1
|
Yang Y, Li Z, Yang Y, Xiao P, He Z, Zhang Z, Li Y, Shi L, Wang X, Tao Y, Fan J, Zhang F, Yang C, Yao F, Ji T, Zhang Y, Zhou B, Yu J, Guo A, Wei Z, Jiao W, Wu Y, Li Y, Wu D, Wu Y, Gao L, Hu Y, Pan J, Hu S, Yang X. The RBM39 degrader indisulam inhibits acute megakaryoblastic leukemia by altering the alternative splicing of ZMYND8. Cell Biosci 2025; 15:46. [PMID: 40223119 PMCID: PMC11995665 DOI: 10.1186/s13578-025-01380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Acute megakaryoblastic leukemia (AMKL) is a rare hematological malignancy in adults but children. Alternative splicing (AS) has been shown to affect hematological cancer progression, making splicing factors promising targets. Our research aims to investigate the efficacy of the molecular glue degrader indisulam, which targets the splicing factor RNA binding motif protein 39 (RBM39) in AMKL models. RESULTS Public drug sensitivity data analysis revealed that AMKL cell lines exhibited the highest sensitivity to indisulam compared with other tumor types. Then we confirmed that RBM39 depletion by indisulam treatment induced AMKL cell cycle arrest and apoptosis. In AMKL mouse model, indisulam treatment significantly reduced the leukemic burden and prolonged the lifetime of AMKL mice. Mechanically, integration of transcriptomic and proteomic analyses revealed that indisulam-mediated RBM39 degradation resulted in AS of the transcription factor zinc finger MYND-type containing 8 (ZMYND8), an AMKL cell growth regulator. Finally, the effectiveness of indisulam depended on DDB1- and Cul4- Associated Factor 15 (DCAF15) expression because knockout of DCAF15 rescued the indisulam-induced RBM39 degradation and mis-splicing of ZMYND8. CONCLUSION Indisulam is a promising therapeutic candidate for AMKL and the RBM39-mediated ZMYND8 splicing plays an important role in promoting the development of AMKL.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yizhen Li
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaodong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Junjie Fan
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Fenli Zhang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Chunxia Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China
| | - Fahua Yao
- Department of Pediatrics, Guizhou Hospital, Shanghai Children's Medical Center, Guiyang, 550004, China
| | - Tongting Ji
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yongping Zhang
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Bi Zhou
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, 234000, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Ailian Guo
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Zhongling Wei
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Wanyan Jiao
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, Yancheng Third People's Hospital, Yancheng, 224000, China
| | - Yumeng Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatric, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yijun Wu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Li Gao
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Yixin Hu
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China.
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China.
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, SIP, Suzhou, 215003, China.
- Jiangsu Pediatric Hematology and Oncology Center, Suzhou, 215003, China.
| | - Xiaoyan Yang
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Guiyang, 550001, China.
| |
Collapse
|
2
|
Zhao S, Song Y, Nakashima Y, Zou X, Koga T, Ishida T, Li R, Hirota Y, Tanaka Y, Ishii Y. Ablation of Mouse Selenium-Binding Protein 1 and 2 Elevates LDL by Disruption of Cholesterol Efflux and Lipid Metabolism. Int J Mol Sci 2025; 26:3363. [PMID: 40244197 PMCID: PMC11989624 DOI: 10.3390/ijms26073363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium-binding protein 1 (SeBP1) is an anticancer factor that affects lipid metabolism in mouse kidneys via the peroxisome proliferator-activated receptor-alpha (PPARA) pathway. However, its physiological role in the liver is difficult to explain because of the presence of the highly homologous selenium-binding protein 2 (SeBP2). To investigate the role of these proteins in the liver, we generated SeBP1 and SeBP2 double-knockout mice (SeBP1/2-DK). SeBP1/2 deletion did not significantly alter the mice phenotypic compared to that of the wild-type strain. Then, we identified the genes involved in hepatic lipid metabolism. The double knockout did not affect fatty acid and cholesterol synthesis, but inhibited fatty acid oxidation and cholesterol efflux. Furthermore, transfection of HepG2 cells with human selenium-binding protein 1 (hSeBP1) positively regulated PPARA and the genes controlled by it. Overexpression of hSeBP1 reduced the levels of non-esterified fatty acids in the culture medium. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides were significantly different among the three groups. In summary, we elucidated the potential signaling pathways of SeBP1 and SeBP2 in fatty acid oxidation and hepatic cholesterol efflux. Our findings provide insights relevant for developing new strategies to prevent and treat lipid metabolism disorders.
