1
|
Xiao Q, Zhang X, Chen ZL, Zou YY, Tang CF. An Evidence-Based Narrative Review of Scleral Hypoxia Theory in Myopia: From Mechanisms to Treatments. Int J Mol Sci 2025; 26:332. [PMID: 39796188 PMCID: PMC11719898 DOI: 10.3390/ijms26010332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors. Exploring the pathological mechanism of myopia can provide a scientific basis for developing measures to delay the progression of myopia or even treat it. Recent advances highlight that scleral hypoxia could be an important factor in promoting myopia. In this review, we summarized the role of scleral hypoxia in the pathology of myopia and also provided interventions for myopia that target scleral hypoxia directly or indirectly. We hope this review will aid in the development of novel therapeutic strategies and drugs for myopia.
Collapse
Affiliation(s)
- Qin Xiao
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
- College of Physical Education, Hunan First Normal University, Changsha 410205, China
| | - Xiang Zhang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Zhang-Lin Chen
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Yun-Yi Zou
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Chang-Fa Tang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| |
Collapse
|
2
|
Li F, Xie R, Li T, Ren S. Erhong Jiangzhi Decoction Inhibits Lipid Accumulation and Alleviates Nonalcoholic Fatty Liver Disease with Nrf2 Restoration Under Obesity. J Inflamm Res 2024; 17:10929-10942. [PMID: 39677297 PMCID: PMC11646429 DOI: 10.2147/jir.s491484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) refers to the liver pathological changes caused by excessive fat accumulation in hepatocytes owing to various reasons, which has become an emerging health challenge. Erhong Jiangzhi Decoction (EHJD) is a traditional Chinese medicine decoction. This study aims to investigate the therapeutic effect of EHJD on NAFLD. Methods NAFLD model was constructed by high-fat diet (HFD)-induced mice and oleic acid-induced HepG2 cells. Mice were intragastrically administered with EHJD and HepG2 cells were treated with EHJD drug-containing serum. The effects of EHJD on NAFLD were explored in vivo and in vitro. Histological assessment was performed by hematoxylin-eosin and oil red O staining. ELISA was exploited to detect the expression of lipid accumulation, liver function, inflammation, and oxidative stress related indicators. The expression of Nrf2/HO-1 pathway was detected by qRT-PCR and Western blot. Results In HFD-induced NAFLD mice, the body weight was increased, and liver/weight, inguinal fat/weight, and epididymal fat/weight were higher, while EHJD reduced them. Staining results exhibited that EHJD decreased inflammatory cell infiltration and oil red lipid droplets in HFD-induced mice. In addition, EHJD treatment suppressed TC, TG, ALT and AST levels; TNF-α, IL-1β, IL-6 and MDA levels were inhibited by EHJD, while GSH-Px, CAT and T-AOC levels were increased in NAFLD through the in vivo and in vitro experiments. The suppression of Nrf2 weakened the inhibitory effect of EHJD on lipid metabolism, liver injury, inflammation and oxidative stress. Conclusion EHJD had a protective effect on NAFLD by alleviating lipid accumulation and liver injury, inhibiting inflammation, and oxidative stress, which was achieved by the restoration of Nrf2.
