1
|
Yu J, Wu Y, Shin W. From waste to value: Integrating legume byproducts into sustainable industrialization. Compr Rev Food Sci Food Saf 2025; 24:e70174. [PMID: 40260833 PMCID: PMC12012864 DOI: 10.1111/1541-4337.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/06/2025] [Accepted: 03/30/2025] [Indexed: 04/24/2025]
Abstract
As the global demand for sustainable food sources grows, the effective utilization of agro-industrial byproducts has become increasingly essential. Among these, legume byproducts, which are often discarded as waste, hold substantial nutritional and functional properties that can significantly contribute to advancing circular economy goals within the food industry. Current research has unveiled the potential of these byproducts to enhance both environmental sustainability and economic efficiency. Rich in proteins, dietary fibers, and bioactive compounds, legume byproducts can serve as valuable resources in developing functional food ingredients. This review explores the nutritional profiles of various legume byproducts and highlights innovative processes and technologies involved in their valorization, such as fermentation, enzymatic treatments, and novel extraction techniques. Furthermore, it explores the impact of food formulations in optimizing the functional properties of legume byproduct-based ingredients, considering their impact on texture, stability, and sensory attributes. Consumer perceptions of sustainable products derived from these ingredients are also examined, emphasizing their potential to reshape modern dietary preferences toward more sustainable choices. However, despite the promising potential of these byproducts, several challenges remain to be solved, including the antinutrients factor, market limitations, limited consumer awareness, and complexities in scaling up production. In addition, it is essential to integrate circular economy principles and conduct life-cycle assessments throughout the value chain to ensure the sustainable use of legume byproducts. Addressing these challenges is critical to enhancing the valorization of legume byproducts and promoting a more comprehensive approach to food system sustainability.
Collapse
Affiliation(s)
- Jing‐Chao Yu
- Department of Food and Nutrition, College of Human EcologyHanyang UniversitySeoulSouth Korea
| | - Ying‐Jin‐Zhu Wu
- Department of Food and Nutrition, College of Human EcologyHanyang UniversitySeoulSouth Korea
| | - Weon‐Sun Shin
- Department of Food and Nutrition, College of Human EcologyHanyang UniversitySeoulSouth Korea
| |
Collapse
|
2
|
Raoof GFA, El-Anssary AA, Ali Abuaish MA, El-Masry HM. Assessment of Vicia faba L. Peels: Phytochemical Characterization and Evaluation of Cytotoxic and Antimicrobial Potentials. Chem Biodivers 2025; 22:e202402123. [PMID: 39355945 DOI: 10.1002/cbdv.202402123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024]
Abstract
The current study intends to reach the optimal use of plant wastes and explore their biological activities. It evaluated the bioactivities and phytoconstituents of 70 %methanol extract of Vicia faba L. peels. The results revealed that the extract possessed very potent cytotoxicity against ovarian cancer cell line (SKOV-3) (IC50=0.01 μg/mL) which exceeds doxorubicin (IC50=0.95 μg/ml), a reference anticancer agent, potent cytotoxicity against prostate cancer cell line (PC-3) (IC50=13.60 μg/ml), and moderate cytotoxicity against liver cancer cell line (HepG2) (IC50=40.9 μg/ml). Furthermore, the extract exhibited a potent antimicrobial effect on the tested gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis& Micrococcus luteus) with inhibition zone (IZ) range (14.0-23.0 mm), gram-negative bacteria (Pseudomonas aeruginosa) (IZ=14.0 mm), and pathogenic fungal yeast (Candida albicans) (IZ=19.0 mm). Moreover, 46 phytoconstituents were tentatively identified using ultra-high-performance liquid chromatography (UHPLC) hyphenated with quadrupole-time-of-flight tandem mass spectrometry (QTOF-MS) in positive ionization mode, 21 phytoconstituents were detected in Vicia faba peel for the first time. High-performance liquid chromatography (HPLC) was used to quantify phenolic compounds, the major compounds were chlorogenic acid, ferulic acid, catechin, and vanillin. In conclusion, plant wastes are a rich source of phytoconstituents that exhibit biological efficacy.
