for lung cancer screening, and discuss future research directions.
Collapse
Affiliation(s)
- Mark Ezegbogu
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Emma Wilkinson
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Glen Reid
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand
| | - Ben Brockway
- Department of Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Takiwai Russell-Camp
- Department of Medicine, Dunedin School of Medicine, University of Otago, New Zealand
| | - Rajiv Kumar
- St George's Cancer Care Centre, 131 Leinster Road, Christchurch, 8014, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, New Zealand; SoHST Faculty, UPES University, Dehradun 248007, India.
| |
Collapse
|
3
|
Qin Q, Zhou Y, Guo J, Chen Q, Tang W, Li Y, You J, Li Q. Conserved methylation signatures associate with the tumor immune microenvironment and immunotherapy response. Genome Med 2024; 16:47. [PMID: 38566132 PMCID: PMC10985907 DOI: 10.1186/s13073-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Aberrant DNA methylation is a major characteristic of cancer genomes. It remains unclear which biological processes determine epigenetic reprogramming and how these processes influence the variants in the cancer methylome, which can further impact cancer phenotypes. METHODS We performed pairwise permutations of 381,900 loci in 569 paired DNA methylation profiles of cancer tissue and matched normal tissue from The Cancer Genome Atlas (TCGA) and defined conserved differentially methylated positions (DMPs) based on the resulting null distribution. Then, we derived independent methylation signatures from 2,465 cancer-only methylation profiles from the TCGA and 241 cell line-based methylation profiles from the Genomics of Drug Sensitivity in Cancer (GDSC) cohort using nonnegative matrix factorization (NMF). We correlated DNA methylation signatures with various clinical and biological features, including age, survival, cancer stage, tumor immune microenvironment factors, and immunotherapy response. We inferred the determinant genes of these methylation signatures by integrating genomic and transcriptomic data and evaluated the impact of these signatures on cancer phenotypes in independent bulk and single-cell RNA/methylome cohorts. RESULTS We identified 7,364 differentially methylated positions (2,969 Hyper-DMPs and 4,395 Hypo-DMPs) in nine cancer types from the TCGA. We subsequently retrieved three highly conserved, independent methylation signatures (Hyper-MS1, Hypo-MS1, and Hypo-MS4) from cancer tissues and cell lines based on these Hyper and Hypo-DMPs. Our data suggested that Hypo-MS4 activity predicts poor survival and is associated with immunotherapy response and distant tumor metastasis, and Hypo-MS4 activity is related to TP53 mutation and FOXA1 binding specificity. In addition, we demonstrated a correlation between the activities of Hypo-MS4 in cancer cells and the fractions of regulatory CD4 + T cells with the expression levels of immunological genes in the tumor immune microenvironment. CONCLUSIONS Our findings demonstrated that the methylation signatures of distinct biological processes are associated with immune activity in the cancer microenvironment and predict immunotherapy response.
Collapse
Affiliation(s)
- Qingqing Qin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ying Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jintao Guo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Tang
- Department of Medical Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian, Medical University, Xiamen, 361003, China
| | - Yuchen Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jun You
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, Cancer Center, Xiamen, 361003, China
| | - Qiyuan Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China.
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
4
|
Duan S, Luo H, Wang Y, Jiang D, Liu J, Li J, Zheng H, Zhao T, Liu C, Zhang H, Mao C, Zhang L, Xu Y. Dynamic monitoring of UBA1 somatic mutations in patients with relapsing polychondritis. Orphanet J Rare Dis 2024; 19:1. [PMID: 38167209 PMCID: PMC10762806 DOI: 10.1186/s13023-023-03003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Commonly clinically diagnosed with relapsing polychondritis (RP), vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic syndrome (VEXAS) is a recently identified autoinflammatory disease caused by UBA1 somatic mutations. The low frequency and dynamic changes challenge the accurate detection of somatic mutations. The present study monitored these mutations in Chinese patients with RP. We included 44 patients with RP. Sanger sequencing of UBA1 was performed using genomic DNA from peripheral blood. Droplet digital polymerase chain reaction (ddPCR) was performed to screen low-prevalence somatic variants. RESULTS Multiple ddPCR detections were performed using available blood samples collected at different follow-up time points. Three male patients were UBA1 somatic mutation carriers. Sanger sequencing detected the somatic UBA1 variant c.122T > C (p.Met41Thr) in two male patients. Initial ddPCR confirmed the variant in the two patients, with allele fractions of 73.75% and 88.46%, respectively, while yielding negative results in other patients. Subsequent ddPCR detected the somatic variant (c.122T > C) with low prevalence (1.02%) in another male patient from blood samples collected at a different time point, and confirmed dynamically fractional abundance in one patient with VEXAS, with allele fractions of 73.75%, 61.28%, 65.01%, and 73.75%. Nine patients assessed by ddPCR at different time points remained negative. CONCLUSION We report UBA1 variants in patients with RP in the Chinese population for the first time. Multiple ddPCR detections from samples collected at different time points can enhance sensitivity and should be considered for patients with initial negative ddPCR results.
