1
|
Baştürk A, Yavaş B. Improving sunflower oil stability with propolis: A study on antioxidative effects of Turkish propolis during accelerated oxidation. J Food Sci 2024; 89:8910-8929. [PMID: 39475345 DOI: 10.1111/1750-3841.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024]
Abstract
Propolis, a natural resinous substance collected by bees, is known for its potent antioxidant properties. This study investigates the antioxidant activities and total phenolic contents of propolis samples from 16 provinces of Türkiye and their effects on the oxidative stability of sunflower oil. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibition was in the range of 28.1%-92.5% in thirteen propolis samples, whereas this rate was 24.5% in butylated hydroxytoluene (BHT). Although 2,2'-azino-bis(3-ethylbenzotiazolin-6-sulfonic acid) (ABTS) value was 224 µmol trolox/g in BHT, this value was in the range of 262-1370 µmol trolox/g in propolis samples, except for one. Propolis methanol extracts 13 applied to sunflower oil at a concentration of 1000 ppm were more efficient than BHT added at 200 ppm for inhibiting the production of peroxide value (PV). Similarly, most propolis extracts (1000 ppm) demonstrated antioxidant activity against the production of p-anisidine (p-AV) in sunflower oil under accelerated oxidation conditions. It was determined that Turkish propolis had strong antioxidant properties and delayed oxidation and may be utilized commercially in the food sector to delay the oxidation of fats and oils.
Collapse
Affiliation(s)
- Ayhan Baştürk
- Department of Food Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey
| | - Berfin Yavaş
- Department of Food Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
2
|
Wang R, Qu L, Wang Y, Qu Y, Xie Q, Liu H, Nie Z. Rapid analysis and authentication of Chinese propolis using nanoelectrospray ionization mass spectrometry combined with machine learning. Food Chem 2024; 447:138928. [PMID: 38484547 DOI: 10.1016/j.foodchem.2024.138928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 04/10/2024]
Abstract
In this study, we established a simple, rapid, and high-throughput method for the analysis and classification of propolis samples. We utilized nanoESI-MS to analyze 37 samples of propolis from China for the first time, obtaining characteristic fingerprint spectra in negative ion mode, which were then integrated with multivariate analysis to explore variations between water extract of propolis (WEP) and ethanol extract of propolis (EEP). Furthermore, we categorized propolis samples based on different climate zones and colors, screening 10 differential metabolites among propolis from various climate zones, and 11 differential metabolites among propolis samples of different color. By employing machine learning models, we achieved high-precision discrimination and prediction between samples from different climate zones and colors, achieving predictive accuracies of 95.6% and 85.6%, respectively. These results highlight the significant potential of the nanoESI-MS coupled with machine learning methodology for precise classification within the realm of food products.
Collapse
Affiliation(s)
- Ruiyue Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang Qu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yiran Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijiao Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanyuan Xie
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhang Y, Cao C, Yang Z, Jia G, Liu X, Li X, Cui Z, Li A. Simultaneous determination of 20 phenolic compounds in propolis by HPLC-UV and HPLC-MS/MS. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Postali E, Peroukidou P, Giaouris E, Papachristoforou A. Investigating Possible Synergism in the Antioxidant and Antibacterial Actions of Honey and Propolis from the Greek Island of Samothrace through Their Combined Application. Foods 2022; 11:2041. [PMID: 35885284 PMCID: PMC9316648 DOI: 10.3390/foods11142041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
Several honeybee products are known for their functional properties, including important antioxidant and antimicrobial actions. The present study examines the antioxidant activity (AA), total polyphenolic content (TPC), and antibacterial action of honey and propolis samples collected from the Greek island of Samothrace, which were applied in vitro either individually or in combination in selected concentrations. To accomplish this, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and the Folin-Ciocalteu assays were employed to determine the AA and TPC, respectively, while the antibacterial action was investigated against each one of four important pathogenic bacterial species causing foodborne diseases (i.e., Salmonella enterica, Yersinia enterocolitica, Staphylococcus aureus, and Listeria monocytogenes) using the agar well diffusion assay. Compared to honey, propolis presented significantly higher AA and TPC, while its combined application with honey (at ratios of 1:1, 3:1, and 1:3) did not increase these values. Concerning the antibacterial action, Y. enterocolitica was proven to be the most resistant of all the tested bacteria, with none of the samples being able to inhibit its growth. S. enterica was susceptible only to the honey samples, whereas L. monocytogenes only to the propolis samples. The growth of S. aureus was inhibited by both honey and propolis, with honey samples presenting significantly higher efficacy than those of propolis. Νo synergism in the antibacterial actions was observed against any of the tested pathogens. Results obtained increase our knowledge of some of the medicinal properties of honey and propolis and may contribute to their further exploitation for health promotion and/or food-related applications (e.g., as preservatives to delay the growth of pathogenic bacteria).