Collapse
Affiliation(s)
- Gehan F Abdel Raoof
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Amira A El-Anssary
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Moaaz A Ali Abuaish
- College of Biotechnology, Misr University for Science and Technology (MUST), Cairo, Egypt
| | - Hossam M El-Masry
- Chemistry of Natural and Microbial Products Department, National Research Centre, P.O.12622, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Myrtsi ED, Vlachostergios DN, Petsoulas C, Koulocheri SD, Evergetis E, Haroutounian SA. Εleven Greek Legume Beans: Assessment of Genotypic Effect on Their Phytochemical Content and Antioxidant Properties. Antioxidants (Basel) 2024; 13:459. [PMID: 38671907 PMCID: PMC11047335 DOI: 10.3390/antiox13040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Legumes, one of the first crops of humanity, inherently constitute a staple nutritional source for mankind, attracting significant research attention that has been afforded to the development of numerous cultivars. The study herein concerns the exploitation of the nutritional and bio-functional content of beans harvested from eleven Greek cultivars belonging to five different species, namely Cicer arietinum L., Pisum sativum L., Vicia faba L., Lens culinaris L., and Phaseolus vulgaris L. The final goal is to define their varietal identity and correlate their phytochemical content with their potential utilization as functional foods and/or feed of high nutritional value. In this respect, their extracts were screened against the presence of 27 fatty acids and 19 phenolic compounds, revealing the presence of 22 and 15 molecules, respectively. Specifically, numerous fatty acids were detected in significant amounts in all but C. arietinum extract, while significant polyphenolic content was confirmed only in P. vulgaris. Among individual compounds, linoleic acid was the major fatty acid detected in amounts averaging more than 150 mg/g, followed by oleic acid, which was present as a major compound in all extracts. Among the nine polyphenols detected in P. vulgaris, the molecules of genistein (3.88 mg/g) and coumestrol (0.82 mg/g) were the most abundant. Their antioxidant properties were evaluated through DPPH and FRAP assays, which were highlighted as most potent in both tests of the V. faba extract, while C. arietinum was determined as totally inactive, indicating a potential correlation between the phenolic content of the plant species and antioxidant activity. These results are indicative of the significant advances achieved for the cultivars investigated and reveal their important role as nutritional crops for human and animal consumption.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.); (E.E.)
| | - Dimitrios N. Vlachostergios
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DIMITRA, 41335 Larissa, Greece;
| | - Christos Petsoulas
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ELGO-DIMITRA, 41335 Larissa, Greece;
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.); (E.E.)
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.); (E.E.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Bioscience, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.); (E.E.)
| |
Collapse
|
4
|
Yagi S, Ulusan MD, Sinan KI, Caprioli G, Mustafa AM, Angeloni S, Ahıskalı M, Zengin G. HPLC-MS/MS Profiles, Antioxidant, Neuroprotective, Antidiabetic and Skin Protective Effects of Different Extracts of Vicia peregrina L. Collected from the Eastern Region of Turkey. Chem Biodivers 2024; 21:e202400040. [PMID: 38265183 DOI: 10.1002/cbdv.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
Many Vicia species (Fabaceae) were proven to possess bioactive compounds with potential health beneficial properties. The present study was designed to determine the phenolic constituents, antioxidant and enzyme inhibition activities of aerial parts and seed of V. peregrina. Hexane, ethyl acetate and methanol extracts were prepared by maceration and aqueous extract by infusion. The chemical compositions of the extracts were determined using HPLC-MS/MS technology. The antioxidant activities were examined using various assays including free radical scavenging (ABTS and DPPH), reducing ability (CUPRAC and FRAP), metal chelation, and phosphomolybdenum. The enzyme inhibitory effects were investigated against cholinesterase, tyrosinase, amylase and glucosidase. The highest total phenolics and flavonoids contents were recorded in the methanol extracts of the seed (45.42 mg GAE/g) and aerial parts (40.33 mg RE/g) respectively. The aerial parts were characterized by higher accumulation of chlorogenic acid (9893.86 μg g-1 ), isoquercitrin (9400.33 μg g-1 ), delphindin 3,5 diglucoside (9113.28 μg g-1 ), hyperoside (6337.09 μg g-1 ), rutin (3489.83 μg g-1 ) and kaempferol-3-glucoside (2872.84 μg g-1 ). Generally, the methanol and aqueous extracts of the two studied parts exerted the best antioxidant activity with highest anti-DPPH (61.99 mg TE/g), anti-ABTS (101.80 mg TE/g) and Cu++ (16169 mg TE/g) and Fe+++ (172,36 mg TE/g) reducing capacity were recorded from the seed methanol extract. Methanol extract of the seed showed the best anti-tyrosinase activity (75.86 mg KAE/g). These results indicated that V. peregrina is rich with bioactive phenolics suggesting their use in different health promoting applications.
Collapse
Affiliation(s)
- Sakina Yagi
- Université de Lorraine, INRAE, LAE, F-54000, Nancy, France
- Department of Botany, Faculty of Science, University of Khartoum, Sudan
| | - Musa Denizhan Ulusan
- Isparta University of Applied Sciences, Faculty of Forestry, Forest Engineering, Isparta, Turkey
| | | | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Ahmed M Mustafa
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Simone Angeloni
- School of Pharmacy, University of Camerino, 62032, Camerino, MC, Italy
| | - Mihriban Ahıskalı
- Deparment of Biology, Graduate School of Natural and Applied Sciences, Bursa Uludag University, Bursa, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|