Collapse
Affiliation(s)
- Fang Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, People’s Republic of China
| | - Rong Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, People’s Republic of China
| | - Tianlun Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, People’s Republic of China
| | - Shouzhong Ren
- College of Pharmacy, Hainan Medical University, HaiKou City, Hainan Province, People’s Republic of China
| |
Collapse
|
3
|
Chu X, Liu S, Qu B, Xin Y, Lu L. Salidroside may target PPARα to exert preventive and therapeutic activities on NASH. Front Pharmacol 2024; 15:1433076. [PMID: 39415834 PMCID: PMC11479876 DOI: 10.3389/fphar.2024.1433076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Salidroside (SDS), a phenylpropanoid glycoside, is an antioxidant component isolated from the traditional Chinese medicine Rhodiola rosea and has multifunctional bioactivities, particularly possessing potent hepatoprotective function. Non-alcoholic steatohepatitis (NASH) is one of the most prevalent chronic liver diseases worldwide, but it still lacks efficient drugs. This study aimed to assess the preventive and therapeutic effects of SDS on NASH and its underlying mechanisms in a mouse model subjected to a methionine- and choline-deficient (MCD) diet. Methods C57BL/6J mice were fed an MCD diet to induce NASH. During or after the formation of the MCD-induced NASH model, SDS (24 mg/kg/day) was supplied as a form of diet for 4 weeks. The histopathological changes were evaluated by H&E staining. Oil Red O staining and Sirius Red staining were used to quantitatively determine the lipid accumulation and collagen fibers in the liver. Serum lipid and liver enzyme levels were measured. The morphology of autophagic vesicles and autophagosomes was observed by transmission electron microscopy (TEM), and qRT-PCR and Western blotting were used to detect autophagy-related factor levels. Immunohistochemistry and TUNEL staining were used to evaluate the apoptosis of liver tissues. Flow cytometry was used to detect the composition of immune cells. ELISA was used to evaluate the expression of serum inflammatory factors. Transcript-proteome sequencing, molecular docking, qRT-PCR, and Western blotting were performed to explore the mechanism and target of SDS in NASH. Results The oral administration of SDS demonstrated comprehensive efficacy in NASH. SDS showed both promising preventive and therapeutic effects on NASH in vivo. SDS could upregulate autophagy, downregulate apoptosis, rebalance immunity, and alleviate inflammation to exert anti-NASH properties. Finally, the results of transcript-proteome sequencing, molecular docking evaluation, and experimental validation showed that SDS might exert its multiple effects through targeting PPARα. Conclusion Our findings revealed that SDS could regulate liver autophagy and apoptosis, regulating both innate immunity and adaptive immunity and alleviating inflammation in NASH prevention and therapy via the PPAR pathway, suggesting that SDS could be a potential anti-NASH drug in the future.
Collapse
Affiliation(s)
- Xueru Chu
- Department of Infectious Disease, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Xing S, Xu S, Wang L, Guo L, Zhou X, Wu H, Wang W, Liu L. Salidroside exerts antidepressant-like action by promoting adult hippocampal neurogenesis through SIRT1/PGC-1α signalling. Acta Neuropsychiatr 2024:1-11. [PMID: 39344773 DOI: 10.1017/neu.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Depression is one of the major mental disorders, which seriously endangers human health, brings a serious burden to patients’ families. In this study, we intended to further explore the antidepressant-like effect and possible molecular mechanisms of Salidroside (SAL). We built corticosterone (CORT)-induced depressive mice model and used behavioural tests to evaluate depression behaviour. To explore the molecular mechanisms of SAL, we employed a variety of methods such as immunofluorescence, western blot, pharmacological interference, etc. The results demonstrated that SAL both at 25 mg/kg and 50 mg/kg can reduce immobility time in the tail suspension test (TST). At the same time, SAL treatment could restore the reduced sugar water intake preference in the sucrose preference test (SPT) in CORT-induced depressive mice and reduce the immobility time in TST and forced swimming experiments (FST). In addition, SAL treatment reversed the reduction in the number of Ki-67, BrdU, and NeuN in the hippocampus due to CORT treatment. SAL treatment also restored the expression of SIRT1, PGC-1α, brain-derived neurotrophic factor (BDNF) and other proteins in the hippocampus. In addition, after blocking SIRT1 signalling with EX527, we found that the treatment with SAL failed to reduce the immobility time in TST and FST, the level of SIRT1 and PGC-1α activity were correspondingly downregulated, and the expression of DCX and Ki-67 in the hippocampus failed to be activated. These findings suggested that SAL exerts antidepressant-like effects by promoting hippocampal neurogenesis through the SIRT1/PGC-1α signalling pathway.
