1
|
Du J, Meng X, Yang M, Chen G, Li J, Zhu Z, Wu X, Hu W, Tian M, Li T, Ren S, Zhao P. NGR-Modified CAF-Derived exos Targeting Tumor Vasculature to Induce Ferroptosis and Overcome Chemoresistance in Osteosarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410918. [PMID: 39889249 PMCID: PMC11948032 DOI: 10.1002/advs.202410918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/13/2024] [Indexed: 02/02/2025]
Abstract
Osteosarcoma (OS) chemoresistance presents a significant clinical challenge. This study aims to investigate the potential of using tumor vascular-targeting peptide NGR-modified cancer-associated fibroblasts (CAFs)-derived exosomes (exos) to deliver circ_0004872-encoded small peptides promoting autophagy-dependent ferroptosis to reverse chemoresistance in OS. Through combined single-cell transcriptome analysis and high-throughput sequencing, it identified circ_0004872 associated with chemoresistance. Subsequent experiments demonstrated that the small peptide encoded by this Circular RNA (circRNA) can effectively reverse chemoresistance by enhancing OS cell sensitivity to chemotherapy via the mechanism of promoting autophagy-dependent ferroptosis. Moreover, in vitro and in vivo results confirmed the efficient delivery of NGR-modified CAFs-derived exo-packaged circ_0004872-109aa to tumor cells, thereby improving targeted therapy efficacy. This study not only offers a novel strategy to overcome chemoresistance in OS but also highlights the potential application value of utilizing exos for drug delivery.
Collapse
Affiliation(s)
- Jianxin Du
- Center of Translational MedicineZibo Central Hospital Affiliated to Binzhou Medical UniversityZibo255036China
| | - Xiangwei Meng
- Center of Translational MedicineZibo Central Hospital Affiliated to Binzhou Medical UniversityZibo255036China
| | - Minghao Yang
- Department of RadiologyYantai Affiliated Hospital of Binzhou Medical UniversityYantai264100China
| | - Guancheng Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjing211166China
| | - Jigang Li
- Department of OrthopedicsZibo Central Hospital Affiliated to Binzhou Medical UniversityZibo255036China
| | - Zengjun Zhu
- School of Medical LaboratoryShandong Second Medical UniversityWeifang261042China
| | - Xuanxuan Wu
- School of Medical LaboratoryShandong Second Medical UniversityWeifang261042China
| | - Wei Hu
- Center of Translational MedicineZibo Central Hospital Affiliated to Binzhou Medical UniversityZibo255036China
| | - Maojin Tian
- Center of Translational MedicineZibo Central Hospital Affiliated to Binzhou Medical UniversityZibo255036China
| | - Tao Li
- Department of OrthopedicsNanjing Jiangbei HospitalNanjing210044China
| | - Shuai Ren
- Center of Translational MedicineZibo Central Hospital Affiliated to Binzhou Medical UniversityZibo255036China
| | - Peiqing Zhao
- Center of Translational MedicineZibo Central Hospital Affiliated to Binzhou Medical UniversityZibo255036China
| |
Collapse
|
2
|
Ding W, Li Z, Liu X, Wang J, Wang J, Jiang G, Yu H, Wang T. Hsa_circ_0008667 promotes progression and improves the prognosis of gastric cancer by inhibiting miR-9-5p. Arab J Gastroenterol 2024; 25:349-355. [PMID: 39455349 DOI: 10.1016/j.ajg.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND AND STUDY AIM Gastric cancer (GC) is one of the most common gastrointestinal tumors characterized by aggressive development and poor prognosis. Circular RNAs (circRNAs) have been used as prognostic biomarkers and therapeutic targets in many cancers, including GC. Hsa_circ_0008667 is differentially expressed in GC; however, its function and clinical significance remained unelucidated. Therefore, this study aimed to investigate the role and significance of hsa_circ_0008667 in GC and its potential as a biomarker and therapeutic target of GC. PATIENTS AND METHODS Through quantitative reverse-transcription real-time PCR, hsa_circ_0008667 expression in GC tissues and cells were analyzed, followed by statistical analyses to assess the clinical significance. Cell Counting Kit-8 and Transwell assays were performed to examine the effects of hsa_circ_0008667 silencing on GC cell growth and metastasis. Additionally, correlation analysis was performed to assess the relationship between hsa_circ_0008667 and miR-9-5p, which was further validated through luciferase reporter assay. RESULTS Hsa_circ_0008667 was considerably upregulated and tightly correlated with lymph node metastasis and the tumor-node-metastasis stage, which was predictive of poor prognosis in patients with GC. Hsa_circ_0008667 silencing suppressed GC cell proliferation, migration, and invasion. Furthermore, hsa_circ_0008667 negatively regulated miR-9-5p expression. MiR-9-5p downregulation enhanced GC malignancy and reversed hsa_circ_0008667 knockdown-mediated GC suppression. CONCLUSION The findings of this study suggest hsa_circ_0008667 to be a prognostic biomarker and tumor promoter of GC via miR-9-5p modulation.
