1
|
Naik S, Biswal SS, Mishra M. The Mechanism Behind the Therapeutic Role of Alpha-Tocopherol in Mitigating Hypobaric Hypoxia-Induced Eye Defect in Drosophila melanogaster. Dev Neurobiol 2025; 85:e22963. [PMID: 39992680 DOI: 10.1002/dneu.22963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025]
Abstract
Hypoxia, or low oxygen levels, is linked to several pathological disorders, including retinopathies. Retina being a metabolically active tissue, low oxygen levels resulted in retinal degradation. The developmental perspective of hypobaric hypoxia (HBH)-induced eye development remains elusive. Drosophila is used as our model organism to investigate the impact of HBH on eye development and alpha-tocopherol as a potential inhibitor. To induce the hypoxic condition, we exposed the Drosophila to hypobaric pressure (120 mbar). Hypoxia induces eye defects in different developmental stages of Drosophila as revealed by histological staining. Biochemical estimation disclosed the presence of reactive oxygen species (ROS) during hypoxia, which led to cellular injury and DNA damage. Quantitative PCR reveals the upregulation of Puf, Wge, and Twr genes and the downregulation of Rh1 and Rh6 involved in eye development. All these defects are brought back to normal levels after treatment with alpha-tocopherol. This research provides a foundation for understanding ocular developmental problems caused by oxygen deprivation and alpha-tocopherol as a crucial therapeutic approach to the treatment of HBH.
Collapse
Affiliation(s)
- Seekha Naik
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Smruti Sudha Biswal
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
2
|
Mazaheri-Tehrani S, Yazdi M, Heidari-Beni M, Yazdani Z, Kelishadi R. The association between vitamin C dietary intake and its serum levels with anthropometric indices: A systematic review and meta-analysis. Complement Ther Clin Pract 2023; 51:101733. [PMID: 36774847 DOI: 10.1016/j.ctcp.2023.101733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND studies showed inflammatory background of overweight and obesity. Prevalence of weight disorders has dramatically increased over the past few decades. Vitamin C is an antioxidant and may be associated with weight disorders. This study aims to systematically review the relationship between dietary and serum vitamin C levels with anthropometric indices. METHODS A systematic search was conducted in Medline database (PubMed), Scopus, Embase, Web of Science, Cochrane library and Google Scholar up to the end of August 2021. All observational studies that assessed the relationship between dietary or circulating vitamin C levels and body mass index (BMI) and waist circumference (WC) on adults were included. The quality of included studies was assessed using the National Institute of Health quality assessment tool. RESULTS Among 11,689 studies, 47 and 37 articles were included in the systematic review and meta-analysis, respectively. There was an inverse significant correlation between WC and serum vitamin C levels (r = -0.28, 95% CI: -0.35,-0.21, I2 = 14.2%) and between BMI and serum vitamin C levels (r = -0.17, 95% CI: -0.25, -0.09, I2 = 72.8%). Higher vitamin C consumption was significantly associated with lower BMI. There were no significant differences in serum vitamin C levels between normal-weight and overweight subjects, but serum vitamin C levels were significantly higher in obese subjects in comparison with normal-weight subjects. CONCLUSION Results showed that both dietary and serum vitamin C levels were inversely associated with BMI and WC. More well-designed clinical trials are needed to assess the effect of vitamin C supplementation in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Sadegh Mazaheri-Tehrani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Yazdi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Yazdani
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
The Effect of Antioxidant Added to Preservation Solution on the Protection of Kidneys before Transplantation. Int J Mol Sci 2022; 23:ijms23063141. [PMID: 35328560 PMCID: PMC8954097 DOI: 10.3390/ijms23063141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemia–reperfusion injury is a key clinical problem of transplantology. Current achievements in optimizing organ rinse solutions and storage techniques have significantly influenced the degree of graft damage and its survival after transplantation. In recent years, intensive research has been carried out to maintain the viability of tissues and organs outside the integral environment of the body. Innovative solutions for improving the biochemical functions of the stored organ have been developed. The article discusses directions for modifying preservation solutions with antioxidants. Clinical and experimental studies aimed at optimizing these fluids, as well as perfusion and organ preservation techniques, are presented.
Collapse
|
4
|
Whey protein concentrate protects against age-dependent alteration in redox biomarkers. Biol Futur 2021; 71:273-281. [PMID: 34554512 DOI: 10.1007/s42977-020-00033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Aging is associated with decreased cellular cysteine uptake, which acts as a precursor for glutathione biosynthesis. Whey protein, a liquid aspect of milk, is an effective cysteine delivery system. The study was undertaken to evaluate the potential role of whey protein concentrate (WPC) on the redox biomarkers during aging. Male Wistar rats were divided into following four groups: young control (4 months old); young treated with WPC (300 mg/kg b.w./day orally); old (24 months old) control; old treated with WPC for 28 days. After treatment, changes in body weight, lipid profile and levels of redox biomarkers were determined. A marked decrease in prooxidants such as reactive oxygen species, lipid peroxidation and protein carbonyl and significant (p ≤ 0.05) increase in antioxidants such as reduced glutathione and GST levels were observed after WPC supplementation in old age rats. We also found marked decrease in the level of sialic acid and AGEs after WPC supplementation. In conclusion, WPC provides protection against age-dependent redox imbalance which might be attributed to its antioxidant activity.