Collapse
Grants
- Scientific Research (A) JSPS KAKENHI JP17H00788, Recipient YI Japan Society for the Promotion of Science
- Scientific Research (A) JSPS KAKENHI JP21H04928, Recipient YI Japan Society for the Promotion of Science
- JSPS Fellows JSPS KAKENHI 24KJ1773, Recipient SZ Japan Society for the Promotion of Science
- Research on Food Safety (H30-Designated Research-005, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- the Ministry of Health, Labor and Welfare, Japan [Research on Food Safety (R3-Designated Research JP21KA2003, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- Research on Food Safety ( R6-Designated Research JP24KA2001, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
Collapse
Affiliation(s)
- Shuangli Zhao
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yingxia Song
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuko Nakashima
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Xing Zou
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa 831-8501, Japan;
| | - Renshi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| |
Collapse
|
3
|
Varlamova EG. Selenium-containing compounds, selenium nanoparticles and selenoproteins in the prevention and treatment of lung cancer. J Trace Elem Med Biol 2025; 88:127620. [PMID: 39970692 DOI: 10.1016/j.jtemb.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
THE OBJECTIVE Is to review the latest data on the role of key organic and inorganic compounds of the essential trace element selenium, selenium-containing nanocomposites and nanoparticles, and selenoproteins in lung cancer therapy. OBJECT OF RESEARCH Sodium selenite, methylselenic acid, selenomethionine, selenium nanoparticles, mammalian selenoproteins KEY OBJECTIVES:: To describe the molecular mechanisms of the cytotoxic effect of sodium selenite, methylselenic acid and selenomethionine on lung cancer cells, to discuss the latest advances in lung cancer nanomedicine using selenium-based nanoparticles and nanocomposites and to assess the prospects for creating antitumor drugs based on them, to assess the role of selenoproteins in the progression or inhibition of lung cancer and to study the molecular mechanisms of such regulation CONCLUSIONS:: This review provides a complete picture of the role of selenium and selenium-containing agents of various natures in the regulation of carcinogenesis and therapy of lung cancer, which significantly complements the fundamental data on the functions of these compounds, on the molecular mechanisms of regulation of processes associated with lung cancer. This knowledge provides insight into the latest developments and future prospects in the treatment and prevention of lung cancer with the active participation of the trace element selenium.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", st. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
4
|
Pham VD, Lee JH, Shin D, Vu HM, Jung J, Kashyap MK, Lee SH, Kim MS. On the Ocean of Biomarkers for the Precise Diagnosis and Prognosis of Lung Diseases. Proteomics Clin Appl 2025:e70003. [PMID: 40098318 DOI: 10.1002/prca.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Bronchoalveolar lavage fluid (BALF) has long been used for diagnosing various lung diseases through its cellular components. However, the clinical utility of biomolecules in the BALF remains largely unexplored. Recently, mass spectrometry-based proteomics has been applied to profile the BALF proteomes to identify novel biomarkers for lung diseases. This review discusses the current progress in the field of BALF proteomics and highlights its potential as a valuable source of biomarkers for different lung diseases. Additionally, we explored the latest advancements and findings from BALF studies. Finally, we address the current limitations and propose future directions and research opportunities to advance the study of BALF.