Collapse
Affiliation(s)
- Wei Ding
- Department of Oncology, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China
| | - Zhengliang Li
- Second Department of Radiotherapy, Yantaishan Hospital, Yantai 264003, China
| | - Xiaojing Liu
- Department of Traditional Chinese Medicine, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Jundong Wang
- Department of Traditional Chinese Medicine, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Jiaxi Wang
- Department of Business Management Division II, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Guoxiang Jiang
- Second Department of Radiotherapy, Yantaishan Hospital, Yantai 264003, China
| | - Haizhou Yu
- Department of Pharmacology and Toxicology, Yantai Center for Food and Drug Control, Yantai 264003, China
| | - Tuya Wang
- Department of Medicine, Hetao College, Bayannur 015000, China.
| |
Collapse
|
3
|
Arefnezhad R, Ashna S, Rezaei-Tazangi F, Arfazadeh SM, Seyedsalehie SS, Yeganeafrouz S, Aghaei M, Sanandaji M, Davoodi R, Abadi SRK, Vosough M. Noncoding RNAs and programmed cell death in hepatocellular carcinoma: Significant role of epigenetic modifications in prognosis, chemoresistance, and tumor recurrence rate. Cell Biol Int 2024; 48:556-576. [PMID: 38411312 DOI: 10.1002/cbin.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/β-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Ashna
- Student Research Committee, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyede Shabnam Seyedsalehie
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Shaghayegh Yeganeafrouz
- Department of Medical Science, Faculty of Medicine, Islamic Azad University, Medical branch, Tehran, Iran
| | - Melika Aghaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Sanandaji
- Department of Physical Education and Sport Sciences, Tehran University, Tehran, Iran
| | | | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Institution for Laboratory Medicine, Karolinska Institutet, Experimental Cancer Medicine, Huddinge, Sweden
| |
Collapse
|
4
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
5
|
Bandarian F, Razi F, Razzaghi Z, Rostami Nejad M, Arjmand B, Ahmadzadeh A. Network analysis of H. pylori effect on AGS human gastric adenocarcinoma cells gene expression profile. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2024; 17:415-421. [PMID: 40406433 PMCID: PMC12094504 DOI: 10.22037/ghfbb.v17i4.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/27/2024] [Indexed: 05/26/2025]
Abstract
Aim To better understand the molecular mechanism of Helicobacter pylori (H. pylori) in adenocarcinoma, the gene expression profile of AGS cells was analyzed by complementary study. Background Gastric cancer, as one of the most lethal malignancies in the world, is important to be studied in terms of biomarkers. On the other hand, Helicobacter pylori is one of the key risk factors in this type of disease. Methods In this cross-sectional study, we evaluated the seroprevalence of total and IgM anti-HAV antibodies of 254 institutionalized people with intellectual disabilities. Total and IgM anti-HAV antibodies of the blood samples of these people were determined by ELISA method. Protein-protein interaction (PPI) network analysis is a bioinformatic study with validation values for biomarker identification and clarification of molecular mechanisms. Cytoscape V 3.10.2 and its application identified potential central elements of the PPI network and its corresponding roles. Results GAPDH and P53 are the most promising candidates in this study. In addition, the microRNA signatures assessment provided more information about these biomarkers and added more value. Conclusion Consequently, a new outlook for the relationship between gastric cancer and H. pylori was explored based on the new key biomarkers.
Collapse
Affiliation(s)
- Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser application in medical sciences research center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Mohammad Rostami Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Alireza Ahmadzadeh
- Proteomics Research Center, System Biology Institute, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of lab sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|