Collapse
|
5
|
Çolak R, Ağaşcıoğlu E, Çakatay U. "Live High Train Low" Hypoxic Training Enhances Exercise Performance with Efficient Redox Homeostasis in Rats' Soleus Muscle. High Alt Med Biol 2020; 22:77-86. [PMID: 32960081 DOI: 10.1089/ham.2020.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Çolak, Rıdvan, Eda Ağaşcıoğlu, and Ufuk Çakatay. "Live high train low" hypoxic training enhances exercise performance with efficient redox homeostasis in rats' soleus muscle. High Alt Med Biol. 22:77-86, 2021. Background: Different types of hypoxic training have been performed to improve exercise performance. Although both "live high train high" and "live high train low" techniques are commonly performed, it is still obscure as to which one is more beneficial. Materials and Methods: Eight-week-old male Sprague-Dawley rats were randomly divided into aforementioned experimental groups. After a familiarization exercise (4-week, ∼15-30 minutes/day) at normoxia, all rats exercised (4-week, ∼35 minutes/day) at hypoxia with their pre-evaluated maximal aerobic velocity test. The soleus was extracted after the test following 2 days of resting. Results: The live high trained low group displayed better performance than the live high trained high (p = 0.031) and the live low trained low (p = 0.017) groups. Redox status biomarkers were higher in the live high trained high group except for thiols, which were illustrated with no difference among the groups. Further, contrary to total and protein thiols (r = 0.57, p = 0.037; r = 0.55, p = 0.042 respectively), other redox status biomarkers were observed to be negatively correlated to exercise performance. Conclusions: The live high trained low group could consume more oxygen during exercise, which might lead to having a better chance to ensure cellular redox homeostasis. Therefore, this group could ensure an optimum exercise performance and anabolic metabolism.
Collapse
Affiliation(s)
- Rıdvan Çolak
- Department of Physical Education and Sports, Ardahan University, Ardahan, Turkey
| | - Eda Ağaşcıoğlu
- Department of Recreation, Faculty of Sports Sciences, Lokman Hekim University, Ankara, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
6
|
Effects of dietary vitamin E on growth, immunity and oxidation resistance related to the Nrf2/Keap1 signalling pathway in juvenile Sillago sihama. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Impaired redox homeostasis in the heart left ventricles of aged rats experiencing fast-developing severe hypobaric hypoxia. Biogerontology 2019; 20:711-722. [DOI: 10.1007/s10522-019-09826-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/25/2019] [Indexed: 01/17/2023]
|
8
|
Goswami AR, Ghosh T. Vitamin E Reduces Hypobaric Hypoxia-Induced Immune Responses in Male Rats. High Alt Med Biol 2018; 20:12-21. [PMID: 30523700 DOI: 10.1089/ham.2018.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In hypobaric hypoxia (HH) at high altitude, the immune responses are changed probably due to oxidative stress-induced production of free radicals and nonradicals. Vitamin E is an antioxidant and protects the cells from oxidative damage. The present study was carried out to study the antioxidant role of vitamin E on the immune changes induced by oxidative stress in HH at high altitude. Select immune responses (phagocytic activity of white blood cell [WBC], cytotoxic activity of splenic mononuclear cells [MNCs], and delayed type of hypersensitivity [DTH]) and hematological changes (total count and differential count [DC] of WBC) were measured in male rats exposed to intermittent HH (at 5486.4 m in a simulated chamber for 8 hours/d for 6 consecutive days) and in normobaric condition with and without p.o. administration of vitamin E in three different doses (20, 40, and 60 mg/kg body weight). The increase of phagocytic activity of blood WBC, and reduction of cytotoxic activity of splenic MNC and DTH response were observed in rats exposed to HH. After the administration of vitamin E at different doses, the immune changes were blocked in a dose-dependent manner. Exposure to HH also led to the elevation of serum corticosterone (CORT), which was arrested after administration of vitamin E. The results indicate that the immune changes in HH at high altitude are probably mediated by the production of free radicals and nonradicals, and vitamin E can block these immune changes by its reactive oxygen species quenching effects.
Collapse
Affiliation(s)
- Ananda Raj Goswami
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| | - Tusharkanti Ghosh
- Department of Physiology, University College of Science and Technology, University of Calcutta , Kolkata, India
| |
Collapse
|
9
|
Salivary proteome patterns of individuals exposed to High Altitude. Arch Oral Biol 2018; 96:104-112. [DOI: 10.1016/j.archoralbio.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022]
|
10
|
Zarate MA, Chang EI, Wood CE. Effects of ketamine on the fetal transcriptomic response to umbilical cord occlusion: comparison with hypoxic hypoxia in the cerebral cortex. J Physiol 2018; 596:6063-6077. [PMID: 29882596 DOI: 10.1113/jp275661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/23/2018] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS The cerebral response to fetal asphyxia is characterized by an upregulation of nucleic acid and chromatin modification processes, as well as a downregulation of metabolic processes at 1 h post-umbilical cord occlusion (UCO). Twenty-four hours post UCO, there was an upregulation of metabolic processes and protein modifications. UCO did not alter bacterial gene expression levels, nor did it produce a robust inflammatory response compared to maternal hypoxia. The administration of ketamine produced minimal effects on the fetal response to UCO in the cerebral cortex. ABSTRACT Umbilical cord occlusion (UCO) is known to cause neurological disorders in the neonate. Previously, we have reported that hypoxic hypoxia (HH) stimulates the appearance of bacteria in the fetal brain and upregulates the expression of inflammatory markers in fetal cerebral cortex (CTX) and also that ketamine attenuates these responses. In the present study, we aimed to test the hypothesis that UCO, similar to HH, produces an inflammatory response in the fetal CTX and also that treatment with ketamine reduces these effects. In chronically instrumented fetal sheep (∼125 days), 30 min of partial UCO decreased fetal P a O 2 levels by ∼50%. Half of the fetuses received ketamine (3 mg kg-1 ) 10 min prior to UCO (n = 4 per group). Fetal brains were collected 1 and 24 h after the experiment and mRNA was extracted and hybridized for microarray analyses. Differentially-expressed genes were analysed for significant association with gene ontologies and pathways. After 1 h, UCO upregulated nucleic acid processing and chromatin modification and downregulated metabolic processes compared to control. After 24 h, UCO upregulated metabolic and protein modification processes. Ketamine produced minimal effects. UCO did not alter the abundance of bacterial DNA in fetal brain, nor did it upregulate inflammation pathways compared to HH. We conclude that UCO produced time-dependent responses that did not include bacterial invasion or upregulation of inflammation pathways in fetal CTX. This contrasts with the response to HH, which resulted in the appearance of bacteria in the CTX and upregulated inflammation pathways. These responses in fetal CTX to oxygen deprivation are therefore modified by the maternal or placental response to the stimulus.