Collapse
Affiliation(s)
- Van Duc Pham
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jung-Hyung Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Doyun Shin
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Hung M Vu
- Bertis R&D Division, Bertis Inc., Gwacheon-si, Gyeonggi-do, Republic of Korea
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Junyang Jung
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Manoj K Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India
| | - Seung Hyeun Lee
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- New Biology Research Center, DGIST, Daegu, Republic of Korea
| |
Collapse
|
5
|
Baldari S, Antonini A, Di Rocco G, Toietta G. Expression pattern and prognostic significance of aldehyde dehydrogenase 2 in lung adenocarcinoma as a potential predictor of immunotherapy efficacy. CANCER INNOVATION 2025; 4:e149. [PMID: 39640071 PMCID: PMC11620833 DOI: 10.1002/cai2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 12/07/2024]
Abstract
Background The incidence of alcohol-associated cancers is higher within Asian populations having an increased prevalence of an inactivating mutation in aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme required for the clearance of acetaldehyde, a cytotoxic metabolite of ethanol. The role of alcohol consumption in promoting lung cancer is controversial, and little attention has been paid to the association between alcohol drinking and pulmonary ALDH2 expression. Methods We performed a comprehensive bioinformatic analysis of multi-omics data available in public databases to elucidate the role of ALDH2 in lung adenocarcinoma (LUAD). Results Transcriptional and proteomic data indicate a substantial pulmonary expression of ALDH2, which is functional for the metabolism of alcohol diffused from the bronchial circulation. ALDH2 expression is higher in healthy lung tissue than in LUAD and inhibits cell cycle, apoptosis, and epithelial-mesenchymal transition pathways. Moreover, low ALDH2 mRNA levels predict poor prognosis and low overall survival in LUAD patients. Interestingly, ALDH2 expression correlates with immune infiltration in LUAD. Conclusions A better understanding of the role of ALDH2 in lung tumor progression and immune infiltration might support its potential use as a prognostic marker and therapeutic target for improving immunotherapeutic response.
Collapse
Affiliation(s)
- Silvia Baldari
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Annalisa Antonini
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic TargetsIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
6
|
Jin Z, Shi Y, Zhou L. Transparent sparse graph pathway network for analyzing the internal relationship of lung cancer. Front Genet 2024; 15:1437174. [PMID: 39411374 PMCID: PMC11473316 DOI: 10.3389/fgene.2024.1437174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
While it is important to find the key biomarkers and improve the accuracy of disease models, it is equally important to understand their interaction relationships. In this study, a transparent sparse graph pathway network (TSGPN) is proposed based on the structure of graph neural networks. This network simulates the action of genes in vivo, adds to prior knowledge, and improves the model's accuracy. First, the graph connection was constructed according to protein-protein interaction networks and competing endogenous RNA (ceRNA) networks, from which some noise or unimportant connections were spontaneously removed based on the graph attention mechanism and hard concrete estimation. This realized the reconstruction of the ceRNA network representing the influence of other genes in the disease on mRNA. Next, the gene-based interpretation was transformed into a pathway-based interpretation based on the pathway database, and the hidden layer was added to realize the high-dimensional analysis of the pathway. Finally, the experimental results showed that the proposed TSGPN method is superior to other comparison methods in F1 score and AUC, and more importantly, it can effectively display the role of genes. Through data analysis applied to lung cancer prognosis, ten pathways related to LUSC prognosis were found, as well as the key biomarkers closely related to these pathways, such as HOXA10, hsa-mir-182, and LINC02544. The relationship between them was also reconstructed to better explain the internal mechanism of the disease.