Collapse
Affiliation(s)
- Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Rheumatology & Immunology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongbin Jiang
- Rheumatology & Immunology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajia Liu
- Rheumatology & Immunology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyang Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Rheumatology & Immunology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Dong Q, Chen C, Hu Y, Zhang W, Yang X, Qi Y, Zhu C, Chen X, Shen X, Ji W. Clinical application of molecular residual disease detection by circulation tumor DNA in solid cancers and a comparison of technologies: review article. Cancer Biol Ther 2023; 24:2274123. [PMID: 37955635 PMCID: PMC10653633 DOI: 10.1080/15384047.2023.2274123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 11/14/2023] Open
Abstract
Molecular residual disease (MRD), detected by circulating tumor DNA (ctDNA) can be involved in the entire process of solid tumor management, including recurrence prediction, efficacy evaluation, and risk stratification. Currently, the detection technologies are divided into two main categories, as follows: tumor-agnostic and tumor informed. Tumor-informed assay obtains mutation information by sequencing tumor tissue samples before blood MRD monitoring, followed by formulation of a personalized MRD panel. Tumor-agnostic assays are carried out using a fixed panel without the mutation information from primary tumor tissue. The choice of testing strategy may depend on the level of evidence from ongoing randomized clinical trials, investigator preference, cost-effectiveness, patient economics, and availability of tumor tissue. The review describes the difference between tumor informed and tumor agnostic detection. In addition, the clinical application of ctDNA MRD in solid tumors was introduced, with emphasis on lung cancer, colorectal cancer, Urinary system cancer, and breast cancer.
Collapse
Affiliation(s)
- Qiantong Dong
- Department of Gastrointestinal Surveillance, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang, China
| | - Chenbin Chen
- Department of Gastrointestinal Surveillance, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surveillance, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou City, Zhejiang, China
| | - Yuanbo Hu
- Department of Gastrointestinal Surveillance, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surveillance, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou City, Zhejiang, China
| | - Weiteng Zhang
- Department of Gastrointestinal Surveillance, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang, China
| | - Xinxin Yang
- Department of Gastrointestinal Surveillance, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou City, Zhejiang, China
| | - Yingxue Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co.Ltd, The state Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Chan Zhu
- The Medical Department, Jiangsu Simcere Diagnostics Co.Ltd, The state Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Xiaodong Chen
- Department of Gastrointestinal Surveillance, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang, China
| | - Xian Shen
- Department of Gastrointestinal Surveillance, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surveillance, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou City, Zhejiang, China
| | - Weiping Ji
- Department of Gastrointestinal Surveillance, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang, China
- Department of Gastrointestinal Surveillance, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou City, Zhejiang, China
| |
Collapse
|
6
|
Wang S, Xia Z, You J, Gu X, Meng F, Chen P, Tang W, Bao H, Zhang J, Wu X, Shao Y, Wang J, Zuo X, Xu L, Yin R. Enhanced Detection of Landmark Minimal Residual Disease in Lung Cancer Using Cell-free DNA Fragmentomics. CANCER RESEARCH COMMUNICATIONS 2023; 3:933-942. [PMID: 37377889 PMCID: PMC10228550 DOI: 10.1158/2767-9764.crc-22-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 06/29/2023]
Abstract
Currently, approximately 30%-55% of the patients with non-small cell lung cancer (NSCLC) develop recurrence due to minimal residual disease (MRD) after receiving surgical resection of the tumor. This study aims to develop an ultrasensitive and affordable fragmentomic assay for MRD detection in patients with NSCLC. A total of 87 patients with NSCLC, who received curative surgical resections (23 patients relapsed during follow-up), enrolled in this study. A total of 163 plasma samples, collected at 7 days and 6 months postsurgical, were used for both whole-genome sequencing (WGS) and targeted sequencing. WGS-based cell-free DNA (cfDNA) fragment profile was used to fit regularized Cox regression models, and leave-one-out cross-validation was further used to evaluate models' performance. The models showed excellent performances in detecting patients with a high risk of recurrence. At 7 days postsurgical, the high-risk patients detected by our model showed an increased risk of 4.6 times, while the risk increased to 8.3 times at 6 months postsurgical. These fragmentomics determined higher risk compared with the targeted sequencing-based circulating mutations both at 7 days and 6 months postsurgical. The overall sensitivity for detecting patients with recurrence reached 78.3% while using both fragmentomics and mutation results from 7 days and 6 months postsurgical, which increased from the 43.5% sensitivity by using only the circulating mutations. The fragmentomics showed great sensitivity in predicting patient recurrence compared with the traditional circulating mutation, especially after the surgery for early-stage NSCLC, therefore exhibiting great potential to guide adjuvant therapeutics. Significance The circulating tumor DNA mutation-based approach shows limited performance in MRD detection, especially for landmark MRD detection at an early-stage cancer after surgery. Here, we describe a cfDNA fragmentomics-based method in MRD detection of resectable NSCLC using WGS, and the cfDNA fragmentomics showed a great sensitivity in predicting prognosis.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Zhijun Xia