Collapse
Affiliation(s)
- Shan Xing
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linjiao Wang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyuan Guo
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lanying Liu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai, China
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Mental Diseases of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang X, Cao S, Huang Y, Li L, Xu D, Liu L. Salidroside alleviates cholestasis-induced liver fibrosis by inhibiting hepatic stellate cells via activation of the PI3K/AKT/GSK-3β signaling pathway and regulating intestinal flora distribution. Front Pharmacol 2024; 15:1396023. [PMID: 38808258 PMCID: PMC11130389 DOI: 10.3389/fphar.2024.1396023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Salidroside (SAL), a phenylpropanoid bioactive compound, has various pharmacological properties, including antioxidant, anti-inflammatory, and hepatoprotective effects. However, the pharmacological effects and mechanisms of action of SAL on cholestatic liver injury are unclear. This study investigated the mechanism and effects of salidroside (SAL) on intestinal flora distribution and hepatic stellate cell (HSC) activation in cholestatic hepatic fibrosis. Bile duct ligation was used to cause cholestasis BALB/c mice. The therapeutic efficacy of SAL in liver fibrosis was assessed via serum/tissue biochemical analyses and liver tissue hematoxylin and eosin and Masson staining. Inflammation and oxidative stress were analyzed using enzyme-linked immunosorbent assay and western blotting. HSC were activated in vitro using lipopolysaccharide, and the effects of SAL on HSC migration and inflammatory factor expression were detected via scratch, transwell, and western blotting assays. The effects of SAL on the PI3K/AKT/GSK-3β pathway in vivo and in vitro were detected using western blotting. 16sRNA sequencing was used to detect the effect of SAL on the diversity of the intestinal flora. Ileal histopathology and western blotting were used to detect the protective effect of SAL on the intestinal mucosal barrier. SAL reduces liver inflammation and oxidative stress and protects against liver fibrosis with cholestasis. It inhibits HSC activation and activates the PI3K/AKT/GSK-3β pathway in vitro and in vivo. Additionally, SAL restores the abundance of intestinal flora, which contributes to the repair of the intestinal mucosal barrier, inhibits endotoxin translocation, and indirectly inhibits HSC activation, reversing the course of cholestatic liver fibrosis. SAL inhibits HSC activation through the PI3K/AKT/GSK-3β pathway and improves intestinal flora distribution, thereby protecting and reversing the progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Shuxia Cao
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Yuan Huang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Liangchang Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Lan Liu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
- Department of Pathology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
6
|
Ming Z, Ruishi X, Linyi X, Yonggang Y, Haoming L, Xintian L. The gut-liver axis in fatty liver disease: role played by natural products. Front Pharmacol 2024; 15:1365294. [PMID: 38686320 PMCID: PMC11056694 DOI: 10.3389/fphar.2024.1365294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 05/02/2024] Open
Abstract
Fatty liver disease, a condition characterized by fatty degeneration of the liver, mainly classified as non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD), has become a leading cause of cirrhosis, liver cancer and death. The gut-liver axis is the bidirectional relationship between the gut and its microbiota and its liver. The liver can communicate with the gut through the bile ducts, while the portal vein transports the products of the gut flora to the liver. The intestinal flora and its metabolites directly and indirectly regulate hepatic gene expression, leading to an imbalance in the gut-liver axis and thus contributing to the development of liver disease. Utilizing natural products for the prevention and treatment of various metabolic diseases is a prevalent practice, and it is anticipated to represent the forthcoming trend in the development of drugs for combating NAFLD/ALD. This paper discusses the mechanism of the enterohepatic axis in fatty liver, summarizes the important role of plant metabolites in natural products in fatty liver treatment by regulating the enterohepatic axis, and provides a theoretical basis for the subsequent development of new drugs and clinical research.