Collapse
Affiliation(s)
- Miguel A Zarate
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Eileen I Chang
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
11
|
Paul S, Gangwar A, Bhargava K, Khurana P, Ahmad Y. Diagnosis and prophylaxis for high-altitude acclimatization: Adherence to molecular rationale to evade high-altitude illnesses. Life Sci 2018; 203:171-176. [PMID: 29698652 DOI: 10.1016/j.lfs.2018.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/13/2018] [Accepted: 04/21/2018] [Indexed: 11/25/2022]
Abstract
Lack of zero side-effect, prescription-less prophylactics and diagnostic markers of acclimatization status lead to many suffering from high altitude illnesses. Although not fully translated to the clinical setting, many strategies and interventions are being developed that are aimed at providing an objective and tangible answer regarding the acclimatization status of an individual as well as zero side-effect prophylaxis that is cost-effective and does not require medical supervision. This short review brings together the twin problems associated with high-altitude acclimatization, i.e. acclimatization status and zero side-effect, easy-to-use prophylaxis, for the reader to comprehend as cogs of the same phenomenon. We describe current research aimed at preventing all the high-altitude illnesses by considering them an assault on redox and energy homeostasis at the molecular level. This review also entails some proteins capable of diagnosing either acclimatization or high-altitude illnesses. The future strategies based on bioinformatics and systems biology is also discussed.
Collapse
Affiliation(s)
- Subhojit Paul
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Anamika Gangwar
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Kalpana Bhargava
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Pankaj Khurana
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India
| | - Yasmin Ahmad
- Peptide & Proteomics Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi 110054, India.
| |
Collapse
|
12
|
Quindry J, Dumke C, Slivka D, Ruby B. Impact of extreme exercise at high altitude on oxidative stress in humans. J Physiol 2016; 594:5093-104. [PMID: 26453842 PMCID: PMC5023697 DOI: 10.1113/jp270651] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/28/2015] [Indexed: 12/29/2022] Open
Abstract
Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude.
Collapse
Affiliation(s)
- John Quindry
- School of Kinesiology, Auburn University, Auburn, AL, USA.
| | - Charles Dumke
- Department of Health and Human Performance, University of Montana, Missoula, MT, USA
| | - Dustin Slivka
- School of Health, Physical Education and Recreation, University of Nebraska at Omaha, Omaha, NE, USA
| | - Brent Ruby
- Department of Health and Human Performance, University of Montana, Missoula, MT, USA
- Montana Centre for Work Physiology and Exercise Metabolism, University of Montana, Missoula, MT, USA
| |
Collapse
|
13
|
de Aquino-Lemos V, Santos RVT, Antunes HKM, Lira FS, Luz Bittar IG, Caris AV, Tufik S, de Mello MT. Acute physical exercise under hypoxia improves sleep, mood and reaction time. Physiol Behav 2016; 154:90-9. [DOI: 10.1016/j.physbeh.2015.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/15/2015] [Accepted: 10/27/2015] [Indexed: 01/20/2023]
|
14
|
Chen CY, Hou CW, Bernard JR, Chen CC, Hung TC, Cheng LL, Liao YH, Kuo CH. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt Med Biol 2015; 15:371-9. [PMID: 25251930 DOI: 10.1089/ham.2013.1114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High altitude training is a widely used strategy for improving aerobic exercise performance. Both Rhodiola crenulata (R) and Cordyceps sinensis (C) supplements have been reported to improve exercise performance. However, it is not clear whether the provision of R and C during high altitude training could further enhance aerobic endurance capacity. In this study, we examined the effect of R and C based supplementation on aerobic exercise capacity following 2-week high altitude training. Alterations to autonomic nervous system activity, circulatory hormonal, and hematological profiles were investigated. Eighteen male subjects were divided into two groups: Placebo (n=9) and R/C supplementation (RC, n=9). Both groups received either RC (R: 1400 mg+C: 600 mg per day) or the placebo during a 2-week training period at an altitude of 2200 m. After 2 weeks of altitude training, compared with Placebo group, the exhaustive run time was markedly longer (Placebo: +2.2% vs. RC: +5.7%; p<0.05) and the decline of parasympathetic (PNS) activity was significantly prevented in RC group (Placebo: -51% vs. RC: -41%; p<0.05). Red blood cell, hematocrit, and hemoglobin levels were elevated in both groups to a comparable extent after high altitude training (p<0.05), whereas the erythropoietin (EPO) level remained higher in the Placebo group (∼48% above RC values; p<0.05). The provision of an RC supplement during altitude training provides greater training benefits in improving aerobic performance. This beneficial effect of RC treatment may result from better maintenance of PNS activity and accelerated physiological adaptations during high altitude training.