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Jing You
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Xiaolan Gu
- Department of Anesthesiology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Fanchen Meng
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Peng Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Wanxiangfu Tang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Hua Bao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Jingyuan Zhang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Jie Wang
- Department of Science and Technology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, P.R. China
| | - Xianglin Zuo
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Department of Science and Technology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
7
|
Ren XD, Su N, Sun XG, Li WM, Li J, Li BW, Li RX, Lv J, Xu QY, Kong WL, Huang Q. Advances in liquid biopsy-based markers in NSCLC. Adv Clin Chem 2023; 114:109-150. [PMID: 37268331 DOI: 10.1016/bs.acc.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the second most-frequently occurring cancer and the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer (NSCLC), the most common type of lung cancer is often diagnosed in middle or advanced stages and have poor prognosis. Diagnosis of disease at an early stage is a key factor for improving prognosis and reducing mortality, whereas, the currently used diagnostic tools are not sufficiently sensitive for early-stage NSCLC. The emergence of liquid biopsy has ushered in a new era of diagnosis and management of cancers, including NSCLC, since analysis of circulating tumor-derived components, such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), cell-free RNAs (cfRNAs), exosomes, tumor-educated platelets (TEPs), proteins, and metabolites in blood or other biofluids can enable early cancer detection, treatment selection, therapy monitoring and prognosis assessment. There have been great advances in liquid biopsy of NSCLC in the past few years. Hence, this chapter introduces the latest advances on the clinical application of cfDNA, CTCs, cfRNAs and exosomes, with a particular focus on their application as early markers in the diagnosis, treatment and prognosis of NSCLC.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jing Lv
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qian-Ying Xu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei-Long Kong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
8
|
Gristina V, La Mantia M, Peri M, Iacono F, Barraco N, Perez A, Viscardi G, Cutaia S, Russo TDB, Anwar Z, Incorvaia L, Fulfaro F, Vieni S, Pantuso G, Graceffa G, Russo A, Galvano A, Bazan V. Navigating the liquid biopsy Minimal Residual Disease (MRD) in non-small cell lung cancer: Making the invisible visible. Crit Rev Oncol Hematol 2023; 182:103899. [PMID: 36596401 DOI: 10.1016/j.critrevonc.2022.103899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023] Open
Abstract
Liquid biopsy has gained increasing interest in the growing era of precision medicine as minimally invasive technique. Recent findings demonstrated that detecting minimal or molecular residual disease (MRD) in NSCLC is a challenging matter of debate that need multidisciplinary competencies, avoiding the overtreatment risk along with achieving a significant survival improvement. This review aims to provide practical consideration for solving data interpretation questions about MRD in NSCLC thanks to the close cooperation between biologists and oncology clinicians. We discussed with a translational approach the critical point of view from benchside, bedside and bunchside to facilitate the future applicability of liquid biopsy in this setting. Herein, we defined the clinical significance of MRD, focusing on relevant practical consideration about advantages and disadvantages, speculating on future clinical trial design and standardization of MRD technology.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Maria La Mantia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Marta Peri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Federica Iacono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppe Viscardi
- Medical Oncology, Department of Pneumology and Oncology, AORN Ospedali dei Colli, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Sofia Cutaia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Zubair Anwar
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Fabio Fulfaro
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Salvatore Vieni
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Gianni Pantuso
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppa Graceffa
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy.
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Experimental Biomedicine and Clinical Neurosciences, School of Medicine, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|