Collapse
Affiliation(s)
- Zhu Ming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xie Ruishi
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xu Linyi
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | | | - Luo Haoming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Lan Xintian
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Gabbia D, Sayaf K, Zanotto I, Colognesi M, Frion-Herrera Y, Carrara M, Russo FP, De Martin S. Tyrosol attenuates NASH features by reprogramming the hepatic immune milieu. Eur J Pharmacol 2024; 969:176453. [PMID: 38408597 DOI: 10.1016/j.ejphar.2024.176453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, and no drugs have been approved for its therapy. Among plant-derived molecules, phenolic compounds of extra virgin olive oil like tyrosol (Tyr) had demonstrated multiple beneficial actions for liver health, including the modulation of inflammation in fibrosis. This study aims at assessing the protective effect and mechanism of Tyr in invitro and in vivo models of NASH, with a focus on the hepatic immune microenvironment and extrahepatic manifestations. The effect of Tyr was evaluated in cellular models of NASH, obtained by co-culturing palmitic and oleic acid-treated HepG2 cells with THP1-derived M1 macrophages and LX2 cells, and in a mouse model of NASH induced by a high fructose-high fat diet combined to CCl4 treatment. In vitro Tyr reduced fatty acid (FA) accumulation in HepG2 cells and displayed a beneficial effect on LX2 activation and macrophage differentiation. In vivo, beside reducing steatosis and fibrosis in NASH animals, Tyr prevented inflammation, as demonstrated by the reduction of hepatic inflammatory foci, and immune cells like CD86+ macrophages (p < 0.05), CD4+ (p < 0.05) and T helper effector CD4+ FoxP3- CD62L-lymphocytes (p < 0.05). Also, the prooxidant enzyme NOX1 and the mRNA expression of TGF-β1 and IL6 (p < 0.05) were reduced by Tyr. Notably, in Tyr-treated animals, a significant increase of CD4+ FoxP3+ Treg cells (p < 0.05) was observed, involved in regenerative pathways. Moreover, Tyr attenuated the fatigue and anxious behavior observed in NASH mice. In conclusion, Tyr effectively reduced NASH-related steatosis, fibrosis, oxidative stress, and inflammation, displaying a beneficial effect on the hepatic immune infiltrate, indicating its possible development as a therapeutic agent for NASH due to its multifaceted mechanism.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Yahima Frion-Herrera
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
8
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
9
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
10
|
Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023; 9:212. [PMID: 37393391 DOI: 10.1038/s41420-023-01524-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Chemokines are a large family mediating a lot of biological behaviors including chemotaxis, tumor growth, angiogenesis and so on. As one member of this family, CXC subfamily possesses the same ability. CXC chemokines can recruit and migrate different categories of immune cells, regulate tumor's pathological behaviors like proliferation, invasion and metastasis, activate angiogenesis, etc. Due to these characteristics, CXCL subfamily is extensively and closely associated with tumors and inflammatory diseases. As studies are becoming more and more intensive, CXCLs' concrete roles are better described, and CXCLs' therapeutic applications including biomarkers and targets are also deeply explained. In this review, the role of CXCL family members in various diseases is summarized.
Collapse
Affiliation(s)
- Chenjia Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| |
Collapse
|
11
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
12
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
13
|
Xu J, Pi J, Zhang Y, Zhou J, Zhang S, Wu S. Effects of Ferroptosis on Cardiovascular Diseases. Mediators Inflamm 2023; 2023:6653202. [PMID: 37181809 PMCID: PMC10175025 DOI: 10.1155/2023/6653202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which causes membrane injury. Under the catalysis of iron ions, cells deficient in glutathione peroxidase (GPX4) cannot preserve the balance in lipid oxidative metabolism, and the buildup of reactive oxygen species on the membrane lipids leads to cell death. An increasing body of evidence suggests that ferroptosis plays a significant role in the development and occurrence of cardiovascular diseases. In this paper, we mainly elaborated on the molecular mechanisms regulating ferroptosis and its impact on cardiovascular disease to lay the groundwork for future studies on the prophylaxis and treatment of this patient population.
Collapse
Affiliation(s)
- Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinkui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanjing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhan Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuxia Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sisi Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|