Collapse
Affiliation(s)
- Chung-Yu Chen
- 1 Department of Exercise and Health Sciences, University of Taipei , Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu C, Dong C, Xu C, Han T, Bao S, Gao X. Effect of iron supplementation on the expression of hypoxia-inducible factor and antioxidant status in rats exposed to high-altitude hypoxia environment. Biol Trace Elem Res 2014; 162:142-52. [PMID: 25380676 DOI: 10.1007/s12011-014-0166-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 12/18/2022]
Abstract
Iron and oxygen are essential substance for cellular activity in body tissues. Hypoxia-inducible factors (HIFs) can respond to available oxygen changes in the cellular environment and regulate the transcription of a series of target genes. The study was conducted to investigate the effects of iron supplementation on the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and antioxidant status in rats exposed to high-altitude hypoxia environment. Forty rats were divided into control (CON), hypobaric hypoxia (HH), and hypobaric hypoxia plus ferrous sulfate (FeSO4) (9.93 mg/kg body weight (BW)/day) (HFS) and hypobaric hypoxia plus iron glycinate chelate (Fe-Gly) (11.76 mg/kg BW/day) (HFG) groups. Results showed that Fe-Gly effectively alleviated weight loss and intestinal mucosa damage induced by hypobaric hypoxia, whereas FeSO4 aggravated hypobaric hypoxia-induced weight loss, liver enlargement, spleen atrophy, and intestinal damage. Iron supplementation decreased liver superoxide dismutase (T-SOD) and catalase (CAT) activity (P < 0.01) and increased iron concentration in the liver compared to HH group (P < 0.001). Moreover, Fe-Gly upregulated liver transferrin expression in messenger RNA (mRNA) level (P < 0.05) and downregulated serum erythropoietin (EPO) concentration (P < 0.01) and liver HIF-1α expression level (P < 0.05 in mRNA level; P < 0.001 in protein level) compared to HH group. The study indicated that FeSO4 supplementation at high altitudes aggravated the oxidative damage of tissues and organs that could be mediated through production of malondialdehyde (MDA) and inhibition antioxidant enzyme activities. Fe-Gly can protect hypobaric hypoxia-induced tissues injury. Moreover, iron supplementation at high altitudes affected HIF-1α-mediated regulating expression of targeting genes such as EPO and transferrin. The study highlights that iron supplementation under hypobaric hypoxia environment has possible limitation, and efficient supplementation form and dosage need careful consideration.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyixi Road, Xi'an, Shaanxi, 710072, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
16
|
Goswami AR, Dutta G, Ghosh T. Effects of vitamin C on the hypobaric hypoxia-induced immune changes in male rats. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2014; 58:1961-1971. [PMID: 24562878 DOI: 10.1007/s00484-014-0799-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Hypobaric hypoxia (HH) induces oxidative stress (OS) and is associated with the generation of reactive oxygen species (ROS). Vitamin C is an efficient antioxidant, and it is used in a high-altitude environment to reduce the OS. The present study explores the role of vitamin C on some HH-induced changes of immune parameters in rats which were exposed to HHc condition at 18,000 ft in a simulated chamber for 8 h/day for 6 days with and without vitamin C administration at three different doses (200, 400, and 600 mg/kg body wt). The phagocytic activity of circulating blood WBC was increased, and the cytotoxic activity of splenic mononuclear cell (MNC) and the delayed type of hypersensitivity (DTH) responses to bovine serum albumin (BSA) were decreased in rats exposed to HHc condition, but these immune changes were blocked after administration of vitamin C at 400 mg/kg body wt. The leukocyte adhesive inhibition index (LAI) was not altered either in HHc condition or after administration of vitamin C in HHc condition. The serum corticosterone (CORT) concentration was increased in rats exposed to HHc condition which was blocked after administration of vitamin C (400 mg/kg body wt). The immune parameters and serum CORT concentration, however, did not show any recovery after administration of vitamin C at the dose of 200 and 600 mg/kg body wt. The present study indicates that administration of vitamin C at a dose of 400 mg/kg body wt may prevent the HH-induced immunological changes but not at the lower dose (200 mg/kg body wt) or higher dose (600 mg/kg body wt) in rats.