Collapse
Affiliation(s)
- Evdoxia Postali
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.P.); (P.P.); (A.P.)
| | - Panagiota Peroukidou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.P.); (P.P.); (A.P.)
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.P.); (P.P.); (A.P.)
| | - Alexandros Papachristoforou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.P.); (P.P.); (A.P.)
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Peršurić Ž, Pavelić SK. Bioactives from Bee Products and Accompanying Extracellular Vesicles as Novel Bioactive Components for Wound Healing. Molecules 2021; 26:molecules26123770. [PMID: 34205731 PMCID: PMC8233762 DOI: 10.3390/molecules26123770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, interest has surged among researchers to determine compounds from bee products such as honey, royal jelly, propolis and bee pollen, which are beneficial to human health. Mass spectrometry techniques have shown that bee products contain a number of proven health-promoting compounds but also revealed rather high diversity in the chemical composition of bee products depending on several factors, such as for example botanical sources and geographical origin. In the present paper, we present recent scientific advances in the field of major bioactive compounds from bee products and corresponding regenerative properties. We also discuss extracellular vesicles from bee products as a potential novel bioactive nutraceutical component. Extracellular vesicles are cell-derived membranous structures that show promising potential in various therapeutic areas. It has been extensively reported that the use of vesicles, which are naturally formed in plant and animal cells, as delivery agents have many advantages. Whether the use of extracellular vesicles from bee products represents a new solution for wound healing remains still to be elucidated. However, promising results in specific applications of the bee products in wound healing and tissue regenerative properties of extracellular vesicles provide a good rationale to further explore this idea.
Collapse
Affiliation(s)
- Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, HR-51000 Rijeka, Croatia
- Correspondence:
| |
Collapse
|
6
|
Kokkinomagoulos E, Nikolaou A, Kourkoutas Y, Kandylis P. Evaluation of Yeast Strains for Pomegranate Alcoholic Beverage Production: Effect on Physicochemical Characteristics, Antioxidant Activity, and Aroma Compounds. Microorganisms 2020; 8:microorganisms8101583. [PMID: 33066576 PMCID: PMC7602208 DOI: 10.3390/microorganisms8101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
In the present study, three commercial yeasts (for wine, beer, and cider) were evaluated for the production of pomegranate alcoholic beverage (PAB) from a juice of Wonderful variety. The physicochemical characteristics, antioxidant activity, and aromatic profiles of PABs were investigated before and after fermentation, while the effect of yeast strain and fermentation temperature (15 and 25 °C) was also evaluated. The PABs contained ethanol in the ranges of 5.6–7.0% v/v, in combination with glycerol (2.65–6.05 g L−1), and low volatile acidity. Total flavonoid content, total phenolic content, free radical-scavenging activity, and total monomeric anthocyanin content appeared to decrease after fermentation, possibly due to hydrolysis, oxidation, and other reactions. In general, PABs retained 81–91% of free radical-scavenging activity, 29–41% of phenolics, 24–55% of flavonoids, and 66–75% of anthocyanins. The use of different yeast affected mainly flavonoids and anthocyanins, and yeast strain M02 resulted in the highest values after fermentation. In PABs, 30 different volatile compounds were identified, specifically 15 esters, 4 organic acids, 8 alcohols, and 3 terpenes. The principal component analysis showed that the fermentation temperature affected significantly volatile composition, whereas, among the yeasts, WB06 is the one that seems to differentiate. The findings of this study show that the selection of the appropriate yeast and fermentation temperature is very crucial and affects the characteristics of the final product.
Collapse
Affiliation(s)
- Evangelos Kokkinomagoulos
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
| | - Anastasios Nikolaou
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Panagiotis Kandylis
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
- Correspondence: or ; Tel.: +30-2310-991-678
| |
Collapse
|