1
|
Bunnell AA, Marshall EM, Estes SK, Deadmond MC, Loesgen S, Strother JA. Embryonic Zebrafish Irritant-evoked Hyperlocomotion (EZIH) as a high-throughput behavioral model for nociception. Behav Brain Res 2025; 485:115526. [PMID: 40057202 DOI: 10.1016/j.bbr.2025.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Behavioral models have served a key role in understanding nociception, the sensory system by which animals detect noxious stimuli in their environment. Developing zebrafish (Danio rerio) are a powerful study organism for examining nociceptive pathways, given the vast array of genetic, developmental, and neuroscience tools available for these animals. However, at present there are few widely-adopted behavioral models for nociception in developing zebrafish. This study examines the locomotor response of hatching-stage zebrafish embryos to dilute solutions of the noxious chemical and TRPA1 agonist allyl isothiocyanate (AITC). At this developmental stage, AITC exposure induces a robust uniphasic hyperlocomotion response. This behavior was thoroughly characterized by determining the effects of pre-treatment with an array of pharmacological agents, including anesthetics, TRPA1 agonists/antagonists, opioids, NSAIDs, benzodiazepines, SSRIs, and SNRIs. Anesthetics suppressed the response to AITC, pre-treatment with TRPA1 agonists induced hyperlocomotion and blunted the response to subsequent AITC exposures, and TRPA1 antagonists and the opioid buprenorphine tended to reduce the response to AITC. The behavioral responses of zebrafish embryos to a noxious chemical were minimally affected by the other pharmacological agents examined. The feasibility of using this behavioral model as a screening platform for drug discovery efforts was then evaluated by assaying a library of natural product mixtures from microbial extracts and fractions. Overall, our results indicate that irritant-evoked locomotion in embryonic zebrafish is a robust behavioral model for nociception with substantial potential for examining the molecular and cellular pathways associated with nociception and for drug discovery efforts.
Collapse
Affiliation(s)
- Amelia A Bunnell
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - Erin M Marshall
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | | | - Monica C Deadmond
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - Sandra Loesgen
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States
| | - James A Strother
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, FL, United States; Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
2
|
Khadem S, Marles RJ. 2,4-Quinolinedione alkaloids: occurrence and biological activities. Nat Prod Res 2024:1-12. [PMID: 39133211 DOI: 10.1080/14786419.2024.2390611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Natural products are an important source of chemical scaffolds that have diverse biological activities. They can be used directly or as starting templates for the development of innovative pharmaceutical agents. Among natural products, quinoline alkaloids are one of the most extensively studied groups. 2,4-Quinolinedione (2,4-QD) alkaloids, which are found in a variety of natural sources, possess valuable biological properties. This review examines the natural occurrence and bioactivities of 2,4-QD alkaloids, which have not been studied in as much depth in previous research.
Collapse
Affiliation(s)
- Shahriar Khadem
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Robin J Marles
- Retired Senior Scientific Advisor, Health Canada, Ottawa, Canada
| |
Collapse
|
3
|
Li Y, Li C, Xin Y, Huang T, Liu J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114129. [PMID: 36193589 DOI: 10.1016/j.ecoenv.2022.114129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 05/25/2023]
Abstract
Soil is the bearing centre of terrestrial ecosystems. Oil pollution leads to changes in the physical and chemical properties of soil to varying degrees. Polluted soils form a unique microbial species composition, which provides rich materials for the bioremediation of oil-contaminated soil through biological enhancement. Understanding the microbial composition of petroleum-contaminated soil can provide a better biological method for soil remediation. Based on this, 16 S rRNA and ITS genetic markers were used to analyse the bacterial and fungal microbiota in petroleum-contaminated soil, and their physical and chemical properties (total organic carbon, alkaline hydrolysable nitrogen, total phosphorus, total potassium, available potassium, Cu, Zn, and Cd) were measured. It was found that petroleum pollution can significantly reduce the abundance and diversity of bacteria and fungi in the soil and significantly promote the relative abundance of Proteobacteria, Pseudomonas, Pseudoxanthomonas and Pseudoallescheria, which changed the dominant flora of bacteria and fungi and reshaped the co-occurrence network relationship between bacteria and fungi in oil-contaminated soil. The content of total organic carbon in petroleum-contaminated soil was significantly higher than that in uncontaminated soil, while the content of alkaline hydrolysable nitrogen and available potassium was significantly lower than that in uncontaminated soil, and the content of Cu significantly increased after pollution. Total organic carbon is the key driving factor that changes oil-contaminated soil microorganisms and plays a significant role in regulating the remodelling and composition of the microbial community in oil-contaminated soil. This study laid a solid theoretical foundation for the bioremediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Yongquan Li
- School of Medicine, Northwest Minzu University, Lanzhou, China; Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, State Ethnic Affairs Commission, Lanzhou, China.