Collapse
Affiliation(s)
- Ananda Raj Goswami
- Department of Physiology, University College of Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata, West Bengal, 700009, India
| | | | | |
Collapse
|
17
|
Soumya R, Vani R. CUPRAC–BCS and antioxidant activity assays as reliable markers of antioxidant capacity in erythrocytes. Hematology 2014; 20:165-74. [DOI: 10.1179/1607845414y.0000000177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Ravikumar Soumya
- Department of Biotechnology, Centre for Post Graduate Studies, Jain University, Bangalore, India
| | - Rajashekharaiah Vani
- Department of Biotechnology, Centre for Post Graduate Studies, Jain University, Bangalore, India
| |
Collapse
|
18
|
GARCIA-DIAZ DF, LOPEZ-LEGARREA P, QUINTERO P, MARTINEZ JA. Vitamin C in the Treatment and/or Prevention of Obesity. J Nutr Sci Vitaminol (Tokyo) 2014; 60:367-79. [DOI: 10.3177/jnsv.60.367] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Pablo QUINTERO
- Department of Gastroenterology, School of Medicine, Pontifical Catholic University of Chile
| | - Jose Alfredo MARTINEZ
- CIBERobn. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III
- Department of Food Sciences and Physiology, University of Navarra
| |
Collapse
|
19
|
Simonyan RM, Melconyan LH, Babayan MA, Simonyan GM, Arakelyan LN, Simonyan MA, Galoyan AA. The protective role of a hypothalamic proline-rich peptide during acute intoxication of rats by carbon dioxide in combination with oxygen starvation. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712412040113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Martinez-Bello VE, Sanchis-Gomar F, Martinez-Bello D, Olaso-Gonzalez G, Gomez-Cabrera MC, Viña J. Vitamin C supplementation does not improve hypoxia-induced erythropoiesis. High Alt Med Biol 2012; 13:269-74. [PMID: 23270444 DOI: 10.1089/ham.2012.1028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypoxia induces reactive oxygen species production. Supplements with antioxidant mixtures can compensate for the decline in red cell membrane stability following intermittent hypobaric hypoxia by decreasing protein and lipid oxidation. We aimed to determine whether supplementation with vitamin C is implicated in the regulation of erythropoiesis and in the oxygen-carrying capacity of the blood, and also whether antioxidant supplementation prevents the oxidative stress associated to intermittent hypoxia. Twenty-four male Wistar rats were randomly divided into four experimental groups: normoxia control (n=6), normoxia + vitamin C (n=6), hypoxia control (12 h pO(2) 12%/12 h pO(2) 21%) (n=6), and hypoxia + vitamin C (n=6). Animals were supplemented with vitamin C at a dose of 250 mg·kg(-1)·day(-1) for 21 days. Red blood cell count, hemoglobin, hematocrit, reticulocytes, erythropoietin, and oxidative stress parameters such as malondialdehyde and protein oxidation in plasma were analyzed at two different time points: basal sample (day zero) and final sample (day 21). Similar RBC, Hb, Hct, and Epo increments were observed in both hypoxic groups regardless of the vitamin C supplementation. There was no change on MDA levels after intermittent hypoxic exposure in any experimental group. However, we found an increase in plasma protein oxidation in both hypoxic groups. Vitamin C does not affect erythropoiesis and protein oxidation in rats submitted to intermittent hypoxic exposure.
Collapse
Affiliation(s)
- Vladimir E Martinez-Bello
- Faculty of Medicine, Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Rajashekharaiah V, Koshy AA, Koushik AK, Kaur H, Kumari K, Agrawal M, Priyanka, Ramya, Khatai S, Gowda V, Kumar V. The efficacy of erythrocytes isolated from blood stored under blood bank conditions. Transfus Apher Sci 2012; 47:359-64. [DOI: 10.1016/j.transci.2012.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 06/06/2012] [Accepted: 06/29/2012] [Indexed: 11/28/2022]
|
22
|
Sanchis-Gomar F, Viña J, Lippi G. Intermittent hypobaric hypoxia applicability in myocardial infarction prevention and recovery. J Cell Mol Med 2012; 16:1150-4. [PMID: 22151473 PMCID: PMC4365893 DOI: 10.1111/j.1582-4934.2011.01508.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intermittent hypobaric hypoxia (IHH) has been the focus of important research in cardioprotection, and it has been associated with several mechanisms. Intermittent hypobaric hypoxia inhibits prolyl hydroxylases (PHD) activity, increasing the stabilization of hypoxia-inducible factor-1 (HIF-1) and activating crucial adaptative genes. It has been hence suggested that IHH might be a simple intervention, which may offer a thoughtful benefits to patients with acute myocardial infarction and no complications. Nevertheless, several doubts exist as to whether IHH is a really safe technique, with little to no complications in post-myocardial infarction patients. Intermittent hypobaric hypoxia might produce instead unfavourable changes such as impairment of vascular hemodynamics and hypertensive response, increased risk of hemoconcentration and thrombosis, cardiac rhythm perturbations, coronary artery disease and heart failure, insulin resistance, steatohepatitis and even high-altitude pulmonary oedema in susceptible or nonacclimatized patients. Although intermittent and chronic exposures seem effective in cardioprotection, IHH safety issues have been mostly overlooked, so that assorted concerns should be raised about the opportunity to use IHH in the post-myocardial infarction period. Several IHH protocols used in some studies were also aggressive, which would hamper their widespread introduction within the clinical practice. As such, further research is needed before IHH can be widely advocated in myocardial infarction prevention and recovery.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Faculty of Medicine, Department of Physiology, University of Valencia, Valencia, Spain.