Collapse
Affiliation(s)
- Zhibin Jin
- Information Engineering College, Shanghai Maritime University, pudong, China
| | - Yuhu Shi
- Information Engineering College, Shanghai Maritime University, pudong, China
| | - Lili Zhou
- Yangpu District Central Hospital, Shanghai, China
| |
Collapse
|
7
|
Zhang Q, An N, Liu Y, Zhu Y, Pan W, Gu P, Zhao J, Pu Q, Zhu W. Alveolar type 2 cells marker gene SFTPC inhibits epithelial-to-mesenchymal transition by upregulating SOX7 and suppressing WNT/β-catenin pathway in non-small cell lung cancer. Front Oncol 2024; 14:1448379. [PMID: 39346732 PMCID: PMC11427448 DOI: 10.3389/fonc.2024.1448379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Surfactant Protein C gene (SFTPC) is a marker gene of alveolar type 2 cells (AT2), which are the key structures of alveoli. Mutations or deletions in SFTPC cause idiopathic pulmonary fibrosis (IPF). Importantly, IPF is an independent risk factor for non-small cell lung cancer (NSCLC). It suggests that abnormal expression of SFTPC may be relevant to development of NSCLC. However, the function and mechanism of SFTPC in NSCLC are still poor understood until now. Methods The expression of SFTPC and the relationship between SFTPC and prognosis of NSCLC were analyzed in TCGA database and our collected clinical NSCLC tissues. Subsequently, the function and mechanism of SFTPC in NSCLC were explored by RNA-sequence, qRT-PCR, Western blot, Immunohistochemical, Wound-healing, Millicell, Transwell assays and mouse tumor xenograft model. Results SFTPC was dramatically downregulated in NSCLC tissues from TCGA database and 40 out of 46 collected clinical LUAD tissues compared with adjacent non-tumor tissues. Low expression of SFTPC was associated with poor prognosis of LUAD by TCGA database. Importantly, we confirmed that overexpression of SFTPC significantly inhibited Epithelial-to-Mesenchymal Transition (EMT) process of NSCLC cells by upregulating SOX7 and then inactivating WNT/β-catenin pathway in vitro and in vivo. Particularly, we discovered that low expression of SFTPC was associated with EMT process and low expression of SOX7 in NSCLC tissues. Conclusion Our study revealed a novel mechanism of SFTPC in NSCLC development. Meanwhile, it also might provide a new clue for exploring the molecular mechanism about NSCLC development in patients with IPF in the future.
Collapse
Affiliation(s)
- Qiongyin Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning An
- Cancer Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wuliang Pan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiling Gu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinzhu Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Dervisi I, Koletti A, Agalou A, Haralampidis K, Flemetakis E, Roussis A. Selenium-Binding Protein 1 (SBP1): A New Putative Player of Stress Sensing in Plants. Int J Mol Sci 2024; 25:9372. [PMID: 39273319 PMCID: PMC11394908 DOI: 10.3390/ijms25179372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Selenium-binding proteins (SBPs) represent a ubiquitous and conserved protein family with yet unclear biochemical and molecular functions. The importance of the human homolog has been extensively studied as it is implicated in many cancer types and other diseases. On the other hand, little is known regarding plant homologs. In plants, there is evidence that SBP participates in developmental procedures, oxidative stress responses, selenium and cadmium binding, and pathogenic tolerance. Moreover, recent studies have revealed that SBP is a methanethiol oxidase (MTO) catalyzing the conversion of methanethiol into formaldehyde, H2S, and H2O2. The two later products emerge as key signal molecules, playing pivotal roles in physiological processes and environmental stress responses. In this review, we highlight the available information regarding plants in order to introduce and emphasize the importance of SBP1 and its role in plant growth, development, and abiotic/biotic stress.
Collapse
Affiliation(s)
- Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784 Athens, Greece; (I.D.)
| | - Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (A.K.); (E.F.)
| | - Adamantia Agalou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control & Phytopharmacy, Benaki Phytopathological Institute (BPI), 14561 Athens, Greece;
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784 Athens, Greece; (I.D.)
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (A.K.); (E.F.)
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784 Athens, Greece; (I.D.)
| |
Collapse
|
9
|
Prodromou SI, Chatzopoulou F, Saiti A, Giannopoulos-Dimitriou A, Koudoura LA, Pantazaki AA, Chatzidimitriou D, Vasiliou V, Vizirianakis IS. Hepatotoxicity assessment of innovative nutritional supplements based on olive-oil formulations enriched with natural antioxidants. Front Nutr 2024; 11:1388492. [PMID: 38812942 PMCID: PMC11133736 DOI: 10.3389/fnut.2024.1388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.