| | - Caili Li
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Ying Xin
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Tao Huang
- School of Medicine, Northwest Minzu University, Lanzhou, China
| | - Jin Liu
- School of Medicine, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
4
|
Jaroszewicz W, Bielańska P, Lubomska D, Kosznik-Kwaśnicka K, Golec P, Grabowski Ł, Wieczerzak E, Dróżdż W, Gaffke L, Pierzynowska K, Węgrzyn G, Węgrzyn A. Antibacterial, Antifungal and Anticancer Activities of Compounds Produced by Newly Isolated Streptomyces Strains from the Szczelina Chochołowska Cave (Tatra Mountains, Poland). Antibiotics (Basel) 2021; 10:antibiotics10101212. [PMID: 34680793 PMCID: PMC8532742 DOI: 10.3390/antibiotics10101212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022] Open
Abstract
Resistance of bacteria, fungi and cancer cells to antibiotics and other drugs is recognized as one of the major problems in current medicine. Therefore, a search for new biologically active compounds able to either kill pathogenic cells or inhibit their growth is mandatory. Hard-to-reach habitats appear to be unexplored sources of microorganisms producing previously unknown antibiotics and other molecules revealing potentially therapeutic properties. Caves belong to such habitats, and Actinobacteria are a predominant group of microorganisms occurring there. This group of bacteria are known for production of many antibiotics and other bioactive compounds. Interestingly, it was demonstrated previously that infection with bacteriophages might enhance production of antibiotics by them. Here, we describe a series of newly isolated strains of Actinobacteria that were found in caves from the Tatra Mountains (Poland). Phage induction tests indicated that some of them may bear active prophages able to produce virions upon treatment with mitomycin C or UV irradiation. Among all the examined bacteria, two newly isolated Streptomyces sp. strains were further characterized to demonstrate their ability to inhibit the growth of pathogenic bacteria (strains of Staphylococcus aureus, Salmonella enterica, Enterococcus sp., Escherichia coli, and Pseudomonas aeruginosa) and fungi (different species and strains from the genus Candida). Moreover, extracts from these Streptomyces strains reduced viability of the breast-cancer cell line T47D. Chemical analyses of these extracts indicated the presence of isomers of dichloranthrabenzoxocinone and 4,10- or 10,12-dichloro-3-O-methylanthrabenzoxocinone, which are putative antimicrobial compounds. Moreover, various previously unknown (unclassified) molecules were also detected using liquid chromatography-mass spectrometry, suggesting that tested Streptomyces strains may synthesize a battery of bioactive compounds with antibacterial, antifungal, and anticancer activities. These results indicate that further studies on the newly isolated Actinobacteria might be a promising approach to develop novel antibacterial, antifungal, and/or anticancer drugs.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Patrycja Bielańska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Daria Lubomska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Weronika Dróżdż
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (W.J.); (P.B.); (D.L.); (W.D.); (L.G.); (K.P.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; (K.K.-K.); (Ł.G.)
- Correspondence: ; Tel.: +48-58-523-6024
| |
Collapse
|