| | | | | |
Collapse
|
23
|
Greń A, Barbasz A, Kreczmer B, Sieprawska A, Rudolphi-Skórska E, Filek M. Protective effect of ascorbic acid after single and repetitive administration of cadmium in Swiss mice. Toxicol Mech Methods 2012; 22:597-604. [DOI: 10.3109/15376516.2012.704957] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Celec P, Jurkovičová I, Buchta R, Bartík I, Gardlík R, Pálffy R, Mucska I, Hodosy J. Antioxidant vitamins prevent oxidative and carbonyl stress in an animal model of obstructive sleep apnea. Sleep Breath 2012; 17:867-71. [PMID: 22674398 DOI: 10.1007/s11325-012-0728-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of our study was to analyze the effects of an antioxidant treatment on markers of oxidative and carbonyl stress in a rat model of obstructive sleep apnea. METHODS Wistar rats were randomized into six groups-according to gender and intervention-sham, intermittent hypoxia, and intermittent hypoxia with treatment by vitamins C and E. Rats underwent tracheostomy. The tracheal cannula was closed for 12 s every minute for 1 h to simulate obstructive sleep apnea-related intermittent hypoxia. In the treatment group, rats received vitamin C and E 24 h prior to surgery. RESULTS The intervention had a significant effect on advanced oxidation protein products (p = 0.008) and advanced glycation end products-specific fluorescence (p = 0.006) but no effect on malondialdehyde. Oxidation and glycation protein products were higher in intermittent hypoxia groups than in sham and in treated groups. CONCLUSIONS Antioxidants alleviate oxidative and carbonyl stress in an experimental model of obstructive sleep apnea. Future studies will show whether such treatment has any clinical value regarding cardiovascular complications of sleep apnea syndrome, preferably in patients with low compliance to continuous positive airway pressure.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Comenius University, Sasinkova 4 811 08, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sharma NK, Sethy NK, Meena RN, Ilavazhagan G, Das M, Bhargava K. Activity-dependent neuroprotective protein (ADNP)-derived peptide (NAP) ameliorates hypobaric hypoxia induced oxidative stress in rat brain. Peptides 2011; 32:1217-24. [PMID: 21453737 DOI: 10.1016/j.peptides.2011.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 01/28/2023]
Abstract
Hypobaric hypoxia is a socio-economic problem affecting cognitive, memory and behavior functions. Severe oxidative stress caused by hypobaric hypoxia adversely affects brain areas like cortex, hippocampus, basal ganglia, and cerebellum. In the present study, we have investigated the antioxidant and memory protection efficacy of the synthetic NAP peptide (NAPVSIPQ) during long-term chronic hypobaric hypoxia (7, 14, 21 and 28 days, 25,000ft) in rats. Intranasal supplementation of NAP peptide (2μg/Kg body weight) improved antioxidant status of brain evaluated by biochemical assays for free radical estimation, lipid peroxidation, GSH and GSSG level. Analysis of expression levels of SOD revealed that NAP significantly activated antioxidant genes as compared to hypoxia exposed rats. We have also observed a significant increased expression of Nrf2, the master regulator of antioxidant defense system and its downstream targets such as HO-1, GST and SOD1 by NAP supplementation, suggesting activation of Nrf2-mediated antioxidant defense response. In corroboration, our results also demonstrate that NAP supplementation improved the memory function assessed with radial arm maze. These cumulative results suggest the therapeutic potential of NAP peptide for ameliorating hypobaric hypoxia-induced oxidative stress.
Collapse
Affiliation(s)
- Narendra K Sharma
- Peptide and Proteomics Division, Defence Institute of Physiological and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi 110054, India
| | | | | | | | | | | |
Collapse
|
26
|
Asha Devi S, Shiva Shankar Reddy CS, Subramanyam MVV. Peroxyl-induced oxidative stress in aging erythrocytes of rat. Biogerontology 2011; 12:283-92. [PMID: 21359656 DOI: 10.1007/s10522-011-9323-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/13/2011] [Indexed: 11/30/2022]
Abstract
This study aims at determining the possible changes in intracellular calcium (Ca (i) (2+) ), plasma membrane calcium ATPase (PMCA) activity and phosphatidylserine (PS) along with glutathione (GSH) level in response to an oxidant challenge in vitro. Erythrocytes were isolated on Percoll and incubated with 2, 2'azobis (2-aminopropane) hydrochloride (AAPH) as well as with vitamin C preceding AAPH incubation. Membrane integrity in terms of hemolysis was negatively related to acetylcholine esterase (AChE) activity with the extent of reduction under OS being higher in the old erythrocyte than in the young. A divergent pattern was seen towards lower PMCA and higher (Ca (i) (2+) ) in the young and old cells. However, the PMCA activity in the stressed young cell was high when pre-treated with vitamin C. PS externalization in the young under OS is perhaps analogous to normal aging, with vitamin C preventing premature death. These findings suggest that young erythrocytes may benefit from vitamin C in therapies addressed towards the mechanisms underlying the reduced effects of OS.
Collapse
Affiliation(s)
- S Asha Devi
- Department of Zoology, Laboratory of Gerontology, Bangalore University, Bangalore, 560 056, India.