Collapse
Affiliation(s)
- Sofia I. Prodromou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Department of Molecular Biology and Genetics, Thessaloniki, Greece
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loukia A. Koudoura
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
10
|
Pietrzak S, Marciniak W, Derkacz R, Matuszczak M, Kiljańczyk A, Baszuk P, Bryśkiewicz M, Sikorski A, Gronwald J, Słojewski M, Cybulski C, Gołąb A, Huzarski T, Dębniak T, Lener MR, Jakubowska A, Kluz T, Scott RJ, Lubiński J. Correlation between Selenium and Zinc Levels and Survival among Prostate Cancer Patients. Nutrients 2024; 16:527. [PMID: 38398851 PMCID: PMC10891521 DOI: 10.3390/nu16040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The most prevalent type of cancer among males is prostate cancer. Survival is considered quite good, but it can be further improved when risk factors are optimized. One of these factors is micronutrients, including Se and Zn. To our knowledge, the interaction between Se and Zn and prostate cancer remains undescribed. This study aimed to investigate the optimal levels of selenium (Se) and zinc (Zn) and their impact on the survival of individuals diagnosed with prostate cancer. A total of 338 prostate cancer patients were enrolled in this study, which was conducted in Poland between 2009 and 2015. Mass spectrometry, which uses inductively coupled plasma mass, was used to assess serum element levels before treatment. The study participants were categorized into quartiles (QI-QIV) based on the distributions of Se and Zn levels observed among surviving participants. Cox regression was used to assess the association between serum Se and Zn levels and the survival of prostate cancer patients. Our results reveal the effect of combined Se and Zn levels on survival in prostate cancer patients (SeQI-ZnQI vs. SeQIV-ZnQIV; HR = 20.9). These results need further research to establish Se/Zn norms for different populations.
Collapse
Affiliation(s)
- Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Andrzej Sikorski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Adam Gołąb
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskich 72, 71-899 Szczecin, Poland; (A.S.); (M.S.); (A.G.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Marcin R. Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland;
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rodney J. Scott
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia;
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, New Lambton, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (S.P.); (M.M.); (A.K.); (P.B.); (M.B.); (J.G.); (C.C.); (T.H.); (T.D.); (M.R.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
11
|
Philipp TM, Scheller AS, Krafczyk N, Klotz LO, Steinbrenner H. Methanethiol: A Scent Mark of Dysregulated Sulfur Metabolism in Cancer. Antioxidants (Basel) 2023; 12:1780. [PMID: 37760083 PMCID: PMC10525899 DOI: 10.3390/antiox12091780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
In order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels of volatile sulfur compounds (VSCs) in body fluids, breath, and/or excretions of cancer patients has recently gained attention. Besides hydrogen sulfide (H2S), methanethiol is the predominant cancer-associated VSC and has been proposed as a promising biomarker for non-invasive cancer diagnosis. Gut bacteria are the major exogenous source of exposure to this foul-smelling toxic gas, with methanethiol-producing strains such as Fusobacterium nucleatum highly abundant in the gut microbiome of colorectal carcinoma (CRC) patients. Physiologically, methanethiol becomes rapidly degraded through the methanethiol oxidase (MTO) activity of selenium-binding protein 1 (SELENBP1). However, SELENBP1, which is considered a tumor suppressor, is often downregulated in tumor tissues, and this has been epidemiologically linked to poor clinical outcomes. In addition to impaired removal, an increase in methanethiol levels may derive from non-enzymatic reactions, such as a Maillard reaction between glucose and methionine, two metabolites enriched in cancer cells. High methionine concentrations in cancer cells may also result in enzymatic methanethiol production in mitochondria. Moreover, enzymatic endogenous methanethiol production may occur through methyltransferase-like protein 7B (METTL7B), which is present at elevated levels in some cancers, including CRC and hepatocellular carcinoma (HCC). In conclusion, methanethiol contributes to the scent of cancer as part of the cancer-associated signature combination of volatile organic compounds (VOCs) that are increasingly being exploited for non-invasive early cancer diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Holger Steinbrenner
- Institute of Nutritional Sciences, Nutrigenomics Section, Friedrich Schiller University Jena, D-07743 Jena, Germany; (T.M.P.); (A.S.S.); (N.K.); (L.-O.K.)
| |
Collapse
|