| | | | | |
Collapse
|
27
|
Valdecantos MP, Pérez-Matute P, Quintero P, Martínez JA. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different. Redox Rep 2011; 15:207-16. [PMID: 21062536 DOI: 10.1179/135100010x12826446921464] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Modulating mitochondrial antioxidant status is a nutritional issue of great interest in the treatment or prevention of several oxidative stress related diseases such as obesity. Thus, the aim of the present study was to analyze the effects of three antioxidants on hepatic mitochondrial function and antioxidant status. Isolated rat liver mitochondria were incubated with vitamin C, resveratrol and lipoic acid. The activity of antioxidant enzymes (manganese superoxide dismutase and glutathione peroxidase), ROS generation and respiratory parameters (RCR, P/O ratio and respiratory states) were measured. Vitamin C influenced mitochondrial function by decreasing of ROS generation (P < 0.0001), by stimulating the activity of manganese superoxide dismutase (197.60 ± 35.99%; P < 0.001) as well as glutathione peroxidase (15.70 ± 5.76%; P < 0.05) and by altering the activity of the electron transport chain, mainly by decreasing the P/O ratio (P < 0.05). Resveratrol induced a significant increase in manganese superoxide dismutase activity (160 ± 11.78%; P < 0.0001) and a decrease in ROS generation (P < 0.05 to P < 0.0001). By contrast, lipoic acid inhibited glutathione peroxidase activity (16.48 ± 3.27%; P < 0.05) and induced the uncoupling of the electron transport chain (P < 0.01). Moreover, this antioxidant induced a strong decrease in the P/O ratio (P < 0.05 to P < 0.0001). In conclusion, our results suggest that the three tested antioxidants produced direct effects on mitochondrial function, although the magnitude and intensity of these actions were significantly different, which may have implications when administrated as antioxidants.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Department of Nutrition, Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Navarra, Spain
| | | | | | | |
Collapse
|
28
|
Vani R, Reddy CSSS, Asha Devi S. Oxidative stress in erythrocytes: a study on the effect of antioxidant mixtures during intermittent exposures to high altitude. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2010; 54:553-562. [PMID: 20169366 DOI: 10.1007/s00484-010-0304-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
The aim of our study was to compare and assess the effectiveness of antioxidant mixtures on the erythrocytes (RBC) of adult male albino rats (Wister) subjected to simulated intermittent high altitudes--5,100 m (AL(1)) and 6,700 m (AL(2))--to induce oxidative stress (OS). To achieve our objective, we pre-supplemented four sets of animals with different antioxidant mixtures [vitamin E (vit.E; 50 IU/kg BW), vitamin C (vit.C; 400 mg/kg) and L: -carnitine (400 mg/kg)] in different combinations [M1 (vit.E+vit.C), M2 (vit.C+carnitine), M3 (vit.E+carnitine) and M4 (vit.C+vit.E+carnitine)] for 30 days prior to as well during exposure to intermittent hypobaric hypoxia (IHH). Membrane instability, in terms of osmotic fragility and hemolysis, decreased in RBCs of supplemented animals. There was a significant increase in the activity of glutathione peroxidase in the RBCs of supplemented animals. We confirmed OS imposed by IHH with assays relating to lipid [thiobarbituric acid reactive substances (TBARS) and lipofuscin (LF)] and protein (carbonyl, PrC) oxidation, and found a positive correlation between PrC and hemolysis, with a decrease in both upon supplementation with M3 and M4 mixtures. Fluorescence microscopic observation showed a maximum decrease in the LF content in rats administered M4 and M1 compared to those on M2 and M3 mixtures at both altitudes. We suggest that multiple antioxidant fortifications are effective in overcoming increased OS experienced by RBCs at high altitudes.
Collapse
Affiliation(s)
- R Vani
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore 560 056, India
| | | | | |
Collapse
|
29
|
Ambali SF, Ayo JO, Ojo SA, Esievo KAN. Ameliorative effect of vitamin C on chronic chlorpyrifos-induced erythrocyte osmotic fragility in Wistar rats. Hum Exp Toxicol 2010; 30:19-24. [PMID: 20378658 DOI: 10.1177/0960327110368415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic exposure to chlorpyrifos (CPF) has been shown to cause increased lipoperoxidative changes in the erythrocyte membranes. The relationship between chronic CPF-induced lipoperoxidative changes and erythrocyte fragility has not been elucidated. The aim of the present study is to evaluate the role of lipoperoxidation on CPF-induced erythrocyte fragility and the ameliorative effect of vitamin C. Twenty animals divided at random into four groups of five animals each served as subject for this study. Rats in group I served as the control group and were given only soya oil at a dose of 2 mL/kg body weight (b.w.). Rats in group II were dosed with vitamin C (100 mg/kg b.w.) and then supplemented with soya oil (2 mL/kg b.w.), while those in group III were administered with CPF only at a dose of 10.6 mg/kg b.w. (~one-eighth of the previously determined median lethal dose [LD(50)]). Rats in group IV were pretreated with 100 mg/kg b.w. of vitamin C, and then dosed with CPF at a dose of 10.6 mg/kg b.w., 30 min later. The different treatment regimens were orally administered daily for a period of 17 weeks. Blood collected from the animals at the end of the test period were analyzed for erythrocyte osmotic fragility and malonaldehyde (MDA) concentration as an index of lipid peroxidation. The study showed that CPF caused significant increase in erythrocyte fragility and MDA concentration, which were ameliorated by pretreatment with vitamin C. In conclusion, the study showed that CPF-evoked erythrocyte fragility due to increased lipoperoxidative changes was ameliorated by pretreatment with vitamin C.
Collapse
Affiliation(s)
- Suleiman F Ambali
- Department of Veterinary Physiology and Pharmacology, Ahmadu Bello University, Zaria, Nigeria.
| | | | | | | |
Collapse
|
30
|
Lemos VDA, Antunes HKM, Santos RVTD, Prado JMDS, Tufik S, Mello MTD. Efeitos da exposição à altitude sobre os aspectos neuropsicológicos: uma revisão da literatura. REVISTA BRASILEIRA DE PSIQUIATRIA 2009; 32:70-6. [DOI: 10.1590/s1516-44462009005000013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/16/2009] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Discutir os efeitos da exposição à altitude sobre as funções neuropsicológicas. MÉTODO: Foi realizada uma revisão de literatura usando como fonte de pesquisa artigos indexados no Pubmed, no período de 1921 a 2008, utilizando as palavras-chave "cognition and hypoxia", "hypoxia and neuropsychology", "acute hypoxia", "chronic hypoxia" e "acclimatization and hypoxia", além de livros específicos do assunto. DISCUSSÃO: Os efeitos agudos e crônicos da hipóxia podem alterar inúmeras funções neuropsicológicas em diferentes altitudes, decorrentes de alterações fisiológicas que resultam da diminuição parcial de oxigênio (O2), que podem levar as alterações neuropsicológicas, como atenção, memória, tomada de decisão e demais funções executivas, em indivíduos expostos a grandes altitudes. CONCLUSÃO: Indivíduos que se expõem às grandes altitudes devem utilizar suplementação de O2 e prática de aclimatização, entre outras estratégias para minimizar os efeitos negativos da hipóxia nos aspectos neuropsicológicos.
Collapse
Affiliation(s)
- Valdir de Aquino Lemos
- Universidade Federal de São Paulo, Brasil; Centro de Estudos em Psicobiologia e Exercício, Brasil
| | | | | | | | - Sergio Tufik
- Universidade Federal de São Paulo, Brasil; Centro de Estudos em Psicobiologia e Exercício, Brasil; Conselho Nacional de Desenvolvimento Científico e Tecnológico
| | - Marco Túlio De Mello
- Universidade Federal de São Paulo, Brasil; Centro de Estudos em Psicobiologia e Exercício, Brasil; Conselho Nacional de Desenvolvimento Científico e Tecnológico
| |
Collapse
|
31
|
Oxidative stress and intracellular pH in the young and old erythrocytes of rat. Biogerontology 2009; 10:659-69. [DOI: 10.1007/s10522-009-9212-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
32
|
Rai DK, Rai PK, Rizvi SI, Watal G, Sharma B. Carbofuran-induced toxicity in rats: protective role of vitamin C. ACTA ACUST UNITED AC 2009; 61:531-5. [PMID: 19128948 DOI: 10.1016/j.etp.2008.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/19/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Erythrocytes are prone to oxidative stress due to the presence of hemoglobin and polyunsaturated fatty acids. Oxidative stress (OS) is associated with increased osmotic fragility (OF) of erythrocytes. Organophosphate and organocarbamate pesticides are known to cause OS in erythrocytes. We have investigated the effect of a single sub-acute dose of carbofuran (CF), an organocarbamate pesticide and ameliorating role of vitamin C on OF and OS in erythrocytes of Wistar rats. OF and OS were assessed by determining membrane stability in terms of erythrocyte OF and the activities of free radicals scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). We observed a significant alteration in the mean erythrocyte fragility (MEF) at relatively higher NaCl concentration (0.67%) as compared to MEF at 0.55%, 0.58% and 0.56% of NaCl in control, vitamin C- and vitamin C + CF-treated groups, respectively. The activities of CAT and SOD were observed to be elevated by 74.35% and 85.56%, respectively, with significance level of p < or = 0.001, whereas GST activity got significantly (p < or = 0.001) diminished by 46.30% in the erythrocytes of CF-treated rats. Vitamin C treatment exhibited marked (p < or = 0.05) prevention of carbofuran-induced oxidative stress as well as erythrocyte osmotic fragility in the Wistar rats. These results suggest that CF treatment induces OF and OS in the erythrocytes of rats, and pretreatment with vitamin C can mitigate these toxic effects.
Collapse
Affiliation(s)
- Devendra K Rai
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | | | | | | | | |
Collapse
|
33
|
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. ACTA ACUST UNITED AC 2008; 61:223-42. [PMID: 18986801 DOI: 10.1016/j.etp.2008.09.003] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 02/07/2023]
Abstract
cis-Diamminedichloroplatinum (II) (cisplatin) is an important chemotherapeutic agent useful in the treatment of several cancers; however, it has several side effects such as nephrotoxicity. The role of the oxidative and nitrosative stress in cisplatin-induced nephrotoxicity is additionally supported by the protective effect of several free radical scavengers and antioxidants. Furthermore, in in vitro experiments, antioxidants or reactive oxygen species (ROS) scavengers have a cytoprotective effect on cells exposed to cisplatin. Recently, the participation of nitrosative stress has been more explored in cisplatin-induced renal damage. The use of a water-soluble Fe(III) porphyrin complex able to metabolize peroxynitrite (ONOO(-)) has demonstrated that this anion contributes to both in vivo and in vitro cisplatin-induced toxicity. ONOO(-) is produced when nitric oxide (NO*) reacts with superoxide anion (O(2)(*-)); currently, there are evidences suggesting alterations in NO* production after cisplatin treatment and the evidence appear to NO* has a toxic effect. This article goes through current evidence of the mechanism by more than a few compounds have beneficial effects on cisplatin-induced nephrotoxicity, contribute to understanding the role of oxidative and nitrosative stress and suggest several points as part of the mechanism of cisplatin toxicity.
Collapse
Affiliation(s)
- Yolanda I Chirino
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Tlalpan, DF, Mexico.
| | | |
Collapse
|
34
|
Møller P, Risom L, Lundby C, Mikkelsen L, Loft S. Hypoxia and oxidation levels of DNA and lipids in humans and animal experimental models. IUBMB Life 2008; 60:707-23. [DOI: 10.1002